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1. Summary and introduction. A partially balanced incomplete block 
(PBIB) design with m-associate classes is defined by Bose and Shimamoto 
(4) as follows: 

(i) The experimental material is divided into b blocks of k units each, 
different treatments being applied to the units in the same block. 

(ii) There are v treatments each of which occurs in r blocks. 
(iii) There can be established a relation of association between any two 

treatments satisfying the following requirements: 
(a) Two treatments are either 1st, 2nd, . . . , or mth associates. 
(b) Each treatment has exactly ni ith associates. 
(c) Given any two treatments which are ith associates, the number of the 

jth associates of the first and the &th associates of the second is p* jk and is 
independent of the pair of treatments with which we start. Also, pi

jk = pi
kj. 

(iv) Two treatments which are ith associates occur together in exactly \ t 

blocks. 
(v) The design is connected, i.e. given any two treatments tt and tj there 

exists a sequence of treatments ti0 = tu tily . . . , tin = tj and a sequence of 
blocks bi01 bily . . . , bin_x such that bip contains the treatments tip and tip+l, 
p = 0, 1, . . . , n - 1. 

PB IB designs were introduced for the first time in experimental designs 
by Bose and Nair (2). Nair (10) gave a necessary condition for the existence 
of PB IB designs with b < v based on the vanishing of a certain determinant. 
In this paper we obtain necessary conditions for the existence of certain PB IB 
designs with b < v based on the characteristic roots and vectors of NNr 

where N = (tiij) is the v X b incidence matrix defined by n^ = 1 or 0 accord
ing as the ith treatment occurs in the j th block or not. 

2. Notations and preliminaries. Throughout this paper In stands for 
an identity matrix of order n, Em n stands for the m X n matrix with all 
elements equal to unity, Om,n stands for the m X n null matrix, and diag(^4i, 
^42, . • • , Am) stands for the diagonal matrix with the elements or matrices 
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Ai, A2l . . . , Am in the diagonal positions. Let A and B be two rational, sym
metric, and non-singular matrices of the same order n such that A = CBC', 
where C is a rational non-singular matrix and C is its transpose. Then A and 
i? are said to be rationally congruent. The rational congruence relation between 
A and B is denoted, symbolically, by 

(2.1) A~B. 

Let Dr be the leading principal minor determinant of order r and suppose 
that DT 9e 0 for all r. Define Do = 1. Then the Hasse-Minkowski invariant 
of A is given by 

n-l 

(2.2) Cp(i4) = ( - 1 , - 1 ) , I I (DM, -Dt)p, 

for each prime />, where (a, ô)p, denotes the extended Hilbert norm residue 
symbol defined by 

(2.3) (a, b)v 
1, if ax2 + by2 = 1 has a £-adic solution; 
— 1, otherwise. 

The following theorem is well known (cf. Jones 8). 

THEOREM 2.1. The necessary and sufficient conditions for two positive definite, 
rational and symmetric matrices A and B of the same order to be rationally 
congruent are that the square-free parts of their determinants are the same and 
that their Hasse-Minkowski invariants are equal for all primes p including p^. 

We now state, without proofs, certain lemmas regarding the Hasse-Minkow
ski invariant. They are taken from Bose and Connor (1) and Ogawa (11). 

LEMMA 2.1. / / A\, A2,. . . , Am are rational, non-singular, and symmetric 
matrices, and if 

(2.4) A = d iag(4 i ,4 2 , . . . ,Am), 

then 

(2.5) CM) = (-1, -Dr 1 ! n cMi)]\ n CM<I. I^D,} . 

As a particular case of the above lemma, we have the following lemma. 

LEMMA 2.2. The Hasse-Minkowski invariant of 

(2.6) A = ImXB 

is 

(2.7) CP(A) = ( - 1 . - I ) ? " 1 {CP(B)}m ( |5 | , - l ) ? ( m " 1 ) / 2 , 

where B is a rational, non-singular and symmetric matrix, and X denotes the 
Kronecker product of matrices. 
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LEMMA 2.3. For an m y, m diagonal matrix Am, with each diagonal element dr 

V (2.8) Cp(Am) = ( - 1 , - 1 ) , ( - l . r f ) : 

LEMMA 2.4. If p is a non-zero rational and A is a rational, non-singular and 
symmetric matrix of order m, then 

(2.9) C,(pA) = ( - 1 , p ) f + 1 ) ' 2 (p, lADr1 CV{A)-

LEMMA 2.5. If 

(2.10) A = eIm+fEm,m, 

where e and f are non-zero rationals, then 

(2.11) C,(A) = ( - 1 , - 1 ) , ( - 1 , e)fm-1)l2 ( - 1 , g), (m, g), (m, e), (g, é)T\ 

where 

(2.12) g = e + mf 

LEMMA 2.6. If the m — 1 rational column vectors a2, a3, . . . , am of dimension 
m are linearly independent and are orthogonal to Em>i, then the gramian of the 
set} that is, 

(2.13) f / = ( a ? | ( a 2 a 3 . . . a m ) , 

satisfies 

(2.14) CP(U) = ( - 1 , - I V 

LEMMA 2.7. So long as we restrict ourselves to rational vectors, the p-invariant 
of the gramian of the set is uniquely determined by the linear subspace generated 
by the set. 

We quote for completeness the properties of the Hilbert symbol and some 
of the useful properties of the Legendre symbol (a/p), where p is a prime 
(cf. Jones 8, Pall 12, Ogawa 11). 

LEMMA 2.8. If m and mf are integers not divisible by the odd prime p, then 

(2.15) (m,tn')p = + 1 , 

(2.16) (m,p)p = (m/p). 

Moreover, if m = m! ^ 0 (mod p), 

(2.17) (m,p)p = {m',p)v. 

LEMMA 2.9. For arbitrary non-zero integers m, m!, n, nf, and s and for every 
prime p, 
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(2.18) (m, —m)p = + 1, 
(2.19) (m, n)p = (n, m)p, 

(2.20) (m, nn')p = (m, n)p (m, n')Pi 

(2.21) (mmf, m — m')v = (m, —m')p, 

(2.22) 
m 

n o\i+i),= 
3=1 

((m+l)\, -1) : 

and 

(2.23) (as2, b)p = (a, b)p. 

LEMMA 2.10. For the Legendre symbol, we have 

(2.24) (a/p) = (bip), if a^b (modp), 

(2.25) (ab/p) = (a/p)(b/p), 

(2.26) (p/q)(q/p) = (-l)*c*-i) •*<«-!> 

(2.27) (-UP) = ( - l ) ( p~ 1 ) / 2 , 

(2.28) (2/p) = ( - 1 ) ( ^ 2 - D / 8 , 

w/zere £ and q denote odd primes. 

If the square-free parts of two rational numbers a and b are equal, we 
denote this fact by 

(2.29) a~b. 

3. Main results. Let M be a semi-positive definite rational and symmetric 
matrix of order z;. If the rank of M is v — a, then exactly a of the charac
teristic roots of M are zero. Let the remaining roots be p0, pi, . . . , ps with 
multiplicities a0, ah . . . , as respectively. Let X = (xh x2, . . . , xa) be a v X a 
matrix, whose columns represent a set of mutually orthogonal rational vectors 
corresponding to the zero root of M. Let 

(3.1) x / x , = Ct. 

Then it is easy to see that M + XX1 is also a rational symmetric matrix 
with 

(3.2) \M + XX'\ = ( Et P ? ) ( ft C,) • 

If further M is irreducible and generalized stochastic, then one of the non
zero roots, say po, is of multiplicity a0 = 1. Suppose further that the remain
ing roots pi, p2, . . . , ps are also rational, then we have the spectral representa
tion 
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(3.3) i l f = É p * 4 « . 
1=0 

where the matrices At are rational, symmetric, and idempotent and further 

(3.4) AtAj = 09t9, i*j = 0, 1, ...,s. 

In particular Ao = EVtV/v. We also note that each At generates the vector 
space corresponding to p*. Put 

(3.5) Y = X diag(Cf », C8-*, . . . , Ca-*), 

and 

(3.6) L = M + YY'. 

Obviously YY' is again rational, symmetric, and idempotent, and 

LA i = ptAi, 
(3.7) 

LYY' = YY'. 

Hence At and YY' generate vector spaces corresponding to the root pt and 
1 of L, and 

(3.8) \L\ = n Pi-
i=0 

Following the method used by Ogawa (11), we have 

(3.9) L ~ diag(p0^, piQh . . . , psQs, Q), 

where Qt and Q are the gramians of the complete set of rational vectors 
corresponding to the roots pi and zero respectively. Hence 

(3.10) \L\~pov\Q\ F I {P7\Qi\}. 

Equating the two values of \L\, we have 

(3-11) \Q\{ I l \Qt 

Further, since 

(3.12) d iag(Q 1 > Q 2 > . . . t Q, f Q) 

is the gramian of v — 1 independent rational vectors all orthogonal to Evh 

making use of Lemmas 2.1 and 2.6, we have 

(3.13) { ^ ( l & U Q y l t y l n ( l & l ' i e i ) » } { n Cp{Qt))cp{Q) 

= ( - 1 , - i ) ; + 1 . 
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From (3.9), (3.11), (3.13), and the lemmas of Section 2, we obtain 

(3.14) CV{L) = Lv, -v I I p?) { i l (PV, 101),} 
\ i=l / p i z = l / 

x{ n (P7,P7)M n WMftlJ 

x i r i (P?-,i^iJ{n (-i,P,)r<a<+l)/2} 

x{n (PolW1}*-!,-!),. 
For 5 = 1, we have 

(3.15) C,(L) = (p„, -rp?1),, (v, P l ) , (Plf IQI), ( - 1 , P l ) ; , < B 1 + 1 ) / , ( - l , - 1 ) , . 

We can state the above results as the following theorem. 

THEOREM 3.1. Let M be an irreducible and generalized stochastic, semi-positive 
definite rational symmetric matrix of order v and rank v — a, with all its charac
teristic roots rational. Let L be defined as in (3.6). Then the determinant and the 
Ha s se-Minkowski invariant of L are given by the expressions (3.8) and (3.14) 
respectively. 

We now apply the above results to PB IB designs. Let N of order v X b 
and rank b be the incidence matrix of a PB IB design with 5 + 1 associate 
classes, where b = v — a, and let M = NN'. Then p0 = rk is a root of multi
plicity 1, and zero is a root of M of multiplicity a. Let the remaining 5 positive 
roots pi, p2, . . . , ps be distinct and rational with respective multiplicities 
au a2j . . . , as. We shall call 0, pi, . . . , ps roots of the PBIB design and they 
can be found by the method of Connor and Clatworthy (6 or 3). 

Let X, F, and L be as defined earlier. Then 

L = M + YY' 

= (TV|X)diag(/,_«, Cr\ . . • , Ca-i)(N\X)'. 

Hence 

(3.16) L ~ diag(/,_«, Ch . . . , C«) ~ diag(/„_*, Q), 

and 

(3.17) | L | ~ C i C i . . . C . ~ | 0 | . 

Equating the value of \L\ in (3.8) and (3.17) we get 

(3.i8) i e i i n p 7 r ~ i . 
i=0 

which is a necessary condition for the existence of a PBIB design. 
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From Lemma 2.1, for any odd prime p, we have 

(3.19) CP(L) = Cp{dizg(I,-a, Q)} = CP(Q), 

or 

(3.20) CP(L)CP(Q) = 1, 

where CP(L) is given by (3.14). Thus (3.20) is another necessary condition 
for the existence of a PBIB design. These two necessary conditions for the 
existence of PBIB designs can be stated in the following theorem. 

THEOREM 3.2. Let a PBIB design with s + 1 associate classes and b = v — a 
have distinct positive rational roots p0 = rk, pi, . . . , ps with multiplicities « 0 = 1 , 
«i, . . . , as, and zero as a root with multiplicity a. Then necessary conditions for 
the existence of the designs are 

(o {rtp?}iQi~i 
and further if (i) is satisfied, then 

(a) (po, -v), (v, n p"*>{ n (-i. p^i("-+3)/2}(-i, - i ) , 

x{ n (P7,P7)M n (P°«M&I),}{ n (P"MQ«D,} 

x { n (j>i, \Qi\rrl}cP(Q) = i. 
As a corollary of the above, we have the following corollary. 

COROLLARY 3.2.1. Let a PBIB design with two associate classes and 
b = v — a have roots p0 = rk necessarily of multiplicity 1, and zero as a root 
of multiplicity a, the remaining root being a positive rational number pi of multi
plicity b — 1. Then necessary conditions for the existence of the design are 

(i) P O P ? | < 2 | ~ 1 , 

and if (i) is satisfied, then 

(ii) ( - 1 , - i) , (po, -vpV+%(v, Pl)p(-i, pi)°1(al+3)/2c;(<2) = i. 
It follows from (9) that any PBIB design with two associate classes of 

the above corollary is a linked block design and hence its dual (9) is a 
balanced incomplete block design. 

We apply the results of this section to group divisible, triangular, and Lt 

designs in the next three sections. In what follows, we omit the subcript p 
in the Hilbert norm residue symbol and we calculate the Cp invariants for 
odd primes only. 
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4. Application of the main results to group divisible designs. A 
group divisible (GD) design has v = mn treatments which are divided into 
m groups of n treatments each, such that any two treatments in the same 
group are first associates and any two treatments in different groups are 
second associates. It is known (4) that p0 = rk, di = rk — v\2, and 62 = r — X2 

are the distinct characteristic roots of NN' with multiplicities ao = 1, 
/?i = m — 1, and fa = m(n — 1) respectively. If P i and P 2 are the gramians 
corresponding to the rational characteristic roots 0i and 62 respectively, we 
can show by a method similar to Corsten (7) that 

(4.1) diagO, Pi) ~nlm. 

From (3.11), (3.13), and (4.1), we have 

(4.2) |P i |~zw m , 

(4.3) | P 2 | ~ » W , 

(4.4) CV{P,) = ( z ; ,<K- l , ^ ) m ( m + 1 ) / 2 , 

(4.5) CP(P2) = (», -l)«(»+«/*. 

Now, we consider the case 6\ = 0 and 62 9
e 0. These designs are known as 

semi-regular GD designs (1). To meet the requirements of Section, 3, we 
consider the case b = v — m + 1 only. From Corollary 3.2.1, necessary con
ditions for the existence of this class of semi-regular GD designs are that 

(4.6) \2n
m(r - X^-» 

should be a perfect square and, further, if (4.6) is satisfied, then 

(4.7) (po, -vB{2+1){v, 0 2 ) ( - l , 02)*<*+8)/2 (», * m ) ( - l , n)
m(m+1)/2 = 1. 

We now distinguish three cases: (i) m even, (ii) m odd and n even; and 
(iii) m and n both odd. 

In case (i), (4.6) and (4.7) imply that X2 must be a perfect square and if 
this condition is satisfied, then a further necessary condition is that 

( - i ,0 2 )^ 2 + i ) / 2 ( - i ,«r ( m + 1 , / 2 = i. 

Similarly, a necessary condition in case (ii) is that \2nd2 be a perfect square 
and further 

(^hd2f
2i"2+1)/\-hn)(-l1n)mim+1)/2 = 1. 

Finally, in case (iii) a necessary condition is that \2n be a perfect square 
and further 

( - 1 , 62f
2/2(n, 0 2 ) ( - l , n)hm(m+1)+1 = 1. 

From these considerations we deduce the following theorem. 
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THEOREM 4.1. Necessary conditions for the existence of a semi-regular GD 
design with b = v — m + 1 are: 

(i) if m is even, then X2 must be a perfect square and further 
(a) if m = 2 (mod 4) and n is odd, then the square-free part of n con

tains only primes = 1 (mod 4), 
(b) if m = 2 (mod 4) and n is even, then the square-free part of nd2 

contains only primes = 1 (mod 4); 
(ii) if m is odd and n is even, then \2nd2 must be a perfect square and further 

(a) if m = 1 (mod 4) and n = 2 (mod 4), then the square-free part of 
02 contains only primes = 1 (mod 4), 

(b) if m = 3 (mod 4) and n = 2 (mod 4), then the square-free part of 
n contains only primes = 1 (mod 4), 

(c) if m = 3 (mod 4) and n = 0(mod 4), then the square-free part of 
nd2 contains only primes = 1 (mod 4) ; 

(iii) if m and n are both odd, then \2n must be a perfect square, and further 
(a) if m = n = 1 (mod 4), then {n, 62) = 1, 
(b) if m = 1 (mod 4) and n = 3 (mod 4), then ( — n,d2) = 1, 
(c) if m = 3 (mod 4) and n = 1 (mod 4), ^ n (w, — d2) = 1, 
(d) if m = n = S (mod 4), Jiew (w, 62){nB2, — 1) = 1. 

We easily see that Theorem 3 of Saraf (14) is contained in the above 
theorem. 

It can easily be seen that the dual of the affine resolvable BIB design D 
(17), with parameters 

(4.8) v = nk = n2{{n - 1)/ + 1}, b = nr = n(n2t + n + 1), X = nt + 1 

is a semi-regular GD design, D*y with parameters 

v — n(n2t + n + 1), m = nH + n + 1, w, 
(4.9) 6 = w2{(n - 1)J + 1}, r = n{{n - l)t + 1}, 

k = n2t + n + 1, Xi = 0, X2 = (n - l)t + 1, 

satisfying the conditions of Theorem 4.1, and conversely the dual of the 
semi-regular GD design with parameters (4.9) is an affine resolvable BIB 
design with parameters (4.8) (cf. 9). It is easy to verify that the above theorem 
rules out D* exactly for those values of n and t for which D is ruled out by 
the results in (17). 

We now consider GD designs where 62 = 0. Designs of this type are known 
as singular GD designs (1). To meet the requirements of Section 3, let b = m. 
The parameters of this class of singular GD designs are 

(4.10) v = mn, b = m, r, k = nr, Xi = r, X2. 

There is a one-to-one correspondence between the above GD designs and 
the symmetrical BIB design 

(4.11) z/* = m = b*, r* = r = k*, X* = X. 
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I t can again be shown tha t the results of Corollary 3.2.1 imply the non
existence of singular G D designs with the parameters (4.1) precisely in those 
cases where the impossibility of the corresponding symmetrical B IB design 
was proved in (15). 

Now let us consider necessary conditions for the existence of certain general
ized G D designs. For the definition and characterization of G D ra-associate 
designs, we refer to (13). I t was proved tha t the distinct characteristic roots 
of NNf for G D m-associate designs are 

(4.12) po = rk, Bi = ( r - X m _ i + i ) + (Xi-Xm-z+i)^iH \-(Ki-t — ^m-i+i)nm-t 

with multiplicities 1, iViA"2 . . . Ni-i(Ni — 1) respectively {i — 1, 2, . . . , m). 
If Pt is the gramian corresponding to the root 6t of NN', it can be proved 
by Corsten 's method tha t 

(4.13) 

diag(z>, P , ) ~ iV2A
T

3. . . NnIm, 
diag(z>, Ph P2) ~ A 3 A 4 . . . NmINlN21 

[diag(i>, Ph P 2 , . . . , Pm-i) ~ NmINlN2 

For 6m, 0m-i, . . . , 02-regular G D m-associate designs, application of the first 
par t of Theorem 3.2 gives the following result. 

T H E O R E M 4.2. A necessary condition for the existence of 0m, 0m_i, . . . , 02-
regular G D m-associate designs where b = v — Ni + 1 is that 

(4.14) (N2N3. . . i V J ^ X ^ 1 M 0 f "2 W 3~1 ) • • • CNi-Nm-lWm~l) 

be a perfect square. 

The second par t of Theorem 3.2 can also be applied to this class of designs 
and further necessary conditions can be obtained; bu t this involves tedious 
calculations without presenting any mathemat ical difficulty. We shall not 
discuss these conditions. 

5. Appl i ca t ion of t h e m a i n re su l t s t o tr iangular des igns . A tri
angular design has v = n(n — l ) / 2 t rea tments and the association scheme 
is a square a r ray of side n with the following properties: 

(a) T h e positions in the principal diagonal are blank. 
(b) The n(n — l ) / 2 positions above the principal diagonal are filled by the 

numbers 1, 2, . . . , n(n — l ) / 2 corresponding to the t rea tments . 
(c) The ar ray is symmetrical about the principal diagonal. 
(d) For any t rea tment 0, the t rea tments lying in the same row and column 

as <j> are its first associates while all the other t rea tments are its second associ
ates. 

I t is known (6) tha t for tr iangular designs the distinct characteristic roots 
of NNf are p0 = rk, 0j = r + (n - 4)Xi - (n - 3)X2, and 02 = r - 2Xi + X2, 
with multiplicities a0 = 1, f3i = n — 1, and 02 = n(n — 3 ) /2 respectively. If 
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P i and P 2 are the gramians corresponding to the roots B\ and 62 of NN', it 
is shown by Corsten (7) that 

(5.1) diag(*;, PO ~ (» - 2)In + Enn. 

From (3.11), (3.13), and (5.1), we have 

(5.2) | P i | ~ n ( » ~ 2)n~\ 

(5.3) | P 2 | ~ 2(» - 1)(» - 2)*"1, 

(5.4) Cp(Pi) = ( - 1 , » - 2 ) ^ - 1 > / 2 ( - l , n - l)w(2, n(n - 2)n~l) 
X (w, - l ) ( w , w - 2)(-l,z;)(z/, »(w - 2)»-1), 

and 

(5.5) C,(P2) = (n(n - 2)n~\ 2(» - 1)(» - 2)«-i)C„(Pi). 

Now let 6i = 0 and 6 = (w — l)(n — 2)/2. From Corollary 3.2.1, necessary 
conditions for the existence of this class of designs are that 

(5.6) po02("~8)/V» - 2)"-1 

should be a perfect square and, further, if (5.6) is satisfied, then 

(5.7) ( P O , - ^ 2 + 1 ) ( ^ ^ ) ( - 1 , ^ ) ' 2 ( ' 2 + 3 ) / 2 

X ( - 1 , n - 2 f ( r a - 1 ) / 2 ( - l , n - l ) n ( - l , n)(n - 2, «) 

X(-l,z;)(2z;,po^2) = 1. 

We distinguish several cases for n and, after easy calculations, we have the 
following theorem. 

THEOREM 5.1. Necessary conditions for the existence of triangular designs 
with di = 0 and b = (n — l)(n — 2)/2 are 

(i) if n = 0 (mod 4), then pon(n — 2) must be a perfect square and further 

(po, -2n02)(v, -02) = 1 if n = 0 (mod 8), 
and 

(02, - l ) ( p 0 , ~2nd2)(vJ -d2) = 1 if ?z = 4 (mod 8); 

(ii) if n = 1 (mod 4), //zerc po02n must be a perfect square and further 

(2, n - 2) = 1 if n = 1 (mod 8) 

(<92, - 1 ) ( 2 , n - 2) = 1 if n = 5 (mod 8); 

(iii) ifn = 2 (mod 4), then po92n(n — 2) raws£ ôe a perfect square and further 

(p0<92, 2) (n, » - 2) (*, - 1 ) = 1 i / » = 2 (mod 8) 

and 

(02, - 1 ) (po02, 2) (w, n - 2) (v, - 1 ) = 1 if » = 6 (mod 8) ; 
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(iv) if n = 3 (mod 4), then pon must be a perfect square and further 

(po, - 2 ( » - 2)) (02, 2 0 - 1))(» - 2, - 1 ) = 1 if n = 3 (mod 8) 

and 

(02, - 1 ) ( P O , - 2 ( » - 2))(02, 2(» - 1))(» - 2, - 1 ) = 1 if n = 7 (mod 8). 

Let us consider the symmetrical BIB design D with parameters 

(5.8) v* = i* = 1 + n(n - l ) /2 , r* = jfe* = », X* = 2. 

By removing a block and all the treatments contained in it from the above 
design, we get the BIB design D\ with parameters 

(5.9) v' = (n - l)(n - 2)/2, V = n(n - l ) /2 , r' = n, kf = n - 2, X' = 2. 

The dual of Di is a PB IB design Di* with parameters 

(5.10) v = n{n- l ) /2 , b = (w - 1)(» - 2)/2, r = n - 2, k = n, 
Xi = 1, X2 = 2, 

which has a triangular association scheme when n 9e S (cf. Shrikhande 18). 
Further, P i* satisfies the requirements of Theorem 5.1. It can easily be 
verified that D and Pi* have the same necessary conditions of existence, 
which tallies with the fact that there is a one-to-one correspondence between 
D and Di* (9, 16, 18). 

We now consider triangular designs with 62 = 0 and b = n. From Corollary 
3.2.1, necessary conditions for the existence of this class of designs are that 

(5.11) 2P,e{\n- l)(n-2)n-1 

should be a perfect square and further 

( p o , - ^ 1 + l ) ( ^ 0 i ) ( - l , 0 / l ( ^ 3 ) / 2 

X ( - 1 , n - 2)w ( w-1 ) / 2(-l , n - l ) n ( - l , n){n - 2, n) 

X(-hv)(2v,n(n - 2)n~1){n{n - 2)n'\ p,d{1) = 1. 

From this result the following theorem can easily be deduced. 

THEOREM 5.2. Necessary conditions for the existence of triangular designs 
with 02 = 0 and b = n are 

(i) if n is even, then 2p06i(n — l)(n — 2) must be a perfect square and fur
ther 

(po0i, -n(n - 2)) = 1 if n = 0 (mod 4) 
and 

(p00h -n(n - 2 ) ) ( - l , 0 i (w - 2)) = 1 i / rc = 2 (mod4) ; 

(ii) i /w is odd, then 2p0(n — 1) must be a perfect square and further 

(2, n - 2) (pofli, if) (po, -0 i ) = 1 # n=l (mod 4) 
and 

(2, n - 2)(po0i, »)(p0, - 0 i ) ( - l , 0i(» - 2)) = 1 if » = 3 (mod 4). 
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6. Application of the main results to Lt designs. An Lt design has 
v = s2 treatments. The treatments are arranged in a square L and i — 2 
mutually orthogonal latin squares are superimposed on L. For each treatment 
0 in L, treatments occurring in the same row or column of L as 0 or treat
ments corresponding to the same letters of the superimposed orthogonal latin 
squares are first associates and others are second associates. It is known that 
the distinct characteristic roots for Lt designs are po = rk, 

0i = r + (s - i)Xi - 0 + 1 - i)\2, 

and 02 = r — i\i + (i — 1)X2 with respective multiplicities a0 = 1, 
Pi = i(s — 1), and /32 = (s + 1 — i)(s — 1). If P\ and P 2 are the gramians 
corresponding to the roots 0i and 02 of NN', it has been proved by Shrikhande 
and Jain (19) that 

<« [L ?:*]-

From (3.11), (3.13), and (6.1), we have 

(6.2) | P i | ~ sis
f 

(6.3) | P 2 | ~ s ' s , 

(6.4) Cp(Pi) = (s, -l)«•(•+«)/2, 

and 

(6.5) CP(P2) = (s, -1)* ' (»+*+-2) /2B 

Now let 0i = 0 and Z> = 5(5 — i) + i. From Corollary 3.2.1, necessary con
dit ions for the existence of this class of designs are t h a t 

(6.6) PO0ÎV* 

should be a perfect square and further 

(6.7) (po, - # + 1 ) ( - l , 02)S2t f2+3) /2(s, - l ) * s ( s + » ' 2 = 1. 

T h u s we have the following theorem. 

T H E O R E M 6.1. Necessary conditions for the existence of L< designs with 
0i = 0 and b = s(s — i) + i are: 

(i) if s is even and i is odd, then po must be a perfect square and further 

( - i , 0 2 ) * 2 ( * 2 + 3 ) / 2 ( - i , s ) ' s / 2 = l ; 

s2 5E1>s_i sElt8-i . . . sElt8-i 

sEs—1,1 Sls-l Es—l,s—l • • • Es-itS-l 

sEs—1,1 -E*—1,*—1 sls—i ' • • -Es—i,s-i 

s-Es-1,1 £ s_i> s_i Es-i>s- sls-i 
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(ii) if s and i are both even, then pod2 must be a perfect square and further 
( — 1 , ^ 2 ) ^ 2 ( / 3 2 + 1 ) / 2 = 1 ; 

(iii) if s is odd and i is even, then po must be a perfect square and further 
(-l,s)is<2 = 1; 

(iv) if s and i are both odd, then pos must be a perfect square and further 

(s, d2)(-i, e2y
2^*)/2(-i1 sys+i+v/2 = i. 

We now consider Lt designs where 62 = 0 and b = v — fi2 = i(s — 1) + 1-
From Corollary 3.2.1, necessary conditions for the existence of this class of 
designs are that 

(6.8) po0?y 

should be a perfect square and further 

(6.9) (po, - 0 ? 1 + 1 ) ( - 1 , d ^ ^ ' ^ i - l , s)isls+i+2)>2 = 1. 

Thus we have the following theorem. 

THEOREM 6.2. Necessary conditions for the existence of the Lt designs with 
02 = 0 and b = i(s — 1) + 1 are: 

(i) if i is even, then po must be a perfect square and further 

( - l , 0 i ) ^ 1 + 3 > / 2 ( - l , s)is2/2 = 1; 

(ii) if i is odd and s is even, then po#i must be a perfect square and further 
(-ly dlyiUi+i)/2(_it sy/2 = 1 ; 

(iii) if i and s are both odd, then pos must be a perfect square and further 
(s, 6> 1 ) ( - l ,0 1 )^^+ 3 ) / 2 ( - l , ^ ) ( s + i ) / 2 = 1. 

We conclude this section by giving an alternative proof of Bruck and 
Ryser's theorem (5) on the non-existence of projective planes. We know that 
if PG(2, s) exists, then the orthogonal array (s2, s + l, s, 2) exists. Let P be 
the gramian of the rational vectors orthogonal to ES2,\ corresponding to i 
constraints. Then 

(6.11) |Pi| = sis, 

(6.12) C^Pi) = ( - 1 , *)"<*+-.)/2. 

Similarly changing i into s + 1 — i (i.e. considering rational vectors ortho
gonal to ES2ti corresponding to s -\- 1 — i other constraints), we get 

(6.13) \P2\ = s w - ' ) * , 

(6.14) CP(P2) = (-i>5)»c+i-*)(2.+i-i)/2B 

It follows from (19) that the vectors corresponding to Pi and P2 are ortho
gonal to one another and to ES2ti. Hence we have 

(6.15) s2 |P j | \P2\ - 1, 

(6.16) (|P,|, \P2\)Cp(Pi)Cp(P2) = 1. 

https://doi.org/10.4153/CJM-1963-068-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1963-068-8


700 S. S. SHRIKHANDE, D. RAGHAVARAO, AND S. K. THARTHARE 

We can easily verify that (6.15) is always satisfied and (6.16) reduces to 

(6 .17) ( — 1 syi2i+i(s+i)+(8+l-i)(28+l-i)}/2 = I 

The index of ( —1, s) in equation (6.17) will be odd if and only if s = 1 or 
2 (mod 4). Hence if s = 1 or 2 (mod 4) and the square-free part of 5 contains 
a prime congruent to 3 (mod 4), then the left-hand side of (6.17) has the 
value — 1 , which is a contradiction. 

7. Examples of non-existent designs and concluding remarks. We 
give below the parameters of non-existing PB IB designs in the form of three 
tables. 

TABLE I 

PARAMETERS OF NON-EXISTENT SEMI-REGULAR GD DESIGNS 

Sr. No. V m n b r k Xi x2 Remarks 

1 462 22 21 441 105 110 21 25 Th. 4.1, i(a) 
2 506 23 22 484 154 161 44 49 Th. 4.1, ii 
3 1190 35 34 1156 408 420 136 144 Th. 4.1, ii 
4 3306 58 57 3249 456 464 57 64 Th. 4.1, i(a) 

TABLE II 

PARAMETERS OF NON-EXISTENT TRIANGULAR DESIGNS 

Sr. No. V n b r k Xi x2 Remarks 

1 91 14 14 6 39 4 2 Th. 5.2, i 
2 105 15 91 39 45 15 17 Th. 5.1, iv 
3 153 18 136 40 45 10 12 Th. 5.1, iii 
4 253 23 231 105 115 45 48 Th. 5.1, iv 
5 325 26 26 8 100 5 2 Th. 5.2, i 
6 703 38 666 126 133 21 24 Th. 5.1, iii 
7 990 45 946 301 315 91 96 Th. 5.1, ii 

TABLE III 

PARAMETERS OF NON-EXISTENT Li DESIGNS 

Sr. No. V 5 i b r k Xi x2 Remarks 

1 36 6 6 6 1 6 0 1 Th. 6.1, ii 
2 196 14 14 14 1 14 0 1 Th. 6.1, ii 
3 441 21 21 21 1 21 0 1 Th. 6.1, iv 

Adjoining some rows or columns to N, to make N a square and non-singular 
matrix, and studying the combinatorial properties of the designs is not a new 
technique. However, adjoining N with the characteristic vectors corresponding 
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to the zero root of NN' provides a simple method of deriving necessary con
ditions for the existence of a particular class of designs. The methods developed 
in this paper, the authors feel, may be utilized in deriving necessary conditions 
for the existence of various designs. For example, the methods of this paper 
may conveniently be used in deriving necessary conditions for the existence 
of a class of PB IB designs with rectangular type of association scheme defined 
by Vartak (20). 
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