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Abstract Let Γ be a graph and let G be a vertex-transitive subgroup of the full automorphism group
Aut(Γ ) of Γ . The graph Γ is called G-normal if G is normal in Aut(Γ ). In particular, a Cayley graph
Cay(G, S) on a group G with respect to S is normal if the Cayley graph is R(G)-normal, where R(G) is
the right regular representation of G. Let T be a non-abelian simple group and let G = T � with � � 1.
We prove that if every connected T -vertex-transitive cubic symmetric graph is T -normal, then every
connected G-vertex-transitive cubic symmetric graph is G-normal. This result, among others, implies
that a connected cubic symmetric Cayley graph on G is normal except for T ∼= A47 and a connected
cubic G-symmetric graph is G-normal except for T ∼= A7, A15 or PSL(4, 2).
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1. Introduction

Throughout this paper graphs are assumed to be finite, simple and undirected. For a
graph Γ , let V (Γ ), E(Γ ) and Aut(Γ ) be the vertex set, the edge set and the full auto-
morphism group of Γ , respectively. For a non-negative integer s, an s-arc in a graph
Γ is an ordered (s + 1)-tuple (v0, v1, . . . , vs) of vertices of Γ such that vi−1 is adjacent
to vi for 1 � i � s, and vi−1 �= vi+1 for 1 � i < s; in other words, a directed walk
of length s that never includes any backtracking. For a group G of automorphisms of a
graph Γ , the graph Γ is said to be G–s-arc-transitive or G–s-arc-regular if G is transitive
or regular on the set of s-arcs in Γ , respectively. In particular, G–0-arc-transitive (G–0-
arc-regular) means G-vertex-transitive (G-vertex-regular), and G–1-arc-transitive means
G-arc-transitive or G-symmetric. A graph Γ is said to be vertex-transitive, arc-transitive,
symmetric, s-arc-transitive or s-arc-regular if Γ is Aut(Γ )-vertex-transitive, Aut(Γ )-arc-
transitive, Aut(Γ )-symmetric, Aut(Γ )–s-arc-transitive or Aut(Γ )–s-arc-regular, respec-
tively.

For a finite group G and a subset S of G such that 1 �∈ S and S = S−1, the Cayley
graph Cay(G, S) on G with respect to S is defined to have vertex set G and edge set
{{g, sg} | g ∈ G, s ∈ S}. A graph X is isomorphic to a Cayley graph on G if and only if
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Aut(X) has a subgroup isomorphic to G that acts regularly on vertices (see [24]). Given
g ∈ G, define the permutation R(g) on G by x �→ xg, x ∈ G. Then R(G) = {R(g) | g ∈ G}
is a permutation group isomorphic to G, called the right regular representation of G. The
Cayley graph Cay(G, S) is vertex-transitive because R(G) is a vertex-regular subgroup
of Aut(Cay(G, S)). Furthermore, the group Aut(G, S) = {α ∈ Aut(G) | Sα = S} is also
a subgroup of Aut(Cay(G, S)). Actually, Aut(G, S) is a subgroup of Aut(Cay(G, S))1,
the stabilizer of the vertex 1 in Aut(Cay(G, S)). A Cayley graph Cay(G, S) is said to be
normal if Aut(Cay(G, S)) contains R(G) as a normal subgroup.

It was conjectured in [27] that ‘most’ Cayley graphs are normal. In the literature,
studying normality itself, or, equivalently, the determination of automorphism groups
of Cayley graphs, has become a very active topic in algebraic graph theory, which also
plays an important role in the investigation of various symmetry properties of graphs
(see, for example, [2,5–11,15,21]). By [12], if X = Cay(G, S) is normal, then Aut(X) =
R(G)�Aut(G, S), which implies that the automorphism group of a normal Cayley graph
is known and normal Cayley graphs are just those that have the smallest possible full
automorphism groups.

In most situations, it is difficult to determine the normality of Cayley graphs. A more
general problem is to determine the so-called G-normality of a G-vertex-transitive graph.
Let G be a vertex-transitive group of automorphisms of a graph Γ . The graph Γ is said to
be G-normal if G is normal in Aut(Γ ). In particular, a Cayley graph Cay(G, S) is normal
if and only if the Cayley graph is R(G)-normal. A non-abelian characteristically simple
group is the direct product T×T×· · ·×T (� times), denoted by T �, of a non-abelian simple
group T . The T -normality was investigated for T -vertex-regular cubic symmetric graphs
in [28] and for T -symmetric cubic graphs in [14]. Note that a T -vertex-regular graph
is a Cayley graph on T . In this paper we consider T �-normality for T �-vertex-transitive
cubic symmetric graphs. The following theorem is the main result.

Theorem 1.1. Let T be a non-abelian simple group and let G = T � with � � 1.
Assume that every connected T -vertex-transitive cubic symmetric graph is T -normal.
Then every connected G-vertex-transitive cubic symmetric graph is G-normal.

Let Γ be a connected cubic symmetric Cayley graph on T . By [28, Theorem 1.1], if Γ

is not normal, then T ∼= A47, and by Theorem 1.1 we have the following corollary.

Corollary 1.2. Let T be a non-abelian simple group and let G = T � with � � 1. Then
every connected cubic symmetric Cayley graph on G is normal except for T ∼= A47.

Let Γ be a connected T -symmetric cubic graph. By [14, Proposition 7.1.3], if Γ is not
T -normal, then T ∼= A7, A15 or PSL(4, 2).

Corollary 1.3. Let T be a non-abelian simple group and let G = T � with � � 1.
Every connected cubic G-symmetric graph is then G-normal except for T ∼= A7, A15 or
PSL(4, 2).
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2. Preliminary results

This section collects some notation and preliminary results that will be used later. We
start by stating a well-known result on permutation group theory.

Proposition 2.1 (Wielandt [26, Proposition 4.3]). Let G be a transitive permu-
tation group on a set Ω. The centralizer of G in the symmetric group SΩ on Ω is then
semiregular: that is, the centralizer has trivial stabilizer for each point in Ω.

The following proposition is due to Burnside.

Proposition 2.2 (Robinson [23, Theorem 8.5.3]). Let p and q be primes and let
m and n be non-negative integers. Any group of order pmqn is then solvable.

Let G be a group. The inner automorphism group Inn(G) of G is the group of automor-
phisms of G induced by conjugate action of elements in G, which is a normal subgroup in
the full automorphism group Aut(G) of G. The quotient group Aut(G)/Inn(G) is called
the outer automorphism group of G. By the classification of finite simple groups, we have
the following proposition, which is the famous Schreier conjecture.

Proposition 2.3 (Gorenstein [13, Theorem 1.46]). Every finite simple group has
a solvable outer automorphism group.

A typical method for studying vertex-transitive graphs is to take certain quotients. Let
Γ be a graph and let N be a subgroup of Aut(X). Denote by ΓN the quotient graph of
Γ corresponding to the orbits of N : that is, the graph having the orbits of N as vertices
with two orbits adjacent in ΓN whenever there is an edge in Γ between vertices lying
in these two orbits. In view of Theorem 9 of [17] (see also [18]), we have the following
proposition.

Proposition 2.4. Let N � X and let Γ be a connected X–s-arc-transitive graph of
prime valency p for some s � 1. If N has more than two orbits, then N is semiregular on
V (X) and the quotient graph XN of X corresponding to the orbits of N is a connected
symmetric graph of valency p. Furthermore, N is the kernel of X acting on V (ΓN ) and
ΓN is X/N–s-arc-transitive.

An imprimitive block of a transitive permutation group G on a set Ω is a non-empty
subset ∆ of Ω such that for all g ∈ G we have either ∆g ∩ ∆ = ∅ or ∆g = ∆. A
permutation group G on Ω is primitive if it is transitive and its only imprimitive blocks
are Ω and the singleton sets {ω} for ω ∈ Ω. A permutation group G is quasiprimitive if
all its non-trivial normal subgroups are transitive. It is elementary and well known that
any primitive group is quasiprimitive. For a group G, let soc(G) denote the socle of G:
that is, the product of all minimal normal subgroups of G. The holomorph Hol(G) of a
group G is the semiproduct G � Aut(G).

There are eight types of primitive permutation groups identified in [16,19]. Analogous
to these eight types, quasiprimitive permutation groups were also given in eight types
in [20,22], from which one may deduce the following proposition.
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Proposition 2.5 (Baddeley and Praeger [1, Theorem 3.1]). A quasiprimitive
permutation group G on a set Ω has one of the following eight types.

HA: G has a unique minimal normal subgroup M that is abelian and regular. In this
case, soc(G) = M , CG(M) = M and G � Hol(M).

HS: G has precisely two minimal normal subgroups M and N that are non-abelian and
simple, isomorphic and regular. In this case, soc(G) = M × N , CG(M) = N and
G � Hol(M).

HC: G has precisely two minimal normal subgroups M and N that are direct products of
at least two isomorphic non-abelian simple groups. In this case, M and N are regular,
M ∼= N , soc(G) = M × N , CG(M) = N and G � Hol(M).

The above three types correspond to primitive permutation groups and the five remain-
ing types correspond to quasiprimitive permutation groups that may be primitive or
imprimitive.

AS: G has a unique minimal normal subgroup M that is non-abelian and simple. In this
case, soc(G) = M , M � G � Aut(M) and M is either regular or not.

TW: G has a unique minimal normal subgroup M that is regular and a direct product
of at least two isomorphic non-abelian simple groups. In this case, soc(G) = M and
CG(M) = 1.

Quasiprimitive permutation groups of the three remaining types have a unique minimal
normal subgroup M that is not regular and a direct product of at least two isomor-
phic non-abelian simple groups: say T k with k > 1. In these cases, soc(G) = M and
CG(M) = 1. The types are distinguished by the point-stabilizer Mu of u ∈ Ω in M ,
which is necessarily non-trivial.

SD: Mu is a full diagonal subgroup of M .

CD: Mu is a direct product of at least two disjoint non-trivial full strips of M . (Groups
of this type are the blow-ups of groups of type SD.)

PA: Mu = Rk for a proper subgroup R of T .

Baddeley and Praeger [1] considered almost simple groups containing a direct product
of at least two isomorphic non-abelian simple groups.

Proposition 2.6 (Baddeley and Praeger [1, Theorem 1.4]). Let H be an almost
simple group: that is, S � H � Aut(S) for a non-abelian simple group S, and suppose
that H = AB, where A is a proper subgroup of H not containing S, and B ∼= T k for a
non-abelian simple group T and integer k � 2. Then S = An and A ∩ S = An−1, where
n = |H : A| = |S : A ∩ S| � 10.
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3. Proof of Theorem 1.1

Let T be a non-abelian simple group and let G = T � with � � 1. Assume that every
connected T -vertex-transitive cubic symmetric graph is T -normal. Let Γ be a connected
G-vertex-transitive cubic symmetric graph and let A = Aut(Γ ). Denote by rad(A) the
radical of A: that is, the largest normal solvable subgroup of A.

The proof of Theorem 1.1 is organized as follows. It is proved that rad(A)G =
rad(A)×G in Lemma 3.1. The quotient graph Γrad(A), by Proposition 2.4, is a connected
cubic A/rad(A)-symmetric graph. Furthermore, rad(A)G/rad(A) ∼= G and Γrad(A) is
rad(A)G/rad(A)-vertex-transitive. To use induction on �, we deal with two cases depend-
ing on whether or not A/rad(A) is quasiprimitive; the quasiprimitive case is considered
in Lemma 3.2 and the non-quasiprimitive case is considered in Lemma 3.3.

Lemma 3.1. Let T be a non-abelian simple group and let G = T � with � � 1. Let Γ

be a connected cubic graph and let G � X � Aut(Γ ) such that Γ is G-vertex-transitive
and X-arc-transitive. Then rad(X)G = rad(X) × G.

Proof. Since G∩ rad(X)�G, G∩ rad(X) is a direct product of copies of T . It follows
that rad(X) ∩ G = 1 because rad(X) is solvable. Let u ∈ V (Γ ). By vertex-transitivity
of G, X = GXu and |G| = |V (Γ )| |Gu|. By [25], Γ is at most 5-arc-regular, and by the
same reference |Xu| is a divisor of 48. Since rad(X)G � GXu, |rad(X)| is a divisor of
|Xu| and hence a divisor of 48. To finish the proof, we use induction on |rad(X)|.

The lemma is trivial if |rad(X)| = 1. Assume that rad(X) �= 1 and let N be a minimal
normal subgroup of X contained in rad(X). Then G ∩ N = 1, |N | is a divisor of 48 and
N is elementary abelian. It follows that N = Z3 or N = Zr

2 for some 1 � r � 4. First we
prove the following claim.

Claim. GN = G × N .

Consider the conjugate action of G on N and let K be the kernel of this action. Then
K = T r for some r � � and G/K � Aut(N). Clearly, GN = G×N if and only if K = G.
To prove the claim we suppose on the contrary that K �= G: that is, r < �. This implies
that G/K ∼= T �−r is non-solvable, and hence Aut(N) is non-solvable.

If N ∼= Z2, Z2
2 or Z3, then Aut(N) is solvable, which is a contradiction. Thus, N ∼= Z4

2
or Z3

2. Since G ∩ N = 1, we have |X| � |G| |N | = |V (Γ )| |Gu| |N |. Since X is arc-
transitive, 3|N | is a divisor of |Xu|. Then, by [25], X is 4-arc-transitive for N ∼= Z3

2 and
5-arc-transitive for N ∼= Z4

2. Moreover, |X : GN | = 3, 6 or 1.
Assume that |X : GN | = 3 or 6. Then |X| = 3|V (Γ )| |Gu| |N | or 6|V (Γ )| |Gu| |N |. Since

X is at most 5-regular, |Gu| = 1 or 2 because N ∼= Z3
2 or Z4

2. Furthermore, if N ∼= Z4
2,

then |X : GN | = 3. Consider the action of X on the set [X : GN ] of right cosets of GN

in X by right multiplication. The kernel of this action is (GN)X , the largest normal
subgroup of X contained in GN . Then X/(GN)X � S3 or S6 depending on whether
N ∼= Z4

2 or Z3
2, respectively. Clearly, N � (GN)X .

Note that GN/N ∼= G/G ∩ N ∼= G = T � and GN/(GN)X
∼= (GN/N)/((GN)X/N).

We have GN/(GN)X
∼= T s for some s � 0. If s = 0, then GN = (GN)X � X. Write

Y = GN . By the transitivity of G, Y = GYu and hence |Y | = |G| |N | = |G| |Yu|/|Gu|,
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implying that Yu is a 2-group. On the other hand, since Y �X, we have Yu�Xu. It follows
that 3||Yu| because the action of Xu on the neighbourhood of u in Γ is primitive, which is
a contradiction. Thus, s � 1 and X/(GN)X is non-solvable. It follows that N = Z3

2 and
X/(GN)X � S6. By [4], a non-abelian simple group with order dividing 720 must be A5

or A6, and hence T = A5 or A6. This is impossible because G/K � Aut(N) = PSL(3, 2)
and PSL(3, 2) has no subgroup isomorphic to A5 or A6 (|PSL(3, 2)| is not divisible by 5).

Assume that |X : GN | = 1: that is, X = GN . Recall that K = T r and K is the kernel of
G acting on N by conjugation. Set M = KN . Then M � GN = X. Recall that K �= G.
Since G/K � Aut(N), we have G/K � GL(4, 2) or GL(3, 2) depending on whether
N = Z4

2 or Z3
2, respectively, and since |GL(3, 2)| = 23 · 3 · 7 and |GL(4, 2)| = 26 · 32 · 5 · 7,

we have K ∼= T �−1 and X/M = GN/KN ∼= G/K ∼= T .
If M is transitive on V (Γ ), then X = MXu. Thus, |M | |T | = |M | |X/M | = |X| =

|M | |Xu|/|Mu|, implying that |T | is a divisor of |Xu| and hence a divisor of 48, which
is a contradiction. If M has two orbits, then Γ is a bipartite graph, and the two orbits
of M are the partite sets of Γ . By the transitivity of G on V (Γ ), the subgroup of G

fixing the two partite sets setwise has index 2 in G, which is a contradiction. It follows
that M has more than two orbits. By Proposition 2.4, the quotient graph ΓM is a cubic
symmetric graph and X/M is 4-arc-transitive on ΓM when N = Z3

2 and 5-arc-transitive
when N = Z4

2.
Suppose that N = Z4

2. Then T ∼= G/K � GL(4, 2) and, since |GL(4, 2)| = 26 · 32 · 5 · 7,
by [4, p. 239], T is one of the following groups:

A5, PSL(3, 2), A6, PSL(2, 8), A7, PSU(3, 3) or PSL(4, 2),

which have orders 22 · 3 · 5, 23 · 3 · 7, 23 · 32 · 5, 23 · 32 · 7, 23 · 32 · 5 · 7, 25 · 33 · 7 and
26 ·32 ·5 ·7, respectively. Note that X/M ∼= T is 5-arc-transitive on ΓM . This means that
|T | = 3 · 24 · |V (ΓM )|. It follows that T = PSU(3, 3) or PSL(4, 2), forcing |V (ΓM )| = 126
or 420. This is impossible because there is no connected cubic 5-arc-transitive graph of
order 126 or 420 by [3]. Thus, N = Z3

2. It follows that T ∼= G/K � GL(3, 2), forcing
T = GL(3, 2). Since |T | = 3 · 23 · |V (ΓM )|, ΓM is a cubic symmetric graph of order 7,
which is a contradiction. This completes the proof of the claim.

We are now ready to finish the proof. Consider the quotient graph ΓN corresponding to
the orbits of N . Since |N | is a power of 2 or 3, N cannot be transitive on V (Γ ). Also, N

cannot have two orbits because Γ is not bipartite; otherwise, G has a subgroup of index 2,
which is a contradiction. Thus, N has more than two orbits and, by Proposition 2.4,
ΓN is a cubic symmetric graph. Furthermore, GN/N ∼= T � is transitive and X/N is arc-
transitive on ΓN . Note that rad(X/N) = rad(X)/N . By inductive hypothesis, rad(X/N)·
GN/N = rad(X/N) × GN/N . Thus, rad(X)G/N = rad(X)/N × GN/N , implying that
GN � rad(X)G. By the claim above, G is characteristic in GN and hence normal in
rad(X)G. It follows that rad(X)G = rad(X) × G. �

Lemma 3.2. Let T be a non-abelian simple group and let G = T � with � � 2. Let Γ

be a connected cubic symmetric graph and let G � X � Aut(Γ ) such that G is transitive
and X is quasiprimitive on V (Γ ). Then G is normal in X.
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Proof. Let N = soc(X). Since X is quasiprimitive, N is transitive on V (Γ ) and, by
Proposition 2.5, one may assume that N = St for a simple group S and positive integer
t. By the transitivity of G, we have X = GXu for u ∈ V (Γ ). Since Γ is a connected cubic
symmetric graph, by [25], |Xu| is a divisor of 48.

Consider the group NG. Since N ∩ G � G, we may assume that N ∩ G = T r for some
0 � r � �, implying that |NG| = |N | |G : G ∩ N | = |N | |T �−r|. Set Y = NG. Since N

is transitive, we have Y = NYu. Thus, |Yu| = |N ∩ Yu| |T �−r|. Since Yu is a subgroup
of Xu, |T �−r| is a divisor of 48, and since T is a non-abelian and simple, � = r: that is,
N ∩ G = G. It follows that G � N . In particular, N is non-abelian and N = NuG.

By Proposition 2.5, X has one of the following types: HS, HC, AS, TW, SD, CD or PA.
Suppose that X has two minimal normal subgroups, say N1 and N2. By Proposition 2.5,
N = N1 × N2, and both N1 and N2 are direct products of the non-abelian simple group
S. Since X is quasiprimitive, N1 is transitive on V (Γ ). It follows that |N1| |N2| = |N | =
|N1| |Nu| and hence |N2| is a divisor of 48. This is impossible because N2 is non-solvable.
Thus, X cannot be of types HS and HC and X has a unique minimal normal subgroup:
that is, N = soc(X). Since |Nu| is a divisor of 48, Nu cannot be non-solvable; thus X

cannot be of type CD or type SD. The remaining types of X are AS, TW and PA.
Let X be of type AS. Then N = soc(X) is a non-abelian simple group and N � X �

Aut(N). Recall that N = NuG. Clearly, N �= Nu and hence Nu is a proper subgroup of
N . By Proposition 2.6, N = An and Nu = N ∩ Nu = An−1, where n = |N : Nu| � 10.
Thus, N is 2-transitive on V (Γ ), implying Γ = Kn, which is a contradiction.

Let X be of type TW. Then N is regular on |V (Γ )| and hence |N | � |G|. Since G � N ,
we have G = N . Thus, G � X, as required.

Finally, let X be of type PA. In this case, Nu �= 1. Recall that G � N , G = T �

and N = St, where � � 2 and t � 2. Since Γ has valency 3, Xu is primitive on the
neighbourhood N(u) of u in Γ , and since Nv = N ∩ Xv � Xv, Nv is transitive on N(u),
implying that Γ is N -arc-transitive. Let H � N and H ∼= St−1. Then N/H ∼= S.

Suppose that H is transitive on Γ . Then N = HNu, implying that |S| is a divisor
of |Nu| = 48, which is a contradiction. Suppose that H has two orbits. Since N is arc-
transitive, Γ is bipartite with the orbits of H as its two partite sets. The subgroup of N

fixing each partite set of Γ has index 2 in N . This is impossible because N = St.
Thus, H has more than two orbits. By Proposition 2.4, the quotient graph ΓH corre-

sponding to the orbits of H is a cubic N/H-arc-transitive graph. Since G � N , we have
G ∩ H � G, implying that G ∩ H = Tm for some non-negative integer m. Since G is
transitive, G �� H, forcing m < �. Note that T �−m ∼= G/G ∩ H ∼= GH/H � N/H ∼= S.
Let ∆ be an orbit of H on V (Γ ). Since GH/H is transitive on V (ΓH), we have N/H =
GH/H(N/H)∆, where (N/H)∆ is the stabilizer of ∆ in N/H. If � − m � 2, by Proposi-
tion 2.6, N/H = An and (N/H)∆ = An−1, where n = |N/H : (N/H)∆| = |V (ΓH)| � 10.
Thus, ΓH is the complete graph Kn with n � 10, which is a contradiction. It follows that
GH/H ∼= T . Noting that |(N/H)∆| is a divisor of 48 and that GH/H � N/H, we have
|S| = n|T | with n|48, and one may view T as a subgroup of S.

Recall that N = NuG. Then |N |/|G||48, implying that |T |t−�nt|48. It follows that
t = � because |T |t−�nt is a positive integer and |T | has at least three distinct prime
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factors. This means that nt|48. Since t � 2, we have n = 1, 2 or 4. If n = 2 or 4, then
|S : T | = 2 or 4, contrary to the simplicity of S. Thus, n = 1. In this case, G = N � X,
as required. �

Lemma 3.3. Let T be a non-abelian simple group and let G = T � with � � 1.
Let Γ be a connected cubic graph and let G � X � Aut(Γ ) such that Γ is G-vertex-
transitive and X-arc-transitive. Suppose that X is non-quasiprimitive on V (Γ ) and that
every minimal normal subgroup of X is non-abelian. Then X has a non-trivial normal
subgroup contained in G.

Proof. Assume that M is a normal subgroup of X such that M = St for a non-
abelian simple group S and positive integer t. Since G is transitive on V (Γ ), we have
MG � X = GXu, and since Γ is X-arc-transitive, |M : M ∩ G| is a divisor of |Xu| and
hence a divisor of 48. Thus, M ∩ G � G implies that M ∩ G = T r for some r � 1.

Claim. If S �∼= T , then M is simple.

Suppose that S � T . Assume to the contrary that M is not simple. Then t � 2.
Choose T1 � M ∩ G such that T1 ∼= T . Since the intersection of all normal subgroups of
M isomorphic to St−1 is trivial, one may assume that M = K × H such that K ∼= St−1,
H ∼= S and T1 �� K. Since K � M and T1 � M , we have T1 ∩ K � T1. It follows that
T1∩K = T1 or 1. If T1∩K = T1, then T1 � K, which is a contradiction. Thus, T1∩K = 1
and T ∼= T1 ∼= T1/T1 ∩ K ∼= T1K/K � M/K ∼= H ∼= S, implying that |T | is a divisor
of |S|.

Set Ω = [M : M ∩ G], the set of right cosets of M ∩ G in M . Consider the action
of M on Ω by right multiplication. The kernel of this action is (M ∩ G)M , the largest
normal subgroup of M contained in M ∩ G. Since (M ∩ G)M � M ∩ G, (M ∩ G)M is a
direct product of the non-abelian simple group T , and since (M ∩ G)M � M , (M ∩ G)M

is a direct product of the non-abelian simple group S. It follows that (M ∩ G)M = 1
because S � T , and hence the action of M on Ω is faithful. Recall that M = K ×H with
K ∼= St−1 and H ∼= S. Then H � CM (K), where CM (K) is the centralizer of K in M .

If K is transitive on Ω, then, by Proposition 2.1, H is semiregular on Ω. Thus, |H|
is a divisor of |Ω| and hence a divisor of 48, contrary to the fact that H is non-abelian
and simple. Let K have n orbits of length m. Then m, n � 2 and |Ω| = mn|48. Since a
non-solvable group cannot have a faithful action of degree less than 5, we have m, n � 5.
It follows that {m, n} = {6, 8}. Since M is transitive on Ω, we have H � Sn and
K � Sm × · · · × Sm = Sn

m. Thus, S � A6 because {m, n} = {6, 8}. Since |T | is a
divisor of |S| and S �∼= T , we have T ∼= A5 and S ∼= A6, which is impossible because
|Ω| = |M |/|M ∩ G| = |S|t/|T |r is a divisor of 48 for some t � 2. It follows that t = 1, as
claimed.

In what follows we prove that X has a minimal normal subgroup that is a direct
product of the non-abelian simple group T .

Suppose on the contrary that every minimal normal subgroup of X is not a direct
product of copies of T . Since X is non-quasiprimitive, X has a minimal normal subgroup,
say N1, which is intransitive on V (Γ ). By hypothesis, N1 is non-abelian, and, by the claim
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above, N1 is non-abelian and simple. Set C = CX(N1), the centralizer of N1 in X. If
C = 1, then X/N1 � Out(N1). By Proposition 2.3, X/N1 is solvable and hence GN1/N1

is solvable. Note that N1 ∩ G � G implies that G ∩ N1 ∼= T s for some integer s. Since
GN1/N1 ∼= G/G ∩ N1 ∼= T �−s, we have � = s: that is, G ∩ N1 = G. Thus, G � N1. This
is impossible because G is transitive and N1 is intransitive on V (Γ ).

Thus C �= 1. Let N2 � C be a minimal normal subgroup of X. By hypothesis and
the claim above, N2 is non-abelian and simple and N2 �∼= T . Set N = N1N2 = N1 × N2.
Again by the claim above, N1 �∼= N2. Since NG � X = GXu, |N : N ∩ G| is a divisor of
48. Moreover, N ∩ G � G implies that N ∩ G = T t for some t � 1.

Set Ω1 = [N : N ∩ G]. Consider the action of N on Ω1 by right multiplication and the
kernel of this action is (N ∩G)N , which is the largest normal subgroup of N contained in
N ∩ G. It follows that (N ∩ G)N = 1 because (N ∩ G)N is normal in both N ∩ G and N .
This means that the action of N on Ω1 is faithful. Since N1 � CN (N2) and |N1| is not a
divisor of 48, N2 is intransitive on Ω1 by Proposition 2.1. Assume that N2 has n orbits
of length m. Then m, n � 2 and |Ω1| = mn, which is a divisor of 48. Since N1 and N2

are non-abelian and simple, we have m, n � 5 and {m, n} = {6, 8}, implying |Ω1| = 48.
Since N is transitive on Ω1, we have N1 � Sn and N2 � Sm × · · · × Sm = Sn

m. It follows
that either N1 � A6 and N2 � A8 or N1 � A8 and N2 � A6. If G∩Ni = 1 for i = 1 or 2,
then |Ni| is a divisor of 48, which is a contradiction. Thus G ∩ Ni �= 1, implying |T |||Ni|.
It follows that T ∼= A5 because T �∼= Ni for i = 1 or 2. Furthermore, either N1 ∼= A6 or
N2 ∼= A6. However, 48 = |Ω1| = |N1| |N2|/|N ∩G| = |N1| |N2|/|A5|t, which is impossible.

Thus, X has a minimal normal subgroup isomorphic to a direct product of copies of T ,
say L = T p (p � 1). Let L ∩ G = T q. Then |L|/|G ∩ L| = |T |p−q. Since GL � X = GXu,
|L|/|G ∩ L| is a divisor of 48. It follows that p = q: that is, L ∩ G = L. Thus L � G: that
is, X contains a non-trivial normal subgroup L contained in G. �

Proof of Theorem 1.1. Recall that T is a non-abelian simple group and that G = T �

with � � 1. Assume that every connected T -vertex-transitive cubic symmetric graph
is T -normal. Let Γ be a connected G-vertex-transitive cubic symmetric graph and let
A = Aut(Γ ). We aim to prove that G � A.

If � = 1, then the theorem is true by hypothesis. Assume that � � 2. To prove the
theorem, we apply induction on �. Note that Γ is not bipartite because it is G-vertex-
transitive and G has no subgroup of index 2.

Set R = rad(A). By Lemma 3.1, RG = R × G. Consider the quotient graph ΓR of Γ

corresponding to the orbits of R. Let u ∈ V (Γ ). If R is transitive on V (Γ ), then A = RAu.
It follows that |RG| is a divisor of |RAu|, implying that |G| is a divisor of 48, which is a
contradiction. If R has two orbits on V (Γ ), then Γ is bipartite, which is a contradiction.
Thus, R has more than two orbits and, by Proposition 2.4, ΓR is a connected cubic
symmetric graph, which is A/R-arc-transitive and GR/R-vertex-transitive. Note that
GR/R ∼= G = T �. It is easy to see that every minimal normal subgroup of A/R is
non-abelian.

Assume that A/R is quasiprimitive on V (ΓR). By Lemma 3.2, GR/R � A/R: that is,
GR � A. Since GR = G × R and R is solvable, G is characteristic in GR. It follows that
G is normal in A, as required.
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Assume that A/R is non-quasiprimitive on V (ΓR). By Lemma 3.3, A/R has a non-
trivial normal subgroup M/R contained in GR/R. Thus M � A, M � GR, R � M and
R �= M . It follows that M = M ∩RG = R(M ∩G) and M ∩G �= 1. Since GR = G×R and
M ∩G�G, we have M = R×M ∩G and M ∩G = T r for some 1 � r � �. The subgroup
M ∩ G is characteristic in M and hence M ∩ G � A. If r = �, then G = G ∩ M and
G is normal in A, as required. Suppose that r < �. Consider the quotient graph ΓG∩M

corresponding to the orbits of G∩M . If G∩M is transitive on Γ , then A = (G∩M)Au,
implying that |T | is a divisor of 48, which is a contradiction. If G ∩ M has two orbits,
then Γ is bipartite, which is a contradiction. Thus, G ∩ M has more than two orbits
and, by Proposition 2.4, ΓG∩M is a connected cubic symmetric graph with G/M ∩ G as
a vertex-transitive group and A/M ∩ G as an arc-transitive group on ΓG∩M . Note that
G/M ∩ G ∼= T �−r with 1 � � − r < �. By inductive hypothesis, G/M ∩ G � Aut(ΓG∩M ).
Thus G/M ∩ G � A/M ∩ G: that is, G � A. This completes the proof. �
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