On a relation between the Fitting length of a soluble group and the number of conjugacy classes of its maximal nilpotent subgroups

H. Lausch and A. Makan

Abstract

In a finite soluble group G, the Fitting (or nilpotency) length $h(G)$ can be considered as a measure for how strongly G deviates from being nilpotent. As another measure for this, the number $V(G)$ of conjugacy classes of the maximal nilpotent subgroups of G may be taken. It is shown that there exists an integer-valued function f on the set of positive integers such that $h(G) \leqq f(V(G))$ for all finite (soluble) groups of odd order. Moreover, if all prime divisors of the order of G are greater than $\nu(G)(\nu(G)-1) / 2$, then $h(G) \leqq 3$. The bound $f(\nu(G))$ is just of qualitative nature and by far not best possible. For $\nu(G)=2, h(G)=3$, some statements are made about the structure of G.

1. In various papers by Gross [3], Hoffman [5], and Thompson [9], bounds were given for the nilpotency length of a finite soluble group in terms of the group exponent (in the case of certain pq-groups) the order of a fixed-point-free p-automorphism, or of the number of primes (not necessarily different) dividing the order of a soluble, π '-automorphism group of a π-group. The main result of this paper is

THEOREM. Let $h(G)$ be the Fitting length of a finite group G of odd order, $v(G)$ the number of different conjugacy classes of the maximal
nilpotent subgroups of G, then there exists a function f, defined on the set of natural numbers and taking natural numbers as values, such that $h(G) \leqq f(\nu(G))$.

Rose [8] has, however, shown that there is no lower bound for $h(G)$ in terms of $\nu(G)$. The statement of the theorem is merely of qualitative nature, for $V(G)=2,3$ sharp bounds are given, and for $V(G)=2$, $h(G)=3$ some statements are made about the structure of G. All the groups are assumed to be finite and soluble in this paper.
2. In order to prove the theorem, we start with some lemmas.

LEMMA 1. If $N \triangleleft G$, then $V(G / N) \leqq V(G)$. Every maximal nilpotent subgroup of G / N can be written as $V N / N$ where V is maximal nilpotent in G. If $V(G / N)=V(G)$, and V is maximal nilpotent in G, then $V N / N$ is maximal nilpotent in G / N.

Proof. Let W / N be maximal nilpotent in G / N. Then there exists a nilpotent subgroup W_{1} in G such that $W=W_{1} N$. Let V be a maximal nilpotent subgroup of G such that $W_{1} \subset V$. Then $W / N=W_{1} N / N \subset V N / N$ whence $W=V N$ by maximality of W / N. The other statements of the lemma follow.

LEMMA 2. Let $N \triangleleft G, N$ nilpotent, V maximal nilpotent in G, $V \neq N, W \subset V, \quad(|W|,|N|)=1$, and $W \notin \bar{V}$ for every nilpotent subgroup \bar{V} of G containing N. Then either $C_{N}(W)=V \cap N$ or there exists a maximal nilpotent subgroup T of $G, T \neq N$ such that $W \subset T$, $V \cap N<T \cap N=C_{N}(W)$. If, in particular, $V \cap N$ is maximal anong $\{T \cap N \mid T$ maximal nilpotent in $G, T \neq N\}$, then $C_{N}(W)=V \cap N$.

Proof. Since $(|W|,|N|)=1$ we have $V \cap N \subset C_{N}(W)$, and $C_{N}(W) \times W$ is a nilpotent subgroup of G. Let T be a maximal nilpotent subgroup of G such that $T \supset C_{N}(W) \times W$. Then $T \nsupseteq N$ as $W \subset T$, by assumption. Also $(|W|,|N|)=1$ implies $T \cap N \subset C_{N}(W)$ and so $T \cap N=C_{N}(W)$. The second statement of Lemma 2 is then obvious.

LEMMA 3. Let F be the Fitting subgroup of $G,|G|$ odd, and suppose F is an elementoxy-abelian p-group. Let V be a maximal nilpotent subgroup of $G, V \nmid F$, and l be the largest integer for
which there exists a chain of subgroups $V \cap F<V_{Z-1} \cap F<V_{Z-2} \cap F<\ldots<$ $V_{1} \cap F<F$ where V_{i} is a maximal nilpotent subgroup of G for $i=1,2, \ldots, z-1$. Then, for every prime $q \neq p$, every abelian q-subgroup of V can be generated by at most Z elements.

Proof. By induction on Z. For $Z=1$, let U be an abelian q-subgroup of $V, z \in U$. By Lemma 2, $V \cap F=C_{F}(z)$ implying U is cyclic, otherwise $F=\prod_{z \in U \backslash\{1\}} C_{F}(z)=V \cap F$ (see [2], Th. 6.2.4). Suppose Lemma 3 is true for all integers less than Z, and let U be an abelian q-subgroup of V. Let $\underset{\underline{K}}{\underline{K}}=\left\{C_{F}(T) \mid\{1\}<T \subset U\right\} . \underline{\underline{K}}$ is ordered by inclusion. Either $\underline{\underline{K}}$ consists just of one element, then, again by [2], Th. 6.2.4, U is cyclic, or we can choose a second minimal element $C_{F}(R)=X \cap F$ in $\underline{\underline{K}}$, where $\{1\}<R<U$ and X is maximal nilpotent in G, by Lemma 2. $C_{U}(X \cap F) \times(X \cap F)$ is nilpotent, hence $C_{U}(X \cap F) \subset Y, X \cap F \subset Y \cap F$ for some maximal nilpotent subgroup Y of G. Also $V \cap F \subset C_{F}(U)<C_{F}(R)=X \cap F$ whence $V \cap F<Y \cap F$ so that, by induction, $C_{U}(X \cap F)$ can be generated by at most $Z-1$ elements. It remains to show that $U / C_{U}(X \cap F)$ is cyclic. If $u \in U$, then $(X \cap F)^{u}=C_{F}\left(R^{u}\right)=C_{F}(R)=X \cap F$, and so $U \subset N_{G}(X \cap F)$. We claim $U / C_{U}(X \cap F)$ acts faithfully on $X \cap F / C_{F}(U)$. Let $u \in U$, and $[u, X \cap F] \subset C_{F}(U)$. By Maschke's theorem, $X \cap F=C_{F}(U) \times L$ where L is a U-module. Hence $[u, L] \subset C_{F}(U) \cap L=1$, and so $u \in C_{U}(L)=$ $C_{U}(X \cap F)$. We claim that $U / C_{U}(X \cap F)$ acts in a fixed-point-free manner on $X \cap F / C_{F}(U)$. For, let $u \in U, x \in X \cap F,[u, x] \in C_{F}(U)$. We may write $x=y z, y \in C_{F}(U), z \in L$. Then $[u, z] \in C_{F}(U) \cap L=1$ and $z \in C_{F}(u)$. If $C_{F}(u) \neq X \cap F$, then $X \cap F>C_{F}(u) \cap(X \cap F)=$ $C_{F}(u) \cap C_{F}(R)=C_{F}(\langle u, R\rangle)=C_{F}(U)$, by definition of $X \cap F$. Hence $z \in C_{F}(U)$ and so $x \in C_{F}(U)$. If $C_{F}(u) \supset X \cap F$, then $u \in C_{U}(X \cap F)$. Therefore $U / C_{U}(X \cap F)$ is cyclic.

LEMMA 4 (Thompson). If G is a p-group, $p>2$ and every abelian
normal subgroup of G can be generated by k elements, then every subgroup of G can be generated by $\frac{k(k+1)}{2}$ elements.

Proof. See [6], III. Satz 12.3.
LEMMA 5 (Huppert). Let G be a p-soluble group, V a vector space of dimension n over $G F(p)$, and let G be faithfully and irreducibly represented on $V,(n,|G|)=1$. Then G is cyctic and $|G| \mid p^{n}-1$.

Proof. See [7].
LEMMA 6. Let G possess a Fitting subgroup F such that F is the unique minimal normal subgroup of G and suppose F is a p-group. Then there exists a normal subgroup S of G such that $h(G / S)=h(G)-1$, for $h(G)>1$. Moreover, the Fitting subgroup of G / S is the unique minimal normal subgroup of G / S and is a p^{\prime}-group.

Proof. Let $\underline{\underline{N}}$ be the class of nilpotent groups, $\underline{N}^{\rho}=\{\{1\}\}$ and $\underline{\underline{N}}^{k}=\underline{\underline{N}}^{k-1} \underline{\underline{N}}$, for $k=2,3, \ldots$ Let H be (unique) minimal for $H \triangleleft G$, $G / H \in \underline{\underline{N}}^{h(G)-2}$, and H / K a chief factor of G. Clearly $F \subset K<H$ and H / K is a p^{\prime}-group. Moreover there exists for $h(G)>2$, a maximal subgroup M of G complementing H / K, by [1]. Let $R=C_{G}(H / K)$, $S=R \cap M$. Then $C_{G}(H / K)=C_{G}(R / S), G / C_{G}(R / S) \notin N^{h(G)-3}$ and so $h(G / S)=h(G)-1$. For $h(G)=2$, we may take any maximal normal subgroup of G for S.

Proof of the Theorem. Let N_{1}, N_{2} be two different minimal normal subgroups of G. Then $h(G)=\max \left(h\left(G / N_{1}\right), h\left(G / N_{2}\right)\right) \leqq \max \left(f\left(\nu\left(G / N_{1}\right)\right)\right.$, $f\left(\nu\left(G / N_{2}\right)\right)$, by induction. If N is a minimal normal subgroup of G, and $N \subset \Phi(G)$, then $h(G)=h(G / \Phi(G))$, hence $h(G)=h(G / N) \leqq f(\nu(G / N))$, by induction. Thus, if we can find an increasing function $f(\nu)$ which bounds $h(G)$ for all groups G having their Fitting subgroups as unique minimal normal subgroups, $f(\nu)$ is then a general bound for $h(G)$. Hence let us assume that G has its Fitting subgroup F as its unique minimal normal subgroup, and suppose F is a p-group. There is exactly one conjugacy class of maximal nilpotent subgroups of G containing F, namely the Sylow p-subgroups of G. Hence by Lemma 3, every abelian q-subgroup, $q \neq p$, can be generated by at most $v(G)-1$ elements. Lemma 4 implies that the p^{\prime}-chief factors of G are of rank at most
$\frac{\nu(G)(\nu(G)-1)}{2}$. We choose $S \triangleleft G$ accordingly to Lemma 6, and Lemma 1 implies $\nu(G / S) \leqq \nu(G)$. Hence, all p-chief factors of G / S are of rank at most $\frac{v(G)(\nu(G)-1)}{2}$. Therefore, by [6], VI. Hauptsatz 6.6 c , the p-length of G / S is at most $\frac{\nu(G)(\nu(G)-1)}{2}$. Assume $\nu(G)>2$. Let $\left\{p_{1}, p_{2}, \ldots, p_{r(v)}\right\}$ be the set of all odd primes less then or equal to $\frac{v(G)(v(G)-1)}{2}$, take the upper p_{1}-series of G / S refine each factor by a p_{2}-series, etc. One obtains a normal series of G / S of length at most $2(s(v)+1)^{r(v)}-1$ where $s(\nu)=\frac{\nu(G)(\nu(G)-1)}{2}$, consisting of p_{i} factors, $i=1,2, \ldots, r(v)$, and $\left\{p_{1}, p_{2}, \ldots, p_{r(v)}\right\}^{\prime}-$ factors. By Lemma 5, these $\left\{p_{1}, p_{2}, \ldots, p_{r(v)}\right\}^{\prime}-$ factors are all of Fitting length at most 2 , and there are at most $(s(v)+1)^{x(v)}$ of them. Hence, $h(G / S) \leqq 3(s(v)+1)^{r(v)}-1$ and $h(G) \leqq 3(s(v)+1)^{r(v)}$. Since $s(v)$ and $r(v)$ are increasing functions, we may take $f(v)=3(s(v)+1)^{r(v)} . \nu(G)=1$ implies $h(G)=1$, for $\nu(G)=2,\left\{p_{1}, \ldots, p_{r(v)}\right\}=\varnothing$, and again Lemma 5 implies that $h(G / S) \leqq 2$ whence $h(G) \leqq 3 \cdot Q . E . D$.

COROLLARY. If $q\left||G|\right.$ implies $q>\frac{v(G)(\nu(G)-1)}{2}$, then $h(G) \leq 3$. Proof. This is an immediate consequence of Lemma 5, provided $|G|$ is odd. Now assume $v(G)=2$, and $2||G|$. We may assume that G has its Fitting subgroup F as its unique minimal normal subgroup. First, let F be a 2-group. Lemma 3 implies G_{2}, is cyclic, and a Hall-Higman type argument [4] shows that the' 2^{\prime}-length of G is at most 1 whence $h(G) \leqq 3$. Now let F be a 2^{\prime}-group. Lemma 3 implies that G_{2} is cyclic or a generalized quaternion group. In either case G / F possesses a characteristic subgroup of order 2 which is clearly central in G / F. Assume G / F is not nilpotent and F is a p-group, $p \in 2^{\prime}$. Then G / F contains an element $x F$ of order $2 p$. Let $x=y z, o(y)=p^{\alpha}$, $o(z) \in p^{\prime}$. Then $y \in C_{F}\left(G_{p}\right.$, for some p-complement G_{p}, of G, and $x F=z F$ is a p^{\prime}-element, contradiction. Hence, in this case, $h(G) \leqq 2$.
3. For $\nu(G)=2, h(G)=3$ is really attained for some groups G. The symmetric group S_{4} on 4 letters provides such an example. Moreover, let $H=C_{q} C_{p}$ be a (non-direct) semidirect product of a group C_{q} of order
q by a group C_{P} of order p and let $G=\bar{C}_{p}$ wr H be the wreath product of a group \bar{C}_{p} of order p by H. Then $\nu(G)=2$, and $h(G)=3$ as one can easily check.

For groups minimal for $v(G)=2, h(G)=3$ we get the following result:

PROPOSITION 7. Let G be a finite group which is minimal with respect to the property that $v(G)=2$ implies $h(G)=3$. Then $|G|=p^{\alpha} q^{\beta}$, p, q being distinct primes, and G contains no element of order $p q$. In particular, if F is the Fitting subgroup of G, then $|F|=p^{\gamma}$, for some $\gamma>0$, and $\beta=1, \gamma=\alpha-1$.

REMARK. Since $V(G)=2, G=V_{1} V_{2}$ where $V_{1} V_{2}$ are maximal nilpotent subgroups of G. In this case, the solubility of G follows from a theorem of Wielandt and Kegel [11].

First we prove
LEMMA 8. Let G be a finite group minimal with the properties that $\nu(G)=2$ implies $h(G)=3$. Then the maximal nilpotent subgroups of G are Hall subgroups of G.

Proof. Let V_{1} and V_{2} be representatives of the two conjugacy classes of maximal nilpotent subgroups of G. By hypothesis, we may assume that G has its Fitting subgroup F as its unique minimal normal subgroup. Without loss of generality, we may assume $V_{1} \supset F$. Let $|F|=p^{\gamma}$, then $V_{1}=G_{p}$, a Sylow p-subgroup of G, and $V_{2}=G_{p}, \times C_{G_{p}}\left(G_{p}\right.$, where G_{p}, is a p-complement of G. We have to show $C_{G_{p}}\left(G_{p^{\prime}}\right)=1$. Let F_{2} / F be the Fitting subgroup of G / F, then $F_{2} / F \cong G_{p^{\prime}}$, moreover $C_{G_{p}}\left(G_{p^{\prime}}\right)=C_{F^{\prime}}\left(G_{p^{\prime}}\right)$. Also $C_{F}\left(G_{p^{\prime}}\right) \subset 2\left(F_{2}\right)$ since F is abelian. We claim $Z\left(F_{2}\right)=C_{F}\left(G_{p},\right)$. For $Z\left(F_{2}\right)=$ $\left(Z\left(F_{2}\right)\right)_{p^{\prime}} \times C_{F}\left(G_{p^{\prime}}\right)$ where $\left(Z\left(F_{2}\right)_{p^{\prime}}\right.$ is the p^{\prime}-complement of $Z\left(F_{2}\right)$. As F is self-centralizing it follows $\left(Z\left(F_{2}\right)\right)_{p^{\prime}}=1$. Thus $C_{F}\left(G_{p^{\prime}}\right)=2\left(F_{2}\right)$ char $F_{2} \triangleleft G$ implying $C_{F}\left(G_{p^{\prime}}\right)=1$ as F is a minimal normal subgroup of G.

Proof of Proposition 7. By Lemma 8, $V_{1}=G_{p}, \quad V_{2}=G_{p}$, Suppose $q\left|\left|V_{2}\right|\right.$. Therefore G contains no element of order $p q$, otherwise $\nu(G)>2$, and so G / F contains no element of order $p q, q \in p^{\prime}$. Certainly $V_{2} F=F_{2}$ as $h(G / F)=2$. Suppose V_{2} is not a Sylow q-subgroup for some $q \in p^{\prime}$. Then, for some prime r, let R be a Sylow r-subgroup of $G, r \neq q$. Then $F R$ char F_{2} and so $F R \triangleleft G$. Consider $G_{1}=(F R) V_{1}=R V_{1} \cdot R V_{1}$ contains no element of order $p r$, therefore $v\left(G_{1}\right)=2, G_{1}<G$. Minimality of G implies $h\left(G_{1}\right)=2$. But then $F R=G_{1}$ since F is self-centralizing and so $V_{1}=F$, hence $h(G)=2$, contradiction. Thus $V_{2}=G_{q}$, a Sylow q-subgroup of G, and $|G|=\left|V_{1} V_{2}\right|=p^{\alpha} q^{\beta} . \quad V_{2}$ acts in a fixed-point-free manner on F, hence V_{2} is cyclic $(q=2$ can be excluded, for then $h(G)=2$, by the proof of the corollary of the theorem). Let S / F be the cyclic normal subgroup of index q in F_{2} / F. Then $S \triangleleft G$. Using the same argument as above, we may conclude $V_{1}=F$ provided $\beta>1$. Therefore $\beta=1$. Let M be a maximal subgroup of G containing F_{2}. Then $M \triangleleft G$, $V_{1} \cap M$ is a Sylow p-subgroup of M, and M contains no element of order $p q$. Therefore $v(M)=2$. Minimality of G implies $h(M)=2$ and so $M=F_{2}$. Therefore $\gamma=\alpha-1$.
4. We are going to give an exact bound for $h(G)$ in the case of $\nu(G)=3, \quad|G|$ odd.

LEMMA 9 (Thompson). Suppose p is an odd prime, G is a p-soluble group and G has no elementary-abelian subgroup of order p^{3}. Then each p-chief factor of G is of order p or p^{2}.

Proof. See [10].
COROLLARY. If $|G|$ is odd, $\nu(G)=3$, then $h(G) \leqq 3$.
Proof. By Lemmas 3, 5, and 6.

References

[1] Roger Carter and Trevor Hawkes, "The Z-normalizers of a finite soluble group", J. Algebra 5 (1967), 175-202.
[2] Daniel Gorenstein, Finite Groups (Harper and Row, New York, Evanston, London, 1968).
[3] Fletcher Gross, "On finite groups of exponent $p^{m} q^{n "}$, J. Algebra 7 (1967), 238-253.
[4] P. Hall and Graham Higman, "On the p-length of p-soluble groups and reduction theorems for Burnside's problem", Proc. London Math. Soc. (3) 6 (1956), 1-42.
[5] Frederik Hoffman, "Nilpotent height of finite groups admitting fixed-point-free automorphisms", Math. Zeitschr. 85 (1964), 260-267.
[6] Bertram Huppert, Endliche Gmuppen I. (Berlin, Heidelberg, New York, 1967).
[7] Bertram Huppert, "Zur Gaschützschen Theorie der Formationen", Math. Ann. 164 (1966), 133-141.
[8] John S. Rose, "Nilpotent subgroups of finite soluble groups", Math. Zeitschr. 106 (1968), 97-112.
[9] John G. Thompson, "Automorphisms of solvable groups", J. Algebra 1 (1964), 259-267.
[10] John G. Thompson, "Nonsolvable finite groups all of whose local subgroups are solvable", Bull. Amer. Math. Soc. 74 (1968), 383-437.
[11] Otto H. Kegel, "Produkte nilpotenter Gruppen", Arch. Math. 12 (1961), 90-93.

Department of Mathematics, IAS,
The Australian National University,
Canberra, A.C.T.

