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On Probabilistic λ-Calculi
Ugo Dal Lago

University of Bologna & INRIA Sophia Antipolis

Abstract: This chapter is meant to be a gentle introduction to probabilistic λ-
calculi in their two main variations, namely randomised λ-calculi and Bayesian
λ-calculi. We focus our attention on the operational semantics, expressive power
and termination properties of randomised λ-calculi, only giving some hints and
references about denotational models and Bayesian λ-calculi.

4.1 Introduction

Probabilistic models are more and more pervasive in computer science and are
among the most powerful modelling tools in many areas like computer vision (Prince,
2012), machine learning (Pearl, 1988) and natural language processing (Manning
and Schütze, 1999). Since the early times of computation theory (De Leeuw
et al., 1956), the concept of an algorithm has been generalised from a purely
deterministic process to one in which certain elementary computation steps can have
a probabilistic outcome, this way enabling efficient solutions to many computational
problems (Motwani and Raghavan, 1995). More recently, programs have been
employed as means to express probabilistic models rather than algorithms, with
program evaluation replaced by a form of inferencewhich does not aim at looking for
the result of a computation, but rather at the probability of certain events in the model.
How can all this be taken advantage of in programming languages, and in particular

in higher-order functional programming languages? How is the underlying meta-
theory affected? This Chapter is an attempt to give a brief introduction to this topic,
presenting some basic notions and results, and pointing to the relevant literature on
the subject. Although probabilistic λ-calculi have been known from four decades
now (Saheb-Djaromi, 1978; Jones and Plotkin, 1989), their study has been quite
scattered until very recently, and a unified view of their theory is, as a consequence,
still missing.
a From Foundations of Probabilistic Programming, edited by Gilles Barthe, Joost-Pieter Katoen and Alexandra
Silva published 2020 by Cambridge University Press.
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122 Dal Lago: On Probabilistic λ-Calculi

A universally accepted paradigm for functional programs is Church’s λ-calculus
(Barendregt, 1984), in which the processes of forming functions and of passing
parameters to them are modelled by dedicated constructs, namely by the λ-binder
and binary application. Probabilistic λ-calculi most often take the form of ordinary
λ-calculi in which the language of terms is extended with one or more constructs
allowing for a form of probabilistic evolution. There are at least two ways to do
that, which give rise to two different styles of λ-calculi, depending on the additional
operators they provide.

Randomised λ-calculi. Here, the only new operator provided by the underlying
programming language is a form of probabilistic choice, whose evaluation can
produce different outcomes, in a probabilistic fashion. Various choice operators can
be considered, the simplest one is a form of binary, fair, probabilistic choice. By
that, one can form terms such as M ⊕ N , which evolves like M or N depending on
the outcome of a probabilistic process, typically corresponding to the flipping of a
coin. The outcome of such a coin flip is thus a probabilistic event and different coin
flips are taken as independent events. This new operator alone is perfectly sufficient
to model randomised algorithms (Motwani and Raghavan, 1995). We call λ-calculi
built along these lines randomised λ-calculi. As already mentioned, randomised
λ-calculi have been investigated since the seventies (Saheb-Djaromi, 1978; Jones
and Plotkin, 1989), but scatteredly until very recently, when they have been the
object of much work about denotational semantics (Jung and Tix, 1998; Danos
and Harmer, 2002; Danos and Ehrhard, 2011), program equivalence (Dal Lago
et al., 2014a; Crubillé and Dal Lago, 2014; Bizjak and Birkedal, 2015) and type
systems (Dal Lago and Grellois, 2017; Breuvart and Dal Lago, 2018).

Bayesian λ-calculi. In Bayesian λ-calculi, programs are not seen as modelling
algorithms, like in randomised λ-calculi, but rather as a way to describe a certain
kind of probabilistic models, namely bayesian networks (Pearl, 1988; Koller and
Friedman, 2009), also known as probabilistic graphical models. This paradigm has
been adopted in concrete programming languages like ANGLICAN (Tolpin et al.,
2015) and CHURCH (Goodman et al., 2008) and ultimately consists in endowing
the class of terms with two new constructs, the first one modelling sampling and
thus conceptually similar to the probabilistic choice operator from randomised
λ-calculi, and the second one allowing to condition the underlying distribution based
on external evidence, this way giving rise to both an a priori and an a posteriori
distribution. Bayesian λ-calculi, contrarily to randomised λ-calculi, have been
introduced only relatively recently (Borgström et al., 2016), and their metatheory
is definitely not as stable as the one of randomised λ-calculi. Most often, but not
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4.1 Introduction 123

always, the sampling and conditioning operators works on real numbers, this way
allowing to build continuous probabilistic models.
These two kinds of λ-calculi certainly have some similarities, but deserve to be

introduced and described independently. Randomised λ-calculi will be the subject
of Section 4.3, while Bayesian λ-calculi will be introduced in Section 4.4. As a
prologue to that, we will give an introduction to probabilistic λ-calculi by way of an
example, in Section 4.2.
Endowing programs with probabilistic primitives (e.g. an operator which models

sampling from a distribution) significantly changes the underlying theory. The reader
is however invited to keep in mind that this domain is still under investigation by
the programming language and logic in computer science communities, and is thus
intrinsically unstable, in particular as for Bayesian λ-calculi. In the following, we
give some hints as for the challenges one needs to face when analysing randomised
and bayesian λ-calculi.

Operational Semantics and Contextual Equivalence. Formally describing the
computational process implicit in a λ-term becomes strictly more challenging
when the latter is allowed to flip coins, thus evolving probabilistically rather than
deterministically. In particular, capturing the evaluation process in a finitary way,
like in ordinary λ-calculus, is impossible. When conditioning is present, the task
becomes even more difficult, since computation is replaced by learning. Another
difficulty one encounters when dealing with the operational semantics of randomised
and bayesian λ-calculi is the necessity of some (admittedly basic) measure theory,
this of course only in presence of continuous rather than discrete distributions.

Expressive Power. Not much is known about the expressive power of probabilistic
higher-order calculi, as opposed to the extensive literature on the same subject
about deterministic calculi (see, e.g. (Statman, 1979; Sørensen and Urzyczyn,
2006; Longley and Normann, 2015)). What happens to the class of representable
functions if one enriches, say, a deterministic λ-calculus X with certain probabilistic
choice primitives? Are the expressive power or the good properties of X somehow
preserved? These questions have been given answers in the case in which X is
the pure, untyped, probabilistic λ-calculus (Dal Lago and Zorzi, 2012): in that
case, Turing-completeness continues to hold, i.e., fair binary probabilistic choice
is sufficient to encode of computable distributions. But what if one restricts the
underlying calculus, e.g., by way of a type system?

Termination. Termination is a key property already in deterministic functional
programs, but how should it be spelled out in probabilistic λ-calculi? There are at
least two different ways to give an answer to this question, following a pioneering
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work on probabilistic λ-calculus (Saheb-Djaromi, 1978) and recent extensive work
on probabilistic termination (McIver and Morgan, 2005; Bournez and Garnier,
2005). On the one hand, we can consider almost sure termination, by which we
mean termination with maximal likelihood. On the other hand, we can go for the
stronger positive almost sure termination, in which one requires the average number
of evaluation steps to be finite. Are there ways to enforce either form of termination
in probabilistic λ-calculi, similarly to what has been done in deterministic ones?

Denotational Semantics. Already for a simple, imperative probabilistic program-
ming language, giving a denotational semantics is nontrivial (Kozen, 1981). When
languages also have higher-order constructs, everything becomes even harder (Jung
and Tix, 1998) to the point of disrupting much of the beautiful theory known in the
deterministic case (Barendregt, 1984). This has stimulated research on denotational
semantics of higher-order probabilistic programming languages, with some surpris-
ing positive results coming out recently (Ehrhard et al., 2014; Heunen et al., 2017).

In the rest of this Chapter, we focus on the first three aspects, leaving the task
of delving into the denotational semantics of probabilistic λ-calculi to some future
contribution. We are mainly interested in randomised λ-calculi, giving some hints
about bayesian λ-calculi in Section 4.4.

4.2 A Bird’s Eye View on Probabilistic Lambda Calculi

M 0

0 M 1
1
2

1
2

1 M 2
...

1
2

1
2

Consider a λ-termM such that for every real
number r, the term M r deterministically
reduces to r ⊕ (M (r + 1)), where ⊕ is the
new operator for binary probabilistic choice
mentioned in the previous section. After
evolving deterministically, the term M r
thus flips a fair coin, and either terminates
as r, with probability 1

2 or proceeds as M (r + 1), again with probability 1
2 . In

Figure 4.2, the overall computational behaviour of the term M 0 is graphically
represented as an infinite binary tree. This tree should not be confused with the
reduction tree of an ordinary λ-term, in which branching models the external
nondeterminism coming from the choice of the next redex to fire, rather than the
internal nondeterminism coming from ⊕.
It should already be clear that some basic questions about the dynamics of term

reduction are bound to receiving answers which are fundamentally different from
the ones one gets in the ordinary λ-calculus. Let us consider some of them. First of
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4.2 A Bird’s Eye View on Probabilistic Lambda Calculi 125

all, which value does M 0 evaluate to? Clearly, the result of the evaluation process
cannot just be one value, and must rather be a distribution of values. But which one?
One is tempted to say that the distribution to which M 0 evaluates is the geometric
distribution assigning probability 1

2n+1 to every natural number n. If this the correct
answer, then how could we prove that this is the case? Finitary, inductively defined
formal systems are bound not to be the right tool here, since such derivations can by
construction only “prove” distributions having finite support to be those to which
terms evaluate. Finitary derivations are however used to derive approximations to
the operational semantics of the underlying term, as we will see in Section 4.3.2
below.

Another question then arises: should we consider M 0 as terminating? And why?
Actually, termination becomes a probabilistic event in presence of probabilistic
choices, and as such happens with a certain probability. The probability that the
evaluation of M 0 terminates is easily seen to be

∑∞
i=0

1
2n+1 , namely 1. As such,

M 0 is an almost surely terminating term. This is not the end of the story, however:
what if we are rather interested in checking that the expected number of reduction
steps to termination for M 0 is finite? Again, the answer is positive, let us see
why. The expected number of reduction steps can be computed by counting the
number of internal nodes of the reduction tree of M 0 (again, see Figure 4.2), each
node weighted by the probability of reaching it. This way every computation step
is taken into account without having to deal directly with infinite traces and their
probabilities, which requires measure theory. In the case at hand, internal nodes are
those labelled with M n and each of them has probability 1

2n . As a consequence,
the expected type to termination is

∑∞
n=0

1
2n = 2, and this witnesses the fact that

M 0 is indeed positively almost surely terminating. Is there any relation between the
two concepts we have just introduced? We will have something to say about that in
Section 4.3.5 below.

One of the most interesting properties of the ordinary λ-calculus is confluence:
the inherent nondeterminism induced by the presence of multiple redexes is of a
very benign form, i.e., if M rewrites to both N and L, then there is P to which both
N and L themselves rewrite. As consequence, the normal form of any term M if it
exists, is unique. The choice of a strategy does not influence the actual final result of
the computation, although not all strategies are guaranteed to lead to a normal form.
Unfortunately, this nice picture is not there anymore if one endows the λ-calculus
with the ⊕ operator. Consider the term M , defined as (λx.add2(x, x)) (0 ⊕ 1) where
add2 is a operator computing addition modulo 2, which can be easily defined.
Two redexes occur in M namely M itself and 0 ⊕ 1. Firing the latter first leads,
independently on the outcome of the probabilistic choice, to 0. If M is fired first,
instead, one obtains either 0 or 1, each with probability 1

2 . Please observe that the
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failure of confluence is not merely a consequence of the presence of probabilistic
choice, but holds even if considering all possible outcomes.

4.3 A Typed λ-Calculus with Binary Probabilistic Choice

In this section, we introduce randomised λ-calculi in their simplest form, namely one
in which the only probabilistic operator is one for binary probabilistic choice. We
have chosen to go typed rather than untyped, because this way examples are easier
to delineate. Most of the results we give here remain valid in an untyped setting, e.g.
the setting considered in many relevant works on the subject (Ehrhard et al., 2011;
Dal Lago and Zorzi, 2012; Dal Lago et al., 2014a). Going typed (Saheb-Djaromi,
1978; Jones and Plotkin, 1989; Danos and Harmer, 2002; Crubillé and Dal Lago,
2014; Bizjak and Birkedal, 2015) has also the advantage of allowing to present calculi
and type systems guaranteeing termination without the need to significantly change
the underlying notation. Bayesian λ-calculi are, by the way, naturally presented as
typed calculi themselves (Culpepper and Cobb, 2017; Heunen et al., 2017; Wand
et al., 2018; Vákár et al., 2019), and this is precisely what we are going to do in
Section 4.4 below.
The calculus we introduce in the rest of Section 4.3, dubbed PCF⊕, can be seen

as being an extension of Plotkin’s PCF in which an operator for binary probabilistic
choice is available, while the rest of the system (including types and typing rules)
remain essentially unaltered.

4.3.1 Types and Terms

The first notion we need is the one of a type which, as we already mentioned, is not
different from the one of other typed λ-calculi:

Definition 4.1 (PCF⊕: Types). The types of PCF⊕ are the expressions derived by
way of the following grammar:

Types τ, ρ ::= Unit | Num | τ → ρ;

There are two type constants Unit and Num, while type constructors only
include the arrow, modelling function spaces, and do not include, e.g., products or
coproducts. Including them in the calculus would be harmless, but would render the
underlying metatheory unnecessarily more complicated. The ground type Unit is to
be interpreted as the singleton set, while the type of numbers Num is interpreted as
a monoid (M,+,0M). As an example, M could be the natural numbers or the real
numbers. Taking real numbers as a ground type has the advantage of allowing a
smooth integration of sampling from continuous distributions, as we will see in
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Terms M,N ::= V | V W | let M = x in N | M ⊕ N

| if V then M else N | fn(V1, . . . ,Vn)

Values V,W ::= � | x | r | λx.M | fix x.V

Figure 4.1 Terms and Values

Section 4.4 below. All we say in this section holds independently on M. In the
following sections, however, sticking to one particular monoidM will sometimes be
necessary. Whenever we want to insist on the underlying monoid to beM, we write
PCFM⊕ instead of PCF⊕.
We assume to reader to be familiar with the basic terminology and notation from

usual, pure λ-calculus. Good references for that are Barendregt (1984) or Hindley
and Seldin (2008), for example.

Definition 4.2 (PCF⊕: Terms and Values). Terms and values of PCF⊕ are both
defined in Figure 4.1, where r ranges over M, x ranges over a denumerable sets
of variables V, and fn ranges over a class of function symbols Fn, each of them
interpreted as a total function f ∗

n : Mn → M. Both terms and values, as customary,
are taken modulo α-equivalence. The set of all terms (respectively, all values) is
indicated as T (respectively, as V).

The calculus PCF⊕, is indeed a close relative of ordinary PCF. One difference is
the fact that terms are written in so-called A-normal form: one cannot form the
application MN of two arbitrary λ-terms M and N , but only of two values V and
W . The generic form of an application can however be recovered as follows:

M N = let M = x in let N = y in (x y)

where x and y are fresh variables not occurring free in M nor in N . The other
main difference, of course, is the presence of a binary choice operator ⊕, which
models fair binary probabilistic choice. A slightly more general form of binary
choice is sometimes used in the literature, namely one in which the left argument is
chosen with probability p and the right argument is chosen with probability 1 − p,
the number p being any rational number between 0 and 1. Choice then becomes
biased, and takes the form of a family of operators {⊕p}p∈Q[0,1] . Fair binary choice
is however perfectly sufficient for our purposes, including the one of guaranteeing
the calculus to be universal as for its expressive power.
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Value Typing Rules

Γ � � : Unit S
Γ, x : τ � x : τ V

Γ � r : Num R

Γ, x : τ � M : ρ
Γ � λx.M : τ → ρ

λ
Γ, x : τ → ρ � M : τ → ρ

Γ � fix x.M : τ → ρ
X

Term Typing Rules

Γ � V : τ → ρ Γ � W : τ
Γ � V W : ρ @

Γ � M : τ Γ, x : τ � N : ρ
Γ � let M = x in N : ρ L

Γ � M : τ Γ � N : τ
Γ � M ⊕ N : τ ⊕ Γ � V : Num Γ � M : τ Γ � N : τ

Γ � if V then M else N : τ I

Γ � V1 : Num · · · Γ � Vn : Num
Γ � fn(V1, . . . ,Vn) : Num

F

Figure 4.2 Type System Rules

The notions of free and bound occurrences of variables in terms are the usual
ones from ordinary λ-calculus, and allow us to define the subsets CT and CV (of T
and V, respectively) of closed terms and closed values.

Definition 4.3 (PCF⊕: Type Judgments and Rules). A type judgment is an expression
in the form Γ � M : τ, where M is a term, τ is a type, and Γ is an environment,
namely a set {x1 : ρ1, · · · , xm : ρm} of assignments of types to variables which is
non-ambiguous: xi = xj implies i = j. As customary, such an environment Γ is
indicated as x1 : ρ1, · · · , xm : ρm, thus omitting parentheses. The typing rules for
values and terms are in Figure 4.2.

The typing rules as we have introduced them are standard. Just some quick comments
are needed about the rule typing binary choices. The way one types M ⊕ N is quite
restrictive, but anyway very natural: we require M and N to both have type τ in
order for M ⊕ N to have type τ. This constraint might be relaxed by way of a
notion of monadic typing, which, together with affinity and sized types, enforces
termination (Dal Lago and Grellois, 2017).

Example 4.4. As an example of a term, consider the following expression

GEO := (fix f .λx.x ⊕ (let succ1(x) = y in f y)) 0

Actually, GEO is nothing more than a PCF⊕ term behaving like the hypothetical
term M 0 we were talking about in Section 4.2. Observe how writing it requires
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One-Step Reduction

(λx.M)V → δ(M[V/x])
let V = x in M → δ(M[V/x])

if 0 then M else N → δ(M)
if r then M else N → δ(N) if r � 0

M ⊕ N →
{

M :
1
2
,N :

1
2

}
f (r1, · · · ,rn) → δ( f ∗(r1 . . . ,rn))

M → {Li : pi}i∈I
let M = x in N → {let Li = x in N : pi}i∈I

Step-Indexed Reduction

M ⇒0 ∅ V ⇒1 δ(V) V ⇒n+1 ∅
M → D ∀N ∈ SUPP(D).N ⇒n EN

M ⇒n+1
∑

N ∈SUPP(D) D(N) · EN

Figure 4.3 Small-Step Distribution Semantics

the presence of a term succ1 among the functions in F1. As expected, succ∗
1 is

the successor function. Another key ingredient for writing GEO is of course the
fixed-point operator fix, without which the essentially infinitary behaviour of GEO
could not be captured.

Typing induces a family {CTτ}τ , where CTτ is the set of all closed terms which
can be assigned type τ in the empty environment, i.e. those terms M such that
∅ � M : τ. Similarly for {CVτ}τ .

4.3.2 Operational Semantics

We are now going to define the operational semantics of the closed terms of PCF⊕.
We first define a family of step-indexed reduction relations, and then take the
operational semantics of a term as the sum of all its step-indexed approximations. In
turn, the step-indexed reduction relation is obtained by convolution from a one-step
reduction relation. Both these relations rewrite terms into subdistributions of terms,
which need to be defined formally:
Definition 4.5 (Distributions). Given any set X , a distribution on X is a function
D : X → R[0,1] such that D(x) > 0 only for denumerably many elements of X and
that

∑
x∈X D(x) ≤ 1. The support of a distribution D on X is the subset SUPP(D)
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of X defined as

SUPP(D) := {x ∈ X | D(x) > 0}.

The set of all distributions over X is indicated as D(X). We indicate the distribution
assigning probability 1 to the element x ∈ X and 0 to any other element of X ,
the so-called Dirac distribution on x, as δ(x). The null distribution ∅ ∈ D(X)
assigns 0 to every element of X . The distributionD on X mapping xi to pi for every
i ∈ {1, . . . ,n} (and 0 to any other element of X) is indicated as {x1 : p1, · · · , xn : pn},
similarly for the expression {xi : pi}i∈I , where I is any countable index set. Given a
distribution D on X , its sum ‖D‖ is simply

∑
x∈X D(x).

The one-step reduction relation → is a relation between closed terms and
distributions over closed terms, i.e., a subset of CT × D(CT) The step-indexed
reduction relations are instead a family of relations {⇒n}n∈N, where each ⇒n

is a subset of CT × D(CV). As customary, we write M ⇒n D to indicate that
(M,D) ∈ ⇒n, and similarly for→. The rules deriving the one-step and step-indexed
reduction relations are given in Figure 4.3, and are to be interpreted inductively.
Observe that the only rule for→ allowing for a distribution not in the form δ(M) in
the right-hand side is, expectedly, the one for the binary probabilistic choice M ⊕ N .

Remark 4.6. A quick inspection at the rules in Figure 4.3 reveals that→ and each
of the⇒n are partial functions: for every M ∈ CT and for every n ∈ N, there are at
most one D ∈ D(CT) such that M → D and one D ∈ D(CV) such that M ⇒n D.
This can be proved formally by easy inductions on the structure of M , and on n.

The following is an easy observation, that will be useful in some of the forthcoming
sections:

Lemma 4.7. If M ⇒n D, then SUPP(D) is a finite set.

If we consider reduction of typed closed terms rather than mere terms, classic
results in the theory of λ-calculus continue to hold. On the one hand, reduction can
only get stuck at values:

Proposition 4.8 (Progress). For every M ∈ CTτ , either M is a value or there is D
with M → D.

Proof The proof is by induction on the structure of any type derivation for M,
whose conclusion has to be in the form ∅ � M : τ. �

On the other hand, reduction preserves typing:

Proposition 4.9 (Subject Reduction). For every M ∈ CTτ and for every n ∈ N, if
M → D and M ⇒n E, then D ∈ D(CTτ) and E ∈ D(CVτ).
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Proof The proof, as usual, consists in first proving a Substitution Lemma, followed
by some case analysis on the rules used to derive that M → D. The generalisation
to⇒n can be proved by an induction on n. �

Example 4.10. By applying the rules in Figure 4.3, one easily derives that

GEO ⇒3

{
0 :
1
2

}
; GEO ⇒8

{
1 :
1
4

}
; GEO ⇒13

{
2 :
1
8

}
.

More generally, GEO ⇒3+5n

{
n : 1

2n+1

}
for every n, while GEO ⇒m ∅ whenever m

cannot be written as 3 + 5n.

An interesting consequence of Progress and Subject Reduction is that⇒n becomes
a total function on closed typable terms:

Corollary 4.11. For every M ∈ CTτ and for every n ∈ N, there is exactly one
distribution Dn such that M ⇒n Dn

The distribution Dn from Corollary 4.11 will sometimes be indicated as 〈M〉n.
Noticeably, not only 〈M〉n but also

∑n
m=0〈M〉m is a distribution, as can be easily

proved by induction on n.

Definition 4.12 (Pointwise Order on Distributions). Given two distributionsD,E ∈
D(X), we writeD ≤ E iffD(x) ≤ E(x) for every x ∈ X . This relation endowsD(X)
with the structure of a partial order, which is actually an ωCPO: every ω-chain
{Dn}n∈N of distributions has a least upper bound, which is defined pointwise:

sup{Dn}n∈N = x �→ sup
n∈N

Dn(x).

That this is a good definition ultimately descends from the fact that R[0,1] is itself
and ωCPO.

We are now ready to give the most important definition of this section:

Definition 4.13 (Operational Semantics of Closed Terms.). Given a closed term
M ∈ CTτ , the operational semantics of M is defined to be the distribution 〈M〉 ∈
D(CVτ) defined as

∑
n∈N〈M〉n = supm∈N

∑m
n=0〈M〉n. That this is a well-posed

definition is a consequence of
∑m

n=0〈M〉n being an ω-chain in D(CVτ).

Example 4.14. It is routine to check that

〈GEO〉 =
∑
n∈N

〈GEO〉n =
{
n :

1
2n+1

}
n∈N
.

In other words, the operational semantics ofGEO is indeed the geometric distribution
on the natural numbers.
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Term Contexts CT,DT ::= CV | [·] | CV V | V CV

| let CT = x in N

| let M = x in CT | CT ⊕ DT

| if V then CT else DT

Value Contexts CV,DV ::= λx.CT | fix x.CV

Figure 4.4 Value and Term Contexts

An easy corollary of Subject Reduction is that 〈M〉 ∈ D(CVτ)wheneverM ∈ CTτ .
In other words, the operational semantics respects types.

4.3.3 Contextual Equivalence

Once an operational semantics is given, the next step to be taken towards building a
metatheory for PCF⊕ consists in endowing it with a notion of program equivalence:
when is it reasonable to dub two programs to be equivalent, i.e., to have the same
behaviour? A first answer to the question above consists in stipulating that equivalent
programs should behave the same when placed in any context.

Definition 4.15 (PCF⊕: Contexts). Value and term contexts are defined in Figure 4.4.
Given a term context CT and a term M, the expression CT[M] stands for the term
obtained by substituting the (unique) occurrence of [·] in CT with M . Similarly for
CV[M], which is by construction a value. When we speak of a context, what we are
referring to is a term context, a concept more general than the one of a value context.
Metavariables like C or D refer to term contexts.

It is easy to generalise the type system as we presented it in Section 4.3 to a formal
system capable of deriving judgments in the form

Γ � C[Δ � · : τ] : ρ.

The judgment above, when provable, ensures that the ordinary type judgment
Γ � C[M] : ρ is provable whenever Δ � M : τ is itself derivable.
We are now ready to give the most important definition of this section.

Definition 4.16 (Contextual Equivalence). Given two terms M,N such that Γ � M :
τ and Γ � N : τ, we say that M and N are (Γ, τ)-equivalent, and we write M ≡τ

Γ
N

iff whenever ∅ � C[Γ � · : τ] : Unit, it holds that ‖〈C[M]〉‖ = ‖〈C[N]〉‖.
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The way we have defined contextual equivalence turns it into a typed relation,
i.e. a family {Rτ

Γ
}Γ,τ of relations such that MRτ

Γ
N implies Γ � M : τ and Γ � N : τ.

We say that any typed relation {Rτ
Γ
}Γ,τ is:

• A congruence iff each Rτ
Γ
is an equivalence and whenever MRτ

Γ
N and Δ � C[Γ �

· : τ] : ρ, it holds that C[M]Rρ
Δ
C[N].

• Adequate iff whenever MRτ
Γ

N and ∅ � C[Γ � · : τ] : Unit, it holds that
‖〈C[M]〉‖ = ‖〈C[N]〉‖.

In fact contextual equivalence is an adequate congruence, and is the largest such
typed relation, as witnessed by the following result, whose proof is easy, and
whose deterministic counterpart has been known since the inception of contextual
equivalence (Morris, 1969):

Proposition 4.17. Contextual equivalence is the largest adequate congruence.

Contextual equivalence is thus a very satisfactory notion of program equivalence.
This does not mean, however, that proving pairs of terms to be contextually equivalent
is easy: the universal quantification over all contexts Definition 4.16 relies on makes
concrete proofs of equivalence hard. This has stimulated many investigations on
alternative notions of equivalence, not only in presence of probabilistic choice, but
also in the realm of usual, deterministic λ-calculi.

4.3.4 On the Expressive Power of PCFN⊕
It is well-known that the class of partial functions on the natural numbers Plotkin’s
PCF can represent is precisely the class of partial recursive functions (see (Longley
and Normann, 2015) for a proof). But how about PCF⊕? First of all, is there any
analogue to the class of partial recursive functions if the underlying computation
model is probabilistic rather than deterministic?
There are two essentially different ways in which one can answer the question

above. The first one consists in seeing any probabilistic computational model (e.g.
probabilistic Turing machines (De Leeuw et al., 1956; Santos, 1969) as a device
meant to solve ordinary computational problems seen as functions or languages. If
one proceeds this way, one soon realises that, under mild conditions, any probabilistic
computational model only decides partial recursive functions, capturing all of them
when the underlying deterministic machinery is sufficiently powerful (Santos, 1969).
Another route consists in looking at probabilistic computational models as devices

computing functions from the natural numbers to distributions of natural numbers,
called a probabilistic function. This is the route followed by the author in his work
with Gabbrielli and Zuppiroli (Dal Lago et al., 2014b), in which a variation on
Kleene’s function algebra is proved to capture probabilistic computable functions,
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namely those probabilistic functions which can be represented by probabilistic
Turing machines. In the rest of this Section, we give an overview of this result, only
taking the definition of a probabilistic Turing machine for granted.
Let us start by defining probabilistic functions and their computability:

Definition 4.18 (Computable Probabilistic Functions). Any function f : N→ D(N)
is said to be a probabilistic function. Such a probabilistic function f is said to be
Turing-computable (or just computable) iff there is a probabilistic Turing machine
M which, when fed with the encoding of n ∈ N terminates producing in output an
encoding of m ∈ N with probability f (n)(m).

A quite similar definition can be obtained by replacing Turing machines with
PCF⊕:

Definition 4.19. Let M be a PCFN⊕ closed term of type Num → Num. Then M
is said to compute a probabilistic function f : N → D(N) if and only if for every
n ∈ N, it holds that 〈M n〉 = f (n). Such a probabilistic function f is in this case
said to be computable by PCFN⊕.

One may wonder how endowing either Turing machines or PCF with an operation
for probabilistic choice affects the underlying expressive power. In fact, the obtained
computational models remain equivalent:

Theorem 4.20. The class of computable probabilistic functions coincides with the
class of probabilistic functions computable by PCFN⊕.

Proof Proving that probabilistic functions computable by PCFN⊕ are also Turing
computable is straightforward, since the operational semantics of PCFN⊕ is effective,
thus implementable by a Turing machine. The converse implication can be easily
proved via the already mentioned characterisation of probabilistic computable
functions via a slight variation of Kleene partial recursive functions (Dal Lago et al.,
2014b), namely one in which a basic function modelling probabilistic choice is
present. �

4.3.5 Termination in PCF⊕

Aswementioned in the Introduction, techniques ensuring termination of probabilistic
programs have already been investigated, and at least two distinct notions of
termination for probabilistic programs have been introduced, namely almost sure
termination, and its strengthening positive almost sure termination. Let us first of all
see how these notions can be formalised in our setting.

Definition 4.21 (Almost Sure Termination). Let M be any closed term. We say
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that M is almost surely terminating if ‖〈M〉‖ = 1, namely if its probability of
convergence is 1.

Example 4.22. An example of an almost surely terminating term is certainly GEO
from Example 4.4. Not all PCFN⊕ terms are almost surely terminating, however. As an
example, the term M = (fix f . f ) 0 is clearly not terminating because M → δ(M),
and as a consequence 〈M〉n = ∅ for every natural number n. There are subtler
examples, like the following variation on GEO:

TWICE := (fix f .λx.x ⊕ (let succ1(x) = y in f ( f y))) 0.

Please observe how the only difference betweenGEO and TWICE lies in the presence
of two nested recursive calls to f (instead of one) in the right-hand-side of the
probabilistic choice operator. The reader is invited to derive a value for ‖〈TWICE〉‖
as an exercise.

There is nothing in the definition of an almost surely terminating term which
ensures the term’s expected number of reduction steps to be finite. Enforcing it
requires an additional, further, constraint. But before introducing it, let us first
define the expected reduction length of any closed term M . As already mentioned in
Section 4.2, a convenient way to define it is as

∞∑
m=0

Pr(T > m),

where T is the random variable counting the number of steps M requires to be
reduced to a value. Now, how can we define Pr(T > m) in terms of the operational
semantics of M? Actually, an easy way to do it is to observe that Pr(T > m) is
1 −

∑m
n=0 ‖〈M〉n‖: the quantity

∑m
n=0 ‖〈M〉n‖ precisely captures the probability for

M to reduce to a value in at most m reduction steps. As a consequence, the average
number of reduction steps ExLen(M) for M is defined as follows:

ExLen(M) :=
∞∑

m=0

(
1 −

m∑
n=0

‖〈M〉n‖

)
.

Definition 4.23 (Positive Almost Sure Termination). Let M be any closed term. We
say that M is positively almost surely terminating if ExLen(M) < +∞.

The following is easy to prove, and is a standard result in the theory of Markov
chains and processes:

Lemma 4.24. Every positively almost-surely terminating term is almost-surely
terminating.
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Proof A necessary condition for ExLen(M) to be finite is that

lim
m→+∞

m∑
n=0

‖〈M〉n‖ = lim
m→+∞

33333 m∑
n=0

〈M〉n

33333 = 1,
which can hold only if ‖〈M〉‖ = 1, namely only ifM is almost surely terminating. �

The converse implication does not hold however, as witnessed by the following
example.

Example 4.25. Consider the following PCFN⊕ term:

RW := (fix f .λx.if gt2(x,0) then (N⇑ ⊕ N⇓) else 0)1,

where

N⇑ := let succ1(x) = y in f y

N⇓ := let pred1(x) = y in f y

The recursive function on which the term is based first tests whether the argument x
(of type Num) is positive, and in case it is, makes a recursive call with argument
either decreased or increased by 1, each with equal probability 1

2 . The term RW,
then, can be seen as modelling an unbounded, fair, random walk. As such it is well
known to be almost surely terminating, but not positively: the average number of
steps which are necessary to reach the base case is infinite.

Is there any reasonable way to restrict, e.g., PCFN⊕ in such a way as to enforce
almost-sure termination? The answer is positive. As an example:

• Removing fixpoints from the class of terms, replacing them with primitive
recursion, namely with a combinator rec having type

(Num → τ → τ) → τ → Num → τ

turns the calculus into a probabilistic variation on Gödel’s T, that we call T⊕.
Terms of the calculus are not only positively almost-surely terminating, but satisfy
an even stronger constraint: there is a global, uniform, bound on the length of any
probabilistic branch, i.e., for every M ∈ CTτ there is n ∈ N such that 〈M〉m = ∅
for every m ≥ n. By Lemma 4.7, we can conclude that SUPP(〈M〉) is finite, i.e.
that T⊕ is an essentially finitary calculus. Notice that such a uniform bound cannot
be found for terms like GEO which, although being almost surely terminating,
can possibly diverge (of course with null probability).

• T⊕ can be made infinitary by endowing it with a primitive geo behaving exactly
as GEO, and having type Num. Remarkably, this apparently innocuous change
has the effect of making the calculus almost surely terminating, but not positively
so.
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4.3.6 Further Reading

In the previous sections, a brief introduction to randomised λ-calculi has been given.
This Section is meant to be a repository of pointers to the literature about this class
of idioms, without any hope of being comprehensive.
We have specified the operational semantics of PCF⊕ in small-step style, and

by way of an inductively defined set of rules. This is not, however, the only
option. Indeed, one could certainly go big-step, but also interpret reduction rules
coinductively (Dal Lago and Zorzi, 2012). Another choice we have implicitly
made when introducing PCF⊕ is to consider call-by-value rather than call-by-name
evaluation. This, again, does not mean that the latter is a route which cannot be
followed (Dal Lago and Zorzi, 2012; Danos and Ehrhard, 2011). What makes
call-by-value more appealing is the possibility of “implicitly memoizing” the result
of probabilistic choices by way of sequencing, something which is not available in
call-by-name. Consider, as an example, a term M in which some probabilistic choice
(λx.N) ⊕ (λx.L) occurs. In call-by-value evaluation, this occurrence can be copied
unevaluated, and once one copy of it is indeed evaluated (i.e. when it becomes the
argument of a let), the outcome of the probabilistic choice can itself be copied. In
call-by-name, at least if sequencing is not available, this is simply impossible: once (a
copy of) a subterm is evaluated, the result of its evaluation cannot be spread around
the term by way of copying. This, by the way, is the source of some discrepancies
between the nature of contextual equivalence in call-by-name and call-by-value
evaluation, which shows up when probabilistic choice is available (Crubillé and
Dal Lago, 2014).
Contextual equivalence, as we have introduced it, is a very satisfactory defini-

tion of equivalence for probabilistic programs, being the largest compatible and
adequate (equivalence) relation. Contextual equivalence relying on a universal
quantification over all contexts, however, makes concrete proofs of equivalence quite
hard. Alternative methodologies have been introduced for the purpose of making
proofs of equivalence easier in a probabilistic setting, following the extended body
of work about the same problem in the deterministic setting (e.g. (Plotkin, 1973;
Abramsky, 1990; Mitchell, 1996)). For example, step-indexed logical relations have
been adapted to an higher-order probabilistic λ-calculus, and proved not only sound
for contextual equivalence, but also complete (Bizjak and Birkedal, 2015). As an
another example, Abramsky’s applicative bisimilarity has been itself generalised
to randomised λ-calculi (Dal Lago et al., 2014a; Crubillé and Dal Lago, 2014)
and proved fully-abstract, the latter holding only when call-by-value evaluation is
considered. Finally, a variation on the notion of Böhm tree (Barendregt, 1984) has
been recently defined for an untyped, randomised λ-calculus (Leventis, 2018); quite
interestingly, the classic separability result continues to hold.
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Another way of proving terms to be equivalent consists in comparing their mean-
ings in any adequate model, along the lines of so-called denotational semantics.
Following this path has proved remarkably hard in randomised λ-calculi. In particu-
lar, coming up with a completely satisfactory notion of probabilistic powerdomain,
this way modelling probabilistic choice in monadic style has proved to be impossi-
ble (Jones and Plotkin, 1989; Jung and Tix, 1998). On the other hand, interpreting
PCF⊕ by denotational models in the style of coherence spaces (Danos and Ehrhard,
2011) is indeed possible, and also leads to full abstraction results (Ehrhard et al.,
2014). Very recently, another way of giving semantics to randomised λ-calculi and
based on Boolean-Valued models has been proposed (Bacci et al., 2018).
The two notions of termination for probabilistic programs we introduced and

discussed in this section have been studied in depth in the context of imperative pro-
gramming languages (McIver and Morgan, 2005), and have been proved to be strictly
more difficult than their deterministic counterparts, recursion-theoretically (Kamin-
ski and Katoen, 2015). Various techniques for proving imperative programs to be
terminating have been introduced, based on the notion of ranking martingale or
Lyapunov function, the natural probabilistic analogues of the so-called ranking
function (Bournez and Garnier, 2005). While the same technique has been shown to
be applicable to term rewrite systems recently (Avanzini et al., 2018), not much is
known about its applicability to higher-order functional programs. Up to now, the
only works in this directions are based on type systems, and in particular on variations
on either sized-types (Dal Lago and Grellois, 2017) or intersection types (Breuvart
and Dal Lago, 2018).

4.4 Sampling and Conditioning

In randomisedλ-calculi, only one formof probabilistic choice is available,whichmost
often has a discrete nature. As we argued in the last section, this is perfectly adequate
tomodel randomised computation. In recent years, starting from the pioneeringworks
on languages like CHURCH and ANGLICAN, functional programming languages
have also been employed as vehicles for the representation of probabilistic models
rather than algorithms. This amounts to a different execution model, in which
inference takes the place of evaluation.
In this Section, we give some hints about how this style of programming can be

modelled in an extension of PCF⊕, that we call PCFsample,score. The latter calculus
can be derived from the former by:

• Replacing binary probabilistic choice with an operator sample which, when
evaluated, samples a real number in [0,1] uniformly at random. This implies,
in particular, that the underlying monoidM needs to include [0,1], and is often

https://doi.org/10.1017/9781108770750.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.005


4.4 Sampling and Conditioning 139

Terms M,N ::= sample | score(V).

Typing Rules Γ � sample : Num A Γ � V : Num
Γ � score(V) : Unit C

Figure 4.5 Grammar and Typing Rules for sample and score.

taken as the additive monoid of real numbers. The type of the new term sample
is Num.

• Endowing the class of terms with another operator, called score, which takes
a positive real number r as a parameter, and modifies the weight of the current
probabilistic branch bymultiplying it by r . This serves as away to take observations
into account, by conditioning on them. The type of score is Unit, while its
argument must of course have type Num.

Formally, the language of terms and the typing rules are extended as shown in
Figure 4.5. From a purely syntactical point of view, then, formally defining Bayesian
λ-calculi poses absolutely no problem.

What is nontrivial, however, is to give a meaning to those calculi, even in the
form of an operational semantics. As already mentioned, terms are not meant to
model algorithms but probabilistic models, on which inference is supposed to
take place. This can be dealt with by defining a sampling operational semantics,
following (Borgström et al., 2016), or by a distribution semantics which, however,
requires some nontrivial measure theory. We will deal with them in the following
section.

4.4.1 Operational Semantics

How could we give an operational semantics to PCFsample,score? As we already
mentioned, there are at least two answers to this questions, which lead to formal
systems which are related, although having distinct properties.
One may first of all wonder whether the distribution semantics we introduced for

PCF⊕ could be adapted to PCFsample,score. In fact this can be done, at the price of
making the whole development nontrivial, due to the underlying measure theory. To
understand why this is the case, let us consider how the evaluation rule for sample
would look like. At the right-hand-side of it, what we expect is a distributionD on R.
The latter’s support, however, is R[0,1], and is thus not countable. As a consequence,
one needs to switch to measures in the sense of measure theory, and assume the
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underlying set, namely R to have the structure of a measurable space. Adapting the
rule for let-terms naturally leads to

M → μ

let M = x in N → let μ = x in N

where let μ = x in N should itself be a measure, meaning that not only real
numbers, but also terms should be endowed with the structure of a measurable
space. Finally, the last rule in step-indexed reduction needs to be adapted itself, the
summation in its conclusion to be replaced by an integral:

M → μ ∀N ∈ SUPP(μ).N ⇒n σN

M ⇒n+1 A �→
∫
σN (A)μ(dN)

For the integral above to be well defined, the underlying function must be measurable.
It turns out that the appropriate invariant is even stronger: each⇒n+1 can be seen
as finite kernel, and the operational semantics of M thus becomes an s-finite
kernel (Staton, 2017).
Measure-theoretic distribution semantics, however, is not the only way a calculus

like PCFsample,score can be given a meaning. An alternative consists of going for the
so-called sampling-based semantics, in which the process of sampling and scoring
are made explicit.

Definition 4.26 (Trace). A trace is a possibly empty finite sequence of elements
from R[0,1] and is indicated with metavariables like s, t. The trace whose first element
is r ∈ R[0,1], and whose other elements form a trace t is indicated as r :: t. The set
of all traces is X.

In sampling-based semantics, one-step reduction and multi-step reduction are
both subsets of (CT × X) × R+ × (CT × X), i.e. ternary rather than binary relations.
They are indicated as � and �, respectively. We write 〈M, s〉

r� 〈N, t〉 for
((M, s),r, (N, t)) ∈ �. Similarly for 〈M, s〉

r
� 〈N, t〉. Rules for small-step sampling

semantics can be found in Figure 4.6. Observe that if 〈M, s〉
r� 〈N, t〉 and r � 1,

then the redex fired in M must be of the form score(r).

The two kinds of semantics can be proved equivalent, in the following sense: for
every measurable set of real numbers A, the total probability of observing A when
evaluating ∅ � M : Num in sampling-based and distribution-based are the same (see,
e.g., (Borgström et al., 2016) for some more details).

4.4.2 Further Reading

The study of Bayesian λ-calculi is in its infancy , and the underlying metatheory,
despite some breakthrough advances in the last ten years, is still underdeveloped
compared to the one of randomised λ-calculi.
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One-Step Reduction

〈(λx.M)V, s〉
1� 〈M[V/x], s〉

〈let V = x in M, s〉
1� 〈M[V/x], s〉

〈if 0 then M else N, s〉
1� 〈M, s〉

〈if r then M else N, s〉
1� 〈N, s〉 if r � 0

〈sample,r :: s〉
1� 〈r, s〉

〈score(r), s〉
r� 〈�, s〉

〈 f (r1, · · · ,rn), s〉
1� 〈 f ∗(r1 . . . ,rn), s〉

〈M, s〉
r� 〈L, t〉

〈let M = x in N, s〉
r� 〈let L = x in N, s〉

Multi-Step Reduction

〈V, s〉
1
� 〈V, s〉

〈M, s〉
r� 〈N, t〉 〈N, t〉

s
� 〈L,u〉

〈M, s〉
r ·s
� 〈L,u〉

Figure 4.6 Small-Step Sampling Semantics

Calculi in which continuous distributions and sampling from them are available
were introduced by Ramsey and Pfeffer (Ramsey and Pfeffer, 2002) and Park,
Pfenning, and Thrun (Park et al., 2005). The first example of a λ-calculus in
which these two features are both present is due to the author, together with
Börgstrom, Gordon, and Szymczak (Borgström et al., 2016), who introduced trace
and distribution semantics for an untyped bayesian λ-calculus with primitives
for sampling and scoring, together with trace and distribution semantics, both in
small-step and big-step styles.
Contextual equivalence and logical relations for a typed λ-calculus with sampling

and scoring were introduced in Culpepper and Cobb (2017), and adapted to a
calculus with full higher-order recursion in Wand et al. (2018).
Giving a satisfactory denotational semantics for bayesian λ-calculi has been

proved to be quite challenging. Quasi-borel spaces (Heunen et al., 2017) provide
both a closed structure and the machinery necessary to model sampling and
conditioning, something which is provably impossible in the category of measurable
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spaces. Subsequently, quasi-borel spaces have also been shown to give rise to a
category of domains, thus accounting for the presence of recursion in the underlying
calculus (Vákár et al., 2019). Generalising probabilistic coherent spaces (Danos and
Ehrhard, 2011) to a calculus allowing sampling from continuous distributions has
proved to be possible, but highly nontrivial (Ehrhard et al., 2018). At the time of
writing, it is not clear whether all this scales to a calculus in which a general form of
conditioning (as embodied by the score operator) is available.
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