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A CLASS OF RIGHT-ORDERABLE GROUPS 

R. T. BOTTO MURA AND A. H. RHEMTULLA 

1. Introduction. A group G is called right-orderable (or an RO-group) if 
there exists an order relation ^ on G such that a ^ b implies ac fg be for all 
a, b, c in G. This is equivalent to the existence of a subsemigroup P of G such 
that P C\P-1 = {e} and P \J P~l = G. Given the order relation ^ , P can be 
taken to be the set of positive elements and conversely, given P , define a ^ b 
if and only if ba~~l 6 P . A group G together with a given right-order relation 
on G is called right-ordered. A subgroup C of a right-ordered group G is called 
convex if for every g in G and x in C, e ^ g S c implies g Ç G. The set of all 
convex subgroups of G is ordered by inclusion and closed with respect to 
unions and intersections. However there is not much more one can say in 
general regarding this set. We shall call a right-order P on G a C-right-order 
if the set of convex subgroups form a system with torsion-free abelian factors. 
P. Conrad [2] has looked a t a number of equivalent conditions for a group G 
to be C-right-ordered. Our main concern here is to investigate the properties 
of an PO-group G in which every right-order is a C-right-order. We call such 
a group a Ci-group. In Lemma 3.1 we show that a right-order P is a C-right-
order if and only if it satisfies the property : 

(*) For all x, y in P there exist u, v in sgr (x, y) (the semigroup generated 
by x and y) such that ux ^ vy. 

Thus in particular an PO-group G is a Ci-group if it satisfies the property: 

(**) For all x, y in G there exist w, v in sgr (xt y) such that ux = vy. 

We call G a Cz-group if it satisfies (**). Finally we denote by C2 the largest 
subgroup closed subclass of C\. Then RO 2 Ci 2 C2 2 PC P\ C3, and all 
these inclusions are proper (Corollary 3.3, Theorem 3.5). 

In Section 2 we note a few properties of C3-groups. In particular we show 
that locally solvable C3-groups are locally nilpotent-by-finite (Theorem 2.6). 
This is not true of C2-groups (Theorem 3.5), however orderable locally solvable 
C2-groups are locally nilpotent and finitely generated orderable solvable Ci-
groups are nilpotent (Theorem 3.6). 

2. C3-ei*oups. We start by observing that the class C3 is subgroup-closed 
and closed under periodic extensions; moreover a group G is in C3 if every two-
generator subgroup of G is in C3. B. H. Neumann has shown that G is in C3 

if every two-generator subgroup of G is nilpotent. 
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LEMMA 2.1. Let H be a subgroup in the centre of a group G. If G/H is in C3, 
then G is in C3. 

Proof. Let x, y £ G. Then there exist u, v Ç sgr (x, y) such that wx = zvy 
for some z £ H. Thus ^wx = wx^j with vyu, uxv Ç sgr (x, y). 

COROLLARY 2.2. 7/ ez;ery two-generator subgroup of G is nilpotent-by-periodic, 
then G is in C3. 

LEMMA 2.3. A direct product of Cz-groups is in C3. 

Proof. It is clearly enough to show that if Hï} H2 are C3-groups, then so is 
G = Hi X H2. Take any x = XiX2, y = y 1̂ 2 in G with x*, 3^ £ HV Since 
ifi Ç C3, there exist a = a\a2, & = &1&2 in sgr (x, y) such that a\%\ = 61^1. 
Also, since H2 G C3, there exist (aiXi)mh2, (aiXi)nk2 in sgr (ax, by), with m, 
w positive integers, h2, k2 in i?2, such that h2a2x2 = k2b2y2. Then (aiXi)m 

h2ax{a\Xi)mk2by = (aiXi)m^2^3;(^iXi)w^2ax, and of course (aiXi)mh2, ax, (aiXi)nk2 

by, a, 6 are all in sgr (x, y). 

LEMMA 2.4. A polycyclic C^-group is nilpotent-by-finite. 

Proof. Let G be a counterexample with 1(G) minimum where /(G) is the 
number of infinite factors in any series of G with cyclic factors. Replacing G 
with a suitable normal subgroup of finite index if necessary, we may assume 
that it is nilpotent-by-abelian and torsion-free. Let N be the Fitting subgroup 
of G. By the minimality of G, N is abelian (because G/N' nilpotent-by-finite 
implies G nilpotent-by-finite), G/N is infinite cyclic, and the centre of G is 
trivial (see Lemma 2.1). 

Let G = (N, t), write N additively and regard it as a module over the in
tegral group ring Z (t). Let A be an indecomposable submodule of N. Then 
A can be identified with an additive subgroup of the complex numbers on 
which the action of t is that of multiplication by an algebraic integer r whose 
minimal polynomial over the rationals has degree equal to 1(A). If all the roots 
of this polynomial have absolute value one, then by a theorem of Kronecker, 
r is an nth root of unity for some integer n. But then tn centralizes A, and G\ — 
(N, tn) has a non-trivial centre, so that Gi and hence G is nilpotent-by-finite. 
Thus \T\ 9^ 1, and replacing t with a suitable power of t, if necessary, we may 
assume that |r| < J. 

Choose any non-zero a £ A. By hypothesis there exist u, v £ sgr {at, ta) 
such that uat = vta. Then we have: 

tr+1(arar + . . . + ar a l + ar) = tr+1(ar^ + . . . + ar^ + a), 

where ar = t~lat, 1 ^ «i ^ . . . S aT, 1 S P\ ^ • • . S Pn i ^ at ^ i + 1 and 
i â Pi ^ i + 1 for all i. But 

I ar _i_ I «1 _i_ I <" / | l a r 1 i l | a l \ 

|r + . . . + T + r\ S (|T| + . . . + |r| ) 
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while 

\ T " r + . . . + ^ + n ^ x _ ( W * + . . . + | T | - » i ) > i - g (~y=§. 

and we reach a contradiction. 

LEMMA 2.5. If G = {A, t) is a C^-group and A = (au . . . } ak)
G is abelian, 

then A is finitely generated and G is nilpotent-by-finite. 

Proof. The existence of uu vt in sgr (ait, tat) such that u^it = p^a* shows 
that (at)

G = (a*, ax\ . . . , a/7"»') for some integer rt-. The rest follows from 
Lemma 2.4. 

THEOREM 2.6. If G is a locally solvable Cz-group, then G is locally nilpotent-by-
finite. 

Proof. Assume, by way of induction, that the result holds for finitely 
generated groups of solvability length less than r, and let G be a finitely gener
ated group of solvability length r. If A is the last non-trivial term in the 
derived series of G, then A is abelian and G/A is nilpotent-by-finite. Replacing 
G by a suitable subgroup of finite index if necessary, we may assume that G/A 
is nilpotent. Then A = SG, where 5 = (au . . . , a*) for some ai, . . . , ak in A. 
Also there exists a series A = Go < G\ < . . . < Gn = G such that, for all i, 
Gi <\ G and Gt = (G7_i, ^ ) for suitable tt in G. Repeated application of 
Lemma 2.5 shows that SGi is finitely generated for alH = 1, . . . m. Thus G is 
polycyclic and the result follows from Lemma 2.4. 

3. d and G2-groups. 

LEMMA SA.LetPbe a right-order on a group G. Then the following are equivalent. 
(i) P satisfies condition (*). 

(ii) For every x, y in P\{e}, xny > x for some n > 0. 
(iii) If C and D are convex subgroups of G under P and D covers C, then C is 

normal in D and D/C is isomorphic to a subgroup of the additive group of the 
reals. 

(iv) For all y in P\{e] the set {x G G\ \x\ <^y] is a convex subgroup of G, 
where \x\ = x if x Ç P and x~l otherwise, and \x\ <<C y means that \x\n < y for 
all n. 

Proof, (i) => (ii). Suppose that xny S x for all n > 0. By hypothesis there 
exist u, v G sgr (xy, x) such that uxy ^ vx. Since v > e, vx > x. On the other 
hand uxy = xalyxa2y . . . xary, where at ^ 1 for i = 1, . . . , r and r ^ 1, 
hence uxy ^ xa2+1y . . . xary ^ . . . ^ x, a contradiction. 

That (ii) => (i) is trivial. The equivalence of (ii) and (iii) was shown in [2] 
and the equivalence of (iii) and (iv) in [1]. We mentioned (iii) and (iv) be
cause we will need them in the following. 
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LEMMA 3.2. Let A and B be RO-groups and G a split extension of A by B. 
If there exists a right-order PAonA, invariant under conjugation by elements of B, 
such that not all the jumps in the chain of convex subgroups of A determined by 
PA are centralized by B, then G is not a Ci-group. 

Proof. The result is obvious if PA is not a C-order on A. Let PB be a right-
order on B and define a right-order P on G by letting g = ab (a £ A, b £ B) 
belong to P if either e 5e a £ PA or a = e and b G PB. That P is indeed a 
right-order follows from the fact that PA is ^-invariant. We show that it is 
not a C-order. Let C -< D be a jump of convex subgroups of A under PA which 
is not centralized by B, and choose e < a G D\C, b G B such that [a, b] G C. 

Case 1. 6 normalizes D. In this case b normalizes C as well since PA is 23-
invariant. Moreover D/C may be identified with a subgroup of the additive 
group of the reals since PA is a C-order, and the action of b on D/C is that of 
multiplication by some real number f$ > 1 (replacing & by b~l if necessary). 
Let â = Ca and choose d = Cd £ D/C such that 

J ^ a/(/3 - 1) > 0. 

For instance d can be a suitable multiple of â. We show that the set 

5 = {x G G; |*| « d } 

is not a subgroup and thus P does not satisfy Condition (iv) of Lemma 3.1. 
The element ab~l belongs to S, for 

(ab-tyd-1 = aa»... ahn-ld-hnb~n 

and 

C{aah. . . a*-1*!-**) = âl £ 0«) - JjS» < 0. 

The element & also belongs to S, but a = {ab~l)b clearly does not. 
Case 2. b does not normalize D. Since P A is ^-invariant, either Db Z) D or 

D Z) Db. Replacing b by b~l if necessary, assume that Db D D. We show that 
the set 

T = {x G G; |*| « a } 

is not a subgroup. The element ab~l is in P since 

(db-iyar1 = aab. . . a ^ V 6 ^ - * G P"1 . 

The element b also belong to T\ but a = (ab~l)b does not. This completes 
the proof. 

COROLLARY 3.3. Subgroups and direct products of Ci-groups need not be in C\. 

Proof. Let Q denote the additive group of the rationals and let t be the 
automorphism of Q corresponding to multiplication by — 2. Then G = (Q, t) 
is in Ci but not in C2. That G is not in C2 can be seen by applying Lemma 3.2 
to the subgroup (Q, t2). To see that G G Ci let P be any right-order on G. 
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Without loss of generality we may assume / G P . For any x G Q C\ P , 
x1'1 G P _ 1 , hence x < /and Q is convex under P . This shows that P is a C-order. 

Next consider the direct product of G with an infinite cyclic group : H = 
G X (z). Every element of H can be written uniquely in the form (t2z)r X ts, 
where x G Q and r and 5 are integers. Let 

R = {(t2z)r X ts\ either s > 0, or 5 = 0 and x > 0, 

or 5 = x = 0 and r ^ 0}. 

It is easy to check that P is a right-order on H and that 

(e)-<((t'z))^((t*z),Q)-<H 

is its convex series. But ((t2z)) is not normal in ((t2z), Q), hence by Lemma 3.1, 
P is not a C-order. 

Remark. There exist also polycyclic groups which are in d but not in C2. 

COROLLARY 3.4. Let G be a finitely generated, orderable Ci-group. Then the 
system of convex subgroups under any order on G, is central. 

Proof. Let P be any order on G. Since G is finitely generated, there exists 
J <] G such that J -< G is a convex jump under P . Thus there exists A ^ J 
such that G = (A, x) and G/A is infinite cyclic. By Lemma 3.2, x centralizes 
every convex jump in A determined by the restriction of P to A, and hence 
every convex jump in G. For any a in A, G = {A, xa} so that xa also centralizes 
every jump in G and hence so does a. 

THEOREM 3.5. There exist finitely generated metabelian C^-groups which are 
not nilp otent-by-finite, and therefore the class C^-contains the class R 0 C\ Cz 
properly. 

Proof. Let G = (a, t; at2a~4ta5 = e, [a, a1] = e). Then A = (a)G is an 
abelian group of rank 2 which can be identified with the subgroup of the 
additive group of the complex numbers generated by the numbers (2 + i)n, 
n G Z on which t acts as multiplication by 2 + i. Our reason for choosing 
2 + i is that none of its powers is real. 

Let H be any subgroup of G and P any order on H. If H ^ A or if H C\ A = 
(e), then H is abelian and P is a C-order. Otherwise H = (A C\ H, u), where 
u = btn for some b G A, n ^ 1, and w acts on i H F as multiplication by the 
non-real gaussian integer J = (2 + i)w. Notice that a gaussian integer h + &i 
satisfies the equation x2 — 2hx + h2 + &2 = 0, so that by choosing m > 0 
such that the real part of £m is negative, we find a power of $ which satisfies an 
equation x2 + rx + 5 = 0 with r > 0 and s > 0. Thus for all c £ A r\ H, 
cu2m crum cs = e as well as c cru~m csu~2m = e, and therefore if c is in P , either 
c«-« Q r cr2m j s j n p-i^ 

We now show that A P\ i7 is convex. By changing P to P~l if necessary, 
we may assume that u G P . Suppose that & > ujd > e for some b, d £ A C\ H, 
j G Z. H j è 0 then dw-y > w-' > e. If j ^ 0 then ôd"1 > uj ^ e. Thus as-
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sume that c > uj for some c 6 A P\ H, j ^ 0. Notice that c > wJ implies 
cw; > u2j and c cwJ > ujcu3 = c uj > ^2;', thus if j ^ 0, replacing c by another 
suitable element of A C\ H, we may assume j ^ 2m. Thus we have c > ul > e 
and hence cu~i > e and ulc u~l > e for i = 0, 1, . . . , 2m. In particular c, 
cu~m and cw ~2m are all in P . This is not possible, therefore j = 0 and AC\H\$ 
convex. This implies that P is a C-order and hence that G is a C2-group. 

It is easy to check that G is not nilpotent-by-finite and therefore by Theorem 
2.6 it is not a C3-group. 

THEOREM 3.6. Let G be a finitely generated solvable order able d - group. Then 
G is nilpotent. 

Proof. Let G be a counterexample of smallest solvability length, and P any 
order on G. By Corollary 3.4, the system of convex subgroups of G is central. 
Moreover, as G is finitely generated, it has a descending central series 

G = Go >— Gi >— . . . Gn >- Gn+i >— . . . 

from G to Go, = OwLo Gw, where Gn >- Gn+i is a convex jump under P. If Gw = 
Gn for some n, then G is nilpotent and we have the required contradiction. If 
Gœ 9^ (e), observe that G/Gœ satisfies the hypotheses of the theorem since any 
quotient of a Ci-group is in C\ if it is an R O-group. Thus we may replace G 
by G/Gw and assume Gœ = (e), so that G becomes a residually finitely generated 
torsion-free nilpotent group and hence residually Fp for all primes p, where 
Fp is the class of finite ^-groups. 

Let N be a maximal normal abelian subgroup of G containing the last 
non-trivial subgroup of the derived series of G. By a result of Learner 
(see [5, Lemma 6.25]), G/N is also residually Fv for all primes p, and hence 
orderable (see [3]). Also G/N Ç Ci, and thus it is nilpotent by our choice of G. 
We now use the following result to complete the proof. 

LEMMA 3.7. Let G be an orderable Ci-group. If there exists (e) ^ A <\ G, A 
abelian and G/A finitely generated torsion-free nilpotent, then Z(G) C\ A ^ (e), 
where Z(G) is the centre of G. 

The above lemma applies with A = N. Thus Z(G) P\ N = Z\ ^ (e) and 
G/Zi is again orderable since Z\ is an isolated subgroup in the centre of G. 
Since G satisfies the maximal condition on normal subgroups, repeated appli
cation of Lemma 3.7 shows that N ^ Zk(G), the &-th centre of G, for some 
finite k. Thus G is nilpotent. 

Proof of Lemma 3.7. Use induction on l(G/A)} the number of factors in any 
infinite cyclic series of G/A. Suppose I (G/A) = 1. Then G = (A, c). Take 
any e 9^ a in A and let Ai = (a)G. Let Pi be any G-order on Ai. Then P i can 
be extended to a G-order P on A since G is a metabelian orderable group. By 
Lemma 3.2, c centralizes every jump in A determined by P and hence every 
jump in yli determined by Pi . Thus if A\ has finite rank then AY C\ Z(G) ^ 

https://doi.org/10.4153/CJM-1977-066-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1977-066-x


654 R. T. BOTTO MURA AND A. H. RHEMTULLA 

(e), as required. If Ai has infinite rank, then it is freely generated by the 
elements ac%, i (z Z. In this case let £ be any positive transcendental number 
and let Px consist of those elements (a r i)c n i . . . (ar™)cn™ such that £T=i r£n< ^ 
0. This is an archimedean G-order on A\ and so A\ ^ Z(G). 

Now suppose that l(G/A) = n > 1. Then there exists H <\ G such that 
A ^ H, G = (H, d), and l(G/H) = 1. Any right-order on H can be extended 
to a right-order on G. Thus 77 G Ci and by the induction hypothesis, Z(i7) H 
4̂ = B 7e (e). Now D = (̂ 4, d) is isolated in G and any right-order on D can 

be extended to a right-order on G since there exists a series from D to G with 
torsion-free abelian factors. Thus D £ Ci and by the first part of the proof, 
for any e ^ b € B, Z(D) H <&>* ^ (e). Thus Z(G) P\ 5 ^ <e> and hence 
Z(G) C\A^ (e). 

Remark. It follows from Corollary 3.4 and Theorem 3.6 that if G is an 
orderable C2-group, then the system of convex subgroups under any order 
on G is central and G is locally nilpotent if it is locally solvable. In the latter 
case every partial right-order can be extended to a total right-order (see [4]). 
In general a solvable C2-group does not have this property as can easily be 
seen by considering the group (a, b\ b~lab = a*1). 
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