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Abstract

We define két abelian schemes, két 1-motives and két log 1-motives and formulate duality theory for these objects.

Then we show that tamely ramified strict 1-motives over a discrete valuation field can be extended uniquely to két

log 1-motives over the corresponding discrete valuation ring. As an application, we present a proof to a result of

Kato stated in [12, §4.3] without proof. To a tamely ramified strict 1-motive over a discrete valuation field, we

associate a monodromy pairing and compare it with Raynaud’s geometric monodromy.

Notation and conventions

Let ( be an fs log scheme. We denote by (fs/() the category of fs log schemes over ( and denote

by (fs/()ét (respectively (fs/()két, respectively (fs/()fl, respectively (fs/()kfl) the classical étale site

(respectively Kummer étale site, respectively classical flat site, respectively Kummer flat site) on (fs/().

In order to shorten formulas, we will mostly abbreviate (fs/()ét (respectively (fs/()két, respectively

(fs/()fl, respectively (fs/()kfl) as (ét (respectively (két, respectively (fl, respectively (kfl). We refer to

[7, §2.5] for the definitions of the classical étale site and the Kummer étale site, and [11, Def. 2.3] and

[15, §2.1] for that of the Kummer flat site. The definition of the classical flat site is an obvious analogue

of that of the classical étale site. Then we have two natural ‘forgetful’ maps of sites:

Yét : (fs/()két → (fs/()ét (0.1)

and

Yfl : (fs/()kfl → (fs/()fl. (0.2)

Kato’s multiplicative group (or the log multiplicative group) Gm,log is the sheaf on (ét defined by

Gm,log (*) = Γ(*, "
gp

*
) for any* ∈ (fs/(), where "* denotes the log structure of* and "

gp

*
denotes

the group envelope of "* . The Kummer étale sheaf Gm,log is also a sheaf on (kfl; see [15, Cor. 2.22]

for a proof.

By convention, for any sheaf of abelian groups � on (kfl and a subgroup sheaf � of � on (kfl, we

denote by (�/�)(ét
(respectively (�/�)(fl

, respectively (�/�)(két
) the quotient sheaf on (ét (respectively

(fl, respectively (két), and �/� denotes the quotient sheaf on (kfl. We abbreviate the quotient sheaf

Gm,log/Gm on (kfl as Gm,log.
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1. Introduction

The notion of 1-motive is introduced by Deligne in [3]. A 1-motive over a base scheme ( is a two-term

complex

" = [.
D
−→ �]

of group schemes over ( such that

(1) . sits in degree -1 and is étale locally isomorphic to a finitely generated free abelian group (we call

such a group scheme . a lattice);

(2) � sits in degree 0 and is an extension of an abelian scheme � by a torus ) over (.

From the definition, one sees that a 1-motive over a field is a mixture of lattice, torus and abelian variety

and can be regarded as a mixed motive of weights 0, -1 and -2. The name 1-motive comes from the fact

that they are the mixed motives arising from varieties of dimension less or equal to 1. For any positive

integer =, one can associate to " a finite flat group scheme

)Z/=Z (") := �−1(" ⊗! Z/=Z).

Now let ' be a complete discrete valuation ring with fraction field  and a chosen uniformiser

c, and we endow ( = Spec ' with the canonical log structure; that is, the log structure associated to

N→ ', 1 ↦→ c.

According to [13, §4.6.1], a log 1-motive is a triple "log = (., �, D ), where . and � are as in the

definition of 1-motive and

D : . = . ×( Spec → � = � ×( Spec 

is a homomorphism of group schemes over  . Then we get a 1-motive

" := [. 
D 
−−→ � ]

over  out of "log. In [1, Thm. 19], the authors extend)Z/=Z (" ) to a log finite group object in (fin/()A
(see Definition 5.1) by using Kato’s classification theorem for objects in (fin/*)r for an fs log scheme

* with its underlying scheme the spectrum of a noetherian henselian local ring. Note that . and � 
obviously have good reduction.

In this article, a log 1-motive (see Definition 2.2) is as defined in [8, Def. 2.2] rather than in [13,

§4.6.1], which is more suitable over a general base. We are going to show that a 1-motive

" = [. 
D 
−−→ � ]

with both . and � having good reduction can be extended to a unique log 1-motive

" = [.
D
−→ � log]

over (; see Corollary 3.1. Hence, a log 1-motive in the sense of [13, §4.6.1] is a log

1-motive in our sense. Taking )Z/=Z ("), we get an object of (fin/()r with generic fibre

)Z/=Z (" ). This gives an alternative proof to [1, Thm. 19]. Moreover, we replace log 1-motives

by két log 1-motives (see Definition 2.6) and generalise the result to tamely ramified strict

1-motives over a discrete valuation field  (not necessarily complete); see Theorem 1.1. Here a 1-motive

" = [. 
D 
−−→ � ]
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is called strict if � has potentially good reduction (see [16, Def. 4.2.3]), and a 1-motive

" = [. 
D 
−−→ � ]

is called tamely ramified if. (respectively� ) has good reduction (respectively semistable reduction)

after a tamely ramified extension of  .

Theorem 1.1 (See also Theorem 3.1). Let  be a discrete valuation field with ring of integers ', and
we endow ( := Spec ' with the canonical log structure. Let

" = [. 
D 
−−→ � ]

be a tamely ramified strict 1-motive over  . Then " extends to a unique két log 1-motive " log over (.
Moreover, the association of " log to " gives rise to an equivalence

 4́C : TameSt-1-Mot → KétLog-1-Mot(

from the category of tamely ramified strict 1-motives over  to the category of két log 1-motives
over (.

Let us make some historical review concerning Theorem 1.1. Without doubt, degeneration is an

important topic in mathematics. As stated in the beginning of [8], degenerating abelian varieties cannot

preserve smoothness, properness and group structure at the same time, and the theory of log abelian

varieties makes the impossible possible1 in the world of log geometry. Let us get back to the setup

that ' is a complete discrete valuation ring with fraction field  and ( := Spec ' is endowed with

the canonical log structure. Let � be an abelian variety with semistable reduction over  . Following

the ideas from [9] and [10], we give a sketch of the construction of the log abelian variety over (

extending � . We have the Raynaud extension of � , which is an extension � of some abelian

scheme � by some torus ) over (; see [5, Exp. IX, Prop. 7.5]. Let �∨
 

be the dual abelian variety

of � . Then �∨
 

also has semistable reduction by [5, Exp. IX, Rmk. 3.5.1]. Let �∨ be the Raynaud

extension of �∨
 

, which is an extension of the dual �∨ of � by a torus )∨ by [5, Exp. IX, Prop.

7.5]. Let . be the character group of )∨. Then the extension �∨ of �∨ by )∨ corresponds to a

homomorphism

E : . → (�∨)∨ = �.

Let . := . ×( Spec and � := � ×( Spec . Then there exists a homomorphism D : . → � 
of group schemes over  lifting E := E ×( Spec , such that the rigid analytic space of � 
is the quotient of the rigid analytic space of � by . ; see [5, Exp. IX, §14.1]. So we get a

1-motive

" = [. 
D 
−−→ � ]

in which both . and � have good reduction (or a log 1-motive in the sense of [13, §4.6.1]). The

1-motive " extends to a log 1-motive

" log = [. → �]

over (. Let c be a chosen uniformiser of ', (= := Spec '/(c)=+1 endowed with the induced log structure

from (, and "
log
= := " log ×( (=. Any polarisation _ of � gives rise to a polarisation _= of "

log
= .

The polarisations _= are compatible with each other as = varies. Let �= be the log abelian variety over

1To be more precise, one can make the impossible possible up to a certain extent at least at this moment; for example, over a
complete discrete valuation field, one can only extend the abelian varieties with semistable reduction to log abelian varieties over
the corresponding discrete valuation ring endowed with the canonical log structure.
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(= associated to the polarised log 1-motive "
log
= . Then we get a polarisable c-adic formal log abelian

variety A over '; that is, an object of the category P from [10, §5.1]. Through the equivalence of

categories from [10, Thm. 6.1], we get a log abelian variety � over ( whose formal completion is A. To

sum up, we have the following associations:

� ↦→ " ↦→ " log ↦→ {"
log
= }= ↦→ A ↦→ �. (1.1)

Our Theorem 1.1 is a generalisation of the association " ↦→ " log to tamely ramified strict 1-

motives over a discrete valuation field  (not necessarily complete).

In the association chain (1.1), instead of starting with a semi-stable abelian variety over  , we can

start with a tamely ramified abelian variety over  . Then using Theorem 1.1, we can give a proof

to the following theorem (see also Theorem 5.2), which is stated in the preprint [12, §4.3] without

proof.

Theorem 1.2 (Kato). Let  be a complete discrete valuation field with ring of integers ', ? a prime
number and � a tamely ramified abelian variety over  . We endow ( := Spec ' with the canonical
log structure. Then the ?-divisible group � [?∞] of � extends to a két log ?-divisible group; that is,
an object of (?-div/()log

é
(see Definition 5.2). It extends to an object of (?-div/()log

d
(see Definition 5.2)

if any of the following two conditions is satisfied:

(1) � has semistable reduction.
(2) ? is invertible in '.

In the association chain (1.1), starting with a tamely ramified abelian variety also brings us the

question of whether one can formulate the theory of log abelian varieties in the Kummer étale topology

instead of the classical étale topology, with which one could get a complete association chain as in (1.1)

in the new case. A second natural question is whether one can go further to define log abelian varieties

in the even finer topology the Kummer flat topology.2 A third question, as suggested by the anonymous

referee, is whether one can extend a log 1-motive" over an fs log point with underlying scheme Spec 

to a log 1-motive over Spec ' endowed with the direct image log structure along Spec → Spec '. We

hope to come back to these questions in the future.

In Section 2, we define két tori, két lattices, két abelian schemes, két 1-motives and két log 1-motives

and formulate duality theory for these objects.

Section 3 is devoted to the proof of Theorem 1.1. A special case of Theorem 1.1 is the following

theorem, which gives rise to a concrete nontrivial example of két abelian scheme.

Theorem 1.3 (See also Theorem 3.2). Let  be a discrete valuation field with ring of integers ' and
� a tamely ramified abelian variety over  that has potentially good reduction. We endow ( := Spec '

with the canonical log structure. Then � extends to a unique két abelian scheme � over (.

In Section 4, to a tamely ramified strict 1-motive " as in Theorem 1.1, we associate a log-

arithmic monodromy pairing and compare it with Raynaud’s geometric monodromy for " (see

[16, §4.3]).

In Section 5, we present a proof to Theorem 1.2.

2. Két log 1-motives

2.1. Két log 1-motives

The following definitions about log 1-motives are taken from [8, §2].

2The theory of log abelian varieties in the Kummer flat topology has been expected by Kazuya Kato as Professor Chikara
Nakayama informed the author.
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Definition 2.1. Let ( be an fs log scheme, ) a torus over the underlying scheme of ( with character

group - . The log augmentation of ) , denoted by )log, is the sheaf of abelian groups

H><(ét
(-,Gm,log)

on (fs/()ét. Let � be an extension of an abelian scheme � by ) over the underlying scheme of

(. The logarithmic augmentation of �, denoted by � log, is the pushout of � along the inclusion

) ↩→ )log.

Definition 2.2. A log 1-motive over an fs log scheme ( is a two-term complex " = [.
D
−→ � log]

in the category of sheaves of abelian groups on (fs/()ét, with the degree −1 term . an étale lo-

cally constant sheaf of finitely generated free abelian groups and the degree 0 term � log as above.

We also call . the lattice part of " . A morphism of log 1-motives is just a homomorphism of

complexes.

By [19, Prop. 2.1], one can replace (fs/()ét by (fs/()két in the above definitions. In particular, )log

and � log are sheaves on (fs/()két.

Now we define két 1-motives and két log 1-motives, and we work with (fs/()két.

Definition 2.3. A két (kummer étale) lattice (respectively két torus, respectively két abelian scheme)

over an fs log scheme ( is a sheaf � of abelian groups on (fs/()két such that the pull-back of � to (′ is

a lattice (respectively torus, respectively abelian scheme) over (′ for some Kummer étale cover (′ of (.

Here by a lattice we mean a group scheme that is étale locally representable by a finite rank free abelian

group.

Definition 2.4. Let ( be an fs log scheme. A két 1-motive over ( is a two-term complex " = [.
D
−→ �]

in the category of sheaves of abelian groups on (fs/()két, such that the degree −1 term . is a két lattice

and the degree 0 term � is an extension of a két abelian scheme � by a két torus ) on (fs/()két. A

morphism of két 1-motives is just a homomorphism of complexes.

Lemma 2.1. Let ( be an fs log scheme. Then the associations

) ↦→ H><(két
(),Gm), - ↦→ H><(két

(-,Gm)

define an equivalence between the category of két tori over ( and the category of két locally constant
sheaves of finitely generated free abelian groups over (, and the equivalence restricts to the classical
equivalence between the category of classical tori over ( and the category of étale locally constant
sheaves of finitely generated free abelian groups over (. We call the két lattice H><(két

(),Gm) the
character group of the két torus ) .

Proof. This follows from the classical equivalence between the category of tori and the category of

étale locally constant sheaves of finitely generated free abelian groups. �

Definition 2.5. Given a két torus ) over (, let - := H><(két
(),Gm) be the character group of ) . The

logarithmic augmentation of ) , denoted by )log, is the sheaf of abelian groups

H><(két
(-,Gm,log)

on (fs/()két. Let� be an extension of a két abelian scheme � by) over (. The logarithmic augmentation

of �, denoted by � log, is the pushout of � along the inclusion ) ↩→ )log.

Note that the quotient (� log/�)(két
is canonically identified with the quotient ()log/))(két

, which can

be further identified with H><(két
(-, (Gm,log/Gm)(két

).

Definition 2.6. A két log 1-motive over an fs log scheme ( is a 2-term complex " = [.
D
−→ � log] of

sheaves of abelian groups on (fs/()két such that the degree -1 term . is a két lattice over ( and � is an
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extension of a két abelian scheme � by a két torus on (fs/()két. The composition

.
D
−→ � log → (� log/�)(két

= ()log/))(két
= H><(két

(-, (Gm,log/Gm)(két
)

corresponds to a pairing

. × - → (Gm,log/Gm)(két
.

We call this pairing the monodromy pairing of " . A morphism of két log 1-motives is just a

homomorphism of complexes.

Proposition 2.1. Let� be an extension of a két abelian scheme � by a két torus ) over an fs log scheme
(. Then � is Kummer étale locally an extension of an abelian scheme by a torus for the classical étale
topology.

Proof. Without loss of generality, we may assume that � (respectively )) is an abelian scheme (re-

spectively torus) over (. Let Y : (fs/()két → (fs/()ét be the forgetful map between these two sites. The

spectral sequence

�
8, 9

2
= Ext8(ét

(�, ' 9Y∗)) ⇒ Ext
8+ 9

(két
(�,))

gives rise to an exact sequence

0→ Ext1(ét
(�,)) → Ext1(két

(�,)) → Hom(ét
(�, '1Y∗)).

By this exact sequence, it suffices to show that Hom(ét
(�, '1Y∗)) = 0. We may assume that ) = Gm,

then we are reduced to show that Hom(ét
(�, '1Y∗Gm) vanishes. The proof of the vanishing is an adoption

of the proof of [8, Lem. 6.1.1] in our situation. Letting i ∈ Hom(ét
(�, '1Y∗Gm) and * any object of

(fs/(), we show that the map �(*) → '1Y∗Gm(*) induced by i is trivial. By the same argument as

in the proof of [8, Lem. 6.1.1], we are reduced to the case that * is a log point; that is, its underlying

scheme is the spectrum of a field  . Let ? be the characteristic of  . Then we have

'1Y∗Gm � (Gm,log/Gm)*ét
⊗Z (Q/Z)

′

over *, where

(Q/Z) ′ :=

{

lim
−−→(=,?)=1

1
=
Z/Z, if ? > 1;

Q/Z, if ? = 0.

Let (st/*) be the full subcategory of (fs/*) consisting of all objects that are strict over *. The

restriction of (Gm,log/Gm)*ét
⊗Z (Q/Z)

′ to (st/*) is a locally constant sheaf and hence is represented

by an étale group scheme over *. Because a homomorphism of group schemes over * from � ×( *

to an étale group scheme is trivial, the restriction of i to (st/*) is trivial. Hence, the homomorphism

�(*) → '1Y∗Gm(*) induced by i is trivial. This finishes the proof. �

Remark 2.1. For an abelian scheme � and a torus ) over (, the same argument as in the proof of

Proposition 2.1 shows that Ext1
(fl
(�,))

�

−→ Ext1
(kfl
(�,)). Furthermore, we have

Ext1(két
(�,)) � Ext1(ét

(�,)) � Ext1(fl
(�,)) � Ext1(kfl

(�,)).

2.2. Két log 1-motives in the Kummer flat topology

In this subsection, we assume that the underlying scheme of the base ( is locally noetherian. We show

that a két log 1-motive can be regarded as a 2-term complex in the category of sheaves for the Kummer

flat topology.
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Lemma 2.2. Let ( be an fs log scheme, and let � be a sheaf of abelian groups on (fs/()két such that
� ×( (

′ is representable by an fs log scheme for some Kummer étale cover (′ of (. Then � is also a
sheaf for the Kummer flat topology. In particular, két lattices, két tori and két abelian schemes over (
are sheaves for the Kummer flat topology.

Proof. It suffices to prove that, for any * ∈ (fs/() and any Kummer flat cover {*8}8∈� of *, the

canonical sequence

0→ � (*) →
∏

8∈�

� (*8) →
∏

8, 9∈�

� (*8 9 )

is exact, where*8 9 := *8 ×* * 9 . Let (′′ denote (′ ×( (
′. Consider the following commutative diagram:

0

��

0

��

0

��

0 // � (*) //

��

∏

8∈� � (*8)
//

��

∏

8, 9∈� � (*8 9 )

��

0 // � (* ×( (
′) //

��

∏

8∈� � (*8 ×( (
′) //

��

∏

8, 9∈� � (*8 9 ×( (
′)

��

0 // � (* ×( (
′′) //

∏

8∈� � (*8 ×( (
′′) //

∏

8, 9∈� � (*8 9 ×( (
′′)

with exact columns. Because � ×( (
′ is representable by an fs log scheme, so is � ×( (

′′. By [9, Thm.

5.2], both � ×( (
′ and � ×( (

′′ are sheaves for the Kummer flat topology. It follows that the second row

and the third row are both exact. Therefore, the first row is also exact. This finishes the proof. �

Corollary 2.1. Let ( be an fs log scheme, and let � be an extension of a két abelian scheme � by a két
torus ) over (. Then the logarithmic augmentation � log of � defined in Definition 2.5 is a sheaf for the
Kummer flat topology.

Proof. BecauseGm,log is a sheaf for the Kummer flat topology by [11, Thm. 3.2] and - is a sheaf for the

Kummer flat topology by Lemma 2.2, so is )log = H><(két
(-,Gm,log). Let X : (fs/()kfl → (fs/()két be

the forgetful map between these two sites. The adjunction (X∗, X∗) gives rise to the following commutative

diagram:

0 // )log
//

=

��

� log
//

��

� //

=

��

0

0 // )log
// X∗X

∗� log
// � // '1X∗)log

with exact rows. The left vertical identification comes from )log being a sheaf for the Kummer flat

topology. The right vertical identification follows from Lemma 2.2. Because )log is Kummer étale

locally of the formGA
m,log

, we get '1X∗)log = 0 by Kato’s logarithmic Hilbert 90, see [11, §5]. Therefore,

the canonical map � log → X∗X
∗� log is an isomorphism; that is, � log is also a sheaf for the Kummer flat

topology. �

2.3. Duality of két abelian schemes

In this subsection we assume that the underlying scheme of the base ( is locally noetherian. We formulate

the duality theory for két abelian schemes.
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Let � be an abelian scheme over a base scheme (. The dual abelian scheme �∨ of � can be described

as EGC1
(fl
(�,Gm) by the Weil-Barsotti formula. We are going to use this description to define the dual of

a given két abelian scheme.

Theorem 2.1. Let ( be an fs log scheme. For any két abelian scheme � over (, let �∨ := EGC1
(kfl
(�,Gm).

Then we have the following:

(1) The sheaf �∨ is a két abelian scheme over (.

(2) There exists a functorial isomorphism ] : �
�

−→ (�∨)∨.

Proof. For part (1), we may assume that � is actually an abelian scheme. Let Yfl : (fs/()kfl → (fs/()fl
be the forgetful map between these two sites. Let �1 (respectively �2) be a sheaf on (fs/()fl (respectively

(fs/()kfl). Then we have

Yfl∗H><(kfl
(Y∗fl�1, �2) = H><(fl

(�1, Yfl∗�2).

Let \ be the functor sending �2 to

Yfl∗H><(kfl
(Y∗fl�1, �2) = H><(fl

(�1, Yfl∗�2).

Then we get two Grothendieck spectral sequences

�
?,@

2
= '?Yfl∗ ◦ '

@
H><(kfl

(Y∗fl�1,−) ⇒ '?+@\

and

�
?,@

2
= '?H><(fl

(�1,−) ◦ '
@Yfl∗ ⇒ '?+@\.

These two spectral sequences give rise to two exact sequences

0→ '1Yfl∗H><(kfl
(Y∗fl�1, �2) → '1\ (�2) → Yfl∗EGC

1
(kfl
(Y∗fl�1, �2)

→ '2Yfl∗H><(kfl
(Y∗fl�1, �2)

and

0→ EGC1(fl
(�1, Yfl∗�2) → '1\ (�2) → H><(fl

(�1, '
1Yfl∗�2).

Let �1 = � and �2 = Gm. Because H><(kfl
(�,Gm) = 0 by [5, Exp. VIII, §3.2.1], we get

'1\ (Gm) � Yfl∗EGC
1
(kfl
(�,Gm);

therefore, we get an exact sequence

0→ EGC1(fl
(�,Gm) → Yfl∗EGC

1
(kfl
(�,Gm) → H><(fl

(�, '1Yfl∗Gm).

We also have

H><(fl
(�, '1Yfl∗Gm) = H><(fl

(�, (Gm,log/Gm)(fl
⊗Z (Q/Z)) = 0

by a similar argument as in the proof of Proposition 2.1. It follows that

EGC1(fl
(�,Gm)

�

−→ Yfl∗EGC
1
(kfl
(�,Gm). (2.1)
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By the Weil-Barsotti formula, the sheaf EGC1
(fl
(�,Gm) is representable by the dual abelian scheme of �.

This finishes the proof of part (1).

Now we prove part (2). By [5, Exp. VIII, §3.2.1], we have

H><(kfl
(�,Gm) = H><(kfl

(�∨,Gm) = 0.

By [5, Exp. VIII, §1.1.1, §1.1.4], we get

Hom(kfl
(�, (�∨)∨)

�

←− Biext1(kfl
(�, �∨;Gm)

�

−→ Hom(kfl
(�∨, �∨).

Let ] : � → (�∨)∨ be the homomorphism corresponding to 1�∨ under the above identification. Note

that ] is the isomorphism giving the duality in the case that � is actually an abelian scheme. Because �

is Kummer étale locally an abelian scheme, ] is Kummer étale locally an isomorphism. It follows that ]

is also an isomorphism over (. �

Definition 2.7. Let ( be an fs log scheme and � a két abelian scheme over (. In view of Theorem 2.1, we

call �∨ := EGC1
(kfl
(�,Gm) the dual két abelian scheme of �. The biextension % ∈ Biext1

(kfl
(�, �∨;Gm)

corresponding to ] is called the Poincaré biextension of (�, �∨) by Gm.

Remark 2.2. In view of (2.1), one can also define the dual of � in the flat topology.

2.4. Duality of két 1-motives

In this subsection we keep assuming that the underlying scheme of the base ( is locally noetherian. We

formulate the duality theory for két 1-motives.

First we give an equivalent description of két 1-motives using Poincaré biextension, through which

we present the duality theory of két 1-motives. We will also describe morphisms of két 1-motives with

respect to the new description. The situation is almost the same as in the case of classical 1-motives,

see [3, §10.2.12, §10.2.13, §10.2.14].

Let " = [.
D
−→ �] be a két 1-motive over (, where � is an extension 0 → ) → � → � → 0

of a két abelian scheme � by a két torus ) on (fs/()kfl. For any element j ∈ - := H><(kfl
(),Gm),

the pushout of the short exact sequence 0 → ) → � → � → 0 along j gives rise to an element of

�∨ = EGC1
(kfl
(�,Gm), whence a homomorphism

E∨ : - → �∨. (2.2)

Let E be the composition

E : .
D
−→ � → �, (2.3)

then D corresponds to a unique section B : . → E∗� of the extension E∗� ∈ Ext1
(kfl
(., )). Consider the

following commutative diagram:

Biext1
(kfl
(�, �∨;Gm)

(1� ,E
∨)∗

��

�
// Hom(kfl

(�, �)

Ext1
(kfl
(�,))

E∗

��

�
// Biext1

(kfl
(�, -;Gm)

(E,1- )
∗

��

Ext1
(kfl
(., ))

�
// Biext1

(kfl
(., -;Gm),

(2.4)
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where the horizontal isomorphisms come from

H><(kfl
(�,Gm) = 0 = EGC1(kfl

(-,Gm)

and EGC1
(kfl
(�∨,Gm) = � with the help of [5, Exp. VIII, §1.1.4]. Because � gives rise to the map E∨,

the biextension corresponding to � is (1�, E
∨)∗%, and we have the following mapping diagram:

% oo //
❴

��

1�

� oo //
❴

��

(1�, E
∨)∗%
❴

��

E∗� oo // (E, E∨)∗%

with respect to the commutative diagram (2.4). The section B of E∗� corresponds to a section of the

biextension (E, E∨)∗% of (., -) by Gm, which we still indicate by B by abuse of notation. Therefore, we

get an equivalent description of the két 1-motive " = [.
D
−→ �] of the form

(E × E∨)∗% //

��

%

��

. × -
E×E∨

//

B

II

� × �∨,

(2.5)

where (E × E∨)∗% denotes the pull-back of the Poincaré biextension %. Note that the section B and the

composition

. × - → (E × E∨)∗%→ %

determine each other; thus, we also denote the composition by B by abuse of notation and use the

diagram

%

��

. × -
E×E∨

//

B

99
t
t
t
t
t
t
t
t
t
t

� × �∨

(2.6)

to describe " . The description (2.5) is symmetric. If we switch the role of . and - , E and E∨, � and

�∨, we get another két 1-motive "∨ = [-
D∨

−−→ �∨], where

�∨ ∈ Ext1(kfl
(�∨, )∨) (2.7)

corresponds to (E, 1�∨ )
∗% ∈ Biext1

(kfl
(., �∨;Gm) with )∨ := H><(kfl

(.,Gm). The association of "∨

to " is clearly a duality.

Definition 2.8. We call the két 1-motive "∨ = [-
D∨

−−→ �∨] the dual két 1-motive of the két 1-motive

" = [.
D
−→ �].

We give a description of morphisms of két 1-motives via Poincaré biextension. Let

( 5−1, 50) : " = [.
D
−→ �] → [. ′

D′

−→ � ′] = " ′

be a morphism of két 1-motives.
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Lemma 2.3. There is no nontrivial homomorphism between a két torus and a két abelian scheme.

Proof. This follows from the classical result that there is no nontrivial homomorphism between a torus

and an abelian scheme. �

By Lemma 2.3, 50 induces a map 5t : ) → ) ′ on the torus part and a map 5ab : �→ �′ on the abelian

part. Let 5 ∨
−1

: - ′→ - be the map between the character groups induced by 5t, and let 5 ∨
ab

: �
′∨ → �∨

be the dual of 5ab. Let E (respectively E∨) be as in (2.3) (respectively (2.2)), and similarly we define E′

and E
′∨ for " ′. Then we get two commutative squares

.
E

//

5−1

��

�

5ab

��

. ′
E′

// �′,

-
E∨

// �∨

- ′

5 ∨
−1

OO

E
′∨

// �
′∨.

5 ∨
ab

OO

(2.8)

Let % (respectively %′) be the Poincaré biextension of (�, �∨) (respectively (�′, �
′∨)) by Gm and

B : . × - → % (respectively B′ : . ′× - ′→ %′) the section corresponding to " (respectively " ′). Then

in the following canonical diagram

%

tt✐✐✐
✐✐
✐✐
✐✐
✐✐
✐✐
✐✐
✐✐
✐✐

. × -
E×E∨

//

B

22❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡
� × �∨

(1 × 5 ∨
ab
)∗% = ( 5ab × 1)∗%′ =: &

uu❥❥❥
❥❥
❥❥
❥❥
❥❥
❥❥
❥❥

OO

��

. × - ′
E×E

′∨

//

1× 5 ∨
−1

OO

5−1×1

��

❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡

22❡❡❡❡❡❡❡❡❡❡❡❡❡

� × �
′∨

1× 5 ∨
ab

OO

5ab×1

��

%′

tt❥❥❥
❥❥
❥❥
❥❥
❥❥
❥❥
❥❥
❥❥
❥

. ′ × - ′
E′×E

′∨

//

B′

❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡

22❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡

�′ × �
′∨,

(2.9)

the equality 50 ◦ D = D′ ◦ 5−1 implies that for any H ∈ . and any G ′ ∈ - ′ we have

B(H, 5 ∨−1(G
′)) = B′( 5−1(H), G

′) (2.10)

after identifying the Gm-torsors %E (H) ,E∨ ( 5 ∨
−1
(G′)) and %′

E′ ( 5−1 (H)) ,E
′∨ (G′)

along the composition

%E (H) ,E∨ ( 5 ∨
−1
(G′))

�

←− &E (H) ,E′∨ (G′)
�

−→ %E′ ( 5−1 (H)) ,E
′∨ (G′) .

Conversely, given any two commutative squares as in (2.8) such that the equality (2.10) holds with

respect to the diagram (2.9), we get a morphism from " to " ′ of két 1-motives.

2.5. Duality of két log 1-motives

In this subsection we keep assuming that the underlying scheme of the base ( is locally noetherian. We

formulate the duality theory for két log 1-motives, which is analogous to the case of két 1-motives.
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First we give an equivalent description of két log 1-motives using Poincaré biextension, through

which we present the dual theory of két log 1-motives. We will also describe morphisms of két log

1-motives with respect to the new description.

Let " = [.
D
−→ � log] be a két log 1-motive over (, where � is an extension

0→ ) → � → �→ 0

of a két abelian scheme � by a két torus ) on (fs/()kfl. For any element j ∈ - := H><(kfl
(),Gm), the

pushout of the short exact sequence

0→ ) → � → �→ 0

along j gives rise to an element of �∨ = EGC1
(kfl
(�,Gm), whence a homomorphism

E∨ : - → �∨. (2.11)

Let E be the composition

E : .
D
−→ � log → �. (2.12)

Then D corresponds to a unique section B : . → E∗� log of the extension E∗� log ∈ Ext1
(kfl
(., )log).

Consider the following commutative diagram:

Biext1
(kfl
(�, �∨;Gm,log)

(1� ,E
∨)∗

��

Ext1
(kfl
(�,)log)

E∗

��

�
// Biext1

(kfl
(�, -;Gm,log)

(E,1- )
∗

��

Ext1
(kfl
(., )log)

�
// Biext1

(kfl
(., -;Gm,log),

(2.13)

where the horizontal isomorphisms come from

EGC1(kfl
(-,Gm,log) = 0

with the help of [5, Exp. VIII, §1.1.4]. There is an obvious map from the diagram (2.4) to the diagram

(2.13). Let %log be the pushout of % along Gm ↩→ Gm,log, and we call it the Poincaré biextension of

(�, �∨) by Gm,log. Because � ∈ Ext1
(kfl
(�,)) corresponds to the biextension

(1�, E
∨)∗% ∈ Biext1(kfl

(�, -;Gm),

we have that � log ∈ Ext1
(kfl
(�,)log) corresponds to

(1�, E
∨)∗%log ∈ Biext1(kfl

(�, -;Gm,log).
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We have the following mapping diagram:

%log
❴

��

� log
oo //

❴

��

(1�, E
∨)∗%log

❴

��

E∗� log
oo // (E, E∨)∗%log

with respect to the commutative diagram (2.13). The section B of E∗� log corresponds to a section of the

biextension (E, E∨)∗%log of (., -) by Gm,log, which we still denote by B by abuse of notation. Therefore,

we get an equivalent description of the két log 1-motive " = [.
D
−→ � log] of the form

(E × E∨)∗%log //

��

%log

��

. × -
E×E∨

//

B

II

� × �∨,

(2.14)

where (E × E∨)∗%log denotes the pull-back of %log along E × E∨. Note that the section B and the

composition

. × - → (E × E∨)∗%log → %log

determine each other, and we also denote the composition by B by abuse of notation and use the

diagram

%log

��

. × -
E×E∨

//

B

::
t
t
t
t
t
t
t
t
t
t

� × �∨

(2.15)

to describe " . Note that the description (2.14) is symmetric. If we switch the role of . and - , E and

E∨, � and �∨, we get another két log 1-motive "∨ = [-
D∨

−−→ �∨
log
], where �∨

log
is the log augmentation

of �∨ (see (2.7)). The association of "∨ to " is clearly a duality.

Definition 2.9. We call the két log 1-motive "∨ = [-
D∨

−−→ �∨
log
] the dual két log 1-motive of the két

log 1-motive " = [.
D
−→ � log].

We give a description of morphisms of két log 1-motives via Poincaré biextension. Let

( 5−1, 50) : " = [.
D
−→ � log] → [.

′ D
′

−→ � ′log] = "
′

be a morphism of két log 1-motives over (.

Lemma 2.4. The canonical map

Hom( (�,�
′) → Hom( (� log, �

′
log)

is an isomorphism.
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Proof. Let (̃ be a Kummer étale cover of ( such that both�×( (̃ and� ′×( (̃ are extensions of a classical

abelian scheme by a classical torus over (̃, and let ˜̃( := (̃ ×( (̃. In the following commutative diagram

0 // Hom( (�,�
′) //

��

Hom(̃ (�,�
′) //

�

��

Hom ˜̃(
(�,� ′)

�

��

0 // Hom( (� log, �
′
log
) // Hom(̃ (� log, �

′
log
) // Hom ˜̃(

(� log, �
′
log
)

with exact rows, both the middle vertical map and the right vertical map are isomorphisms by [8, Prop.

2.5]. It follows that the left vertical map is an isomorphism. �

By Lemma 2.4, 50 is induced by a unique homomorphism 5sab : � → � ′ over (. Let 5t : ) → ) ′

be the map induced by 5sab on the torus part and 5 ∨
−1

: - ′ → - the map between the character groups

induced by 5t. Let 5ab : �→ �′ be the map induced by 5sab on the abelian part, and let 5 ∨
ab

: �
′∨ → �∨

be the dual of 5ab. Let E (respectively E∨) be as in (2.12) (respectively (2.11)), and similarly we define

E′ and E
′∨ for " ′. Then we get two commutative squares

.
E

//

5−1

��

�

5ab

��

. ′
E′

// �′

, -
E∨

// �∨

- ′

5 ∨
−1

OO

E
′∨

// �
′∨

5 ∨
ab

OO .

(2.16)

Let %log (respectively %
′log) be the Poincaré biextension of (�, �∨) (respectively (�′, �

′∨)) by Gm,log

and B : . × - → %log (respectively B′ : . ′ × - ′ → %
′log) the section corresponding to " (respectively

" ′). Then in the following canonical diagram

%log

tt✐✐✐
✐✐
✐✐
✐✐
✐✐
✐✐
✐✐
✐✐
✐✐
✐✐

. × -
E×E∨

//

B

22❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡
� × �∨

(1 × 5 ∨
ab
)∗%log = ( 5ab × 1)∗%

′log =: &log

tt✐✐✐
✐✐
✐✐
✐✐
✐✐
✐✐
✐✐
✐✐

OO

��

. × - ′
E×E

′∨

//

1× 5 ∨
−1

OO

5−1×1

��

❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡

22❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡

� × �
′∨

1× 5 ∨
ab

OO

5ab×1

��

%
′log

tt✐✐✐
✐✐
✐✐
✐✐
✐✐
✐✐
✐✐
✐✐
✐✐
✐

. ′ × - ′
E′×E

′∨

//

B′

❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡

22❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡

�′ × �
′∨,

(2.17)

the equality 50 ◦ D = D′ ◦ 5−1 implies that for any H ∈ . and any G ′ ∈ - ′ we have

B(H, 5 ∨−1(G
′)) = B′( 5−1(H), G

′) (2.18)
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after identifying the Gm,log-torsors %
log

E (H) ,E∨ ( 5 ∨
−1
(G′))

and %
′log

E′ ( 5−1 (H)) ,E
′∨ (G′)

along the composition

%
log

E (H) ,E∨ ( 5 ∨
−1
(G′))

�

←− &
log

E (H) ,E
′∨ (G′)

�

−→ %
′log

E′ ( 5−1 (H)) ,E
′∨ (G′) .

Conversely, given any two commutative squares as in (2.16) such that the equality (2.18) holds with

respect to the diagram (2.17), we get a morphism from " to " ′ of két log 1-motives.

3. Extending tamely ramified strict 1-motives into két log 1-motives

From now on, ' is a discrete valuation ring with fraction field , residue field : and a chosen uniformiser

c, ( = Spec ', and we endow ( with the log structure associated to N→ ', 1 ↦→ c. Let B (respectively

[) be the closed (respectively generic) point of (, and we denote by 8 : B ↩→ ( (respectively 9 : [ ↩→ ()

the closed (respectively open) immersion of B (respectively [) into (. We endow B with the induced log

structure from (.

Following [16, Def. 4.2.3], a 1-motive " = [. 
D 
−−→ � ] over  is called strict if � has

potentially good reduction. We call a 1-motive " = [. 
D 
−−→ � ] over  tamely ramified if there

exists a tamely ramified finite field extension  ′ of  such that . ×Spec Spec ′ has good reduction

and � ×Spec Spec ′ has semistable reduction (i.e., the connected component of the Néron model of

� ×Spec Spec ′ is a semi-abelian scheme). A lattice (respectively torus, respectively abelian variety)

over  is called tamely ramified3 if it is so regarded as a 1-motive over  . A lattice (respectively torus)

over  is called unramified if it extends to a lattice (respectively torus) over (. The main goal is to

prove the following theorem.

Theorem 3.1. Let  be a discrete valuation field with ring of integers ', and we endow ( := Spec '

with the canonical log structure. Let " = [. 
D 
−−→ � ] be a tamely ramified strict 1-motive over  

with � an extension of an abelian variety � by a torus ) . Then " extends to a unique két log
1-motive " log over (.

Moreover, the association of " log to " gives rise to an equivalence

 4́C : TameSt-1-Mot → KétLog-1-Mot(

from the category of tamely ramified strict 1-motives over  to the category of két log 1-motives
over (.

Before going to the proof of Theorem 3.1, we treat some special cases in the first few subsections.

3.1. Extending tamely ramified lattices into két lattices

For any positive integer =, let (= be the fibre product ( ×SpecZ[N] SpecZ[N], where SpecZ[N] is

endowed with the log structure associated to the canonical homomorphism N → Z[N] and the map

SpecZ[N] → SpecZ[N] is induced by the multiplication by = map on the monoid N. The canonical

map (= → ( is a finite Kummer flat cover, and it is even a finite Kummer étale cover if = is invertible on

(. Let '= := '[)]/()= − c). It is easy to see that '= is also a discrete valuation ring and (= is nothing

but Spec '= endowed with the log structure associated to N→ '=, 1 ↦→ ) .

Lemma 3.1. Let � be a két lattice (respectively két torus, respectively két abelian scheme) over (.
Then

(1) there exists a positive integer = such that = is invertible on ( and � ×( (= is a classical lattice
(respectively classical torus, respectively classical abelian scheme) over (=;

3For abelian varieties, this terminology agrees with the one from [6, §2.1.4].
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(2) the generic fibre�×(Spec is a classical lattice (respectively classical torus, respectively classical
abelian variety).

Proof. (1) Let * → ( be a Kummer étale cover such that � ×( * is a classical lattice (respectively

classical torus, respectively classical abelian scheme) over *. By [15, Prop. 2.15], by passing to a

further Kummer étale cover of ( over *, we may assume that * → ( factorises as * → (= → ( for

some positive integer = with * → (= a classical étale cover and = invertible on (. It suffices to show

that � ×( (= is representable by a classical lattice (respectively classical torus, respectively classical

abelian scheme) over (=. If � ×( * is a classical torus over * that is affine over *, so is � ×( (=
by descent with respect to the classical étale cover * → (=. If � ×( * is a classical lattice over *,

we are reduced to the torus case by Lemma 2.1. Now we assume that � ×( * is a classical abelian

scheme over *. Because * → (= is a classical étale cover, the morphism � ×( * → � ×( (= is

representable by surjective classical étale morphisms. Hence, � ×( (= is representable by an algebraic

space over (= endowed with the inverse image log structure from (=. By [17, Tag 0422], [17, Tag

041W] and [17, Tag 041V], the morphism � ×( (= → (= is proper, flat and of finite presentation.

Therefore, � ×( (= → (= is an abelian algebraic space; see [4, §1.1] for the definition. Because (=
is a trait, � ×( (= → (= is actually an abelian scheme by [4, §1.1 (b)]. This finishes the proof of

part (1).

(2) Let � := � ×( Spec ,  = := '= ⊗'  and � = := � ×( (= ×(= Spec =. Then � = =

� ×Spec Spec =. Because Spec = is a classical étale cover of Spec and � = is a classical lattice

(respectively classical torus, respectively classical abelian scheme), so is � by the same argument as

in part (1). �

Proposition 3.1. Let . be a lattice over  ; that is, a group scheme over  that is étale locally
representable by a finite rank free abelian group. Assume that . is tamely ramified, then . extends to
a unique két lattice . over (.

Furthermore, the association of . to . gives rise to an equivalence of categories

TameLat → KétLat( , . ↦→ .

with inverse . ↦→ . ×( Spec , where TameLat denotes the category of tamely ramified lattices over
Spec and KétLat( denotes the category of két lattices over (. And the equivalence restricts to an
equivalence from the category of unramified lattices over Spec to the category of classical lattices
over (.

Proof. Let  ′ be a tamely ramified finite Galois field extension of  such that . ×Spec Spec ′

is unramified. If necessary, by enlarging  ′ by a further unramified extension, we may assume that

. ×Spec Spec ′ is constant. Let '′ be the integral closure of ' in  ′ and c′ a uniformiser of '′. We

endow (′ := Spec '′ with the log structure associated to N→ '′, 1 ↦→ c′. Then (′ is a finite Kummer

étale Galois cover of ( with Galois group Gal( ′/ ). Therefore, . extends to a Kummer étale locally

constant sheaf . on (.

By Lemma 3.1 (1), any két lattice becomes a classical lattice after base change to a Kummer étale

cover (= → ( for some positive integer =. Therefore, it corresponds to a finite rank free abelian group

endowed with a continuous c
log

1
(()-action, where c

log

1
(() denotes the log étale fundamental group; see

[7, §4.6]. On the other hand, an object of TameLat corresponds to a finite rank free abelian group

endowed with a continuous � tame
 

-action, where � tame
 

denotes the tame quotient of the absolute Galois

group of  . By [18, Chap. 3, §3.3.1, Example (2)] we have a canonical isomorphism � tame
 

�

−→ c
log

1
(().

It follows that the functor

TameLat → KétLat( , . ↦→ .

is an equivalence of categories. Clearly, the equivalence restricts to an equivalence from the category

of unramified lattices over Spec to the category of classical lattices over (. �
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Example 3.1. Let . ∈ TameLat , which is not unramified. Then it extends to a két lattice over (,

which is not a classical lattice by Proposition 3.1.

3.2. Extending tamely ramified tori into két tori

Proposition 3.2. Let ) be a torus over  . Assume that ) is tamely ramified, i.e. there exists a tamely
ramified finite field extension  ′ of  such that ) ×  ′ has good reduction. Then ) extends to a két
torus ) over (.

Furthermore, the association of ) to ) gives rise to an equivalence of categories

TameTor → KétTor( , ) ↦→ )

with inverse) ↦→ )×(Spec , where TameTor denotes the category of tamely ramified tori over Spec 

and KétTor( denotes the category of két tori over (. And the equivalence restricts to an equivalence
from the category of unramified tori over Spec to the category of classical tori over (.

Proof. Because the functor

TameTor → TameLat , ) ↦→ - := H>< (Spec )ét
() ,Gm)

is an equivalence of categories, the result follows from Lemma 2.1 and Proposition 3.1. �

Example 3.2. Let ) ∈ TameTor , which is not unramified. Then it extends to a unique két torus over

(, which is not a classical torus by Proposition 3.2.

3.3. Extending tamely ramified abelian varieties with potentially good reduction into két abelian

schemes

Let � be a tamely ramified abelian variety over  , which has potentially good reduction, and let

 ′ be a tamely ramified finite Galois field extension of  such that � ′ := � ×Spec Spec ′ has

good reduction. Let '′ be the integral closure of ' in  ′. Then � ′ extends to an abelian scheme �′

over (′ := Spec '′. Let c′ be a uniformiser of '′, and we endow (′ with the log structure associated to

N→ '′, 1 ↦→ c′. Then (′ is a finite Galois Kummer étale cover of ( with Galois group Γ := Gal( ′/ ).

Let d : Γ × (′→ (′ be the canonical action of Γ on (′. Then the morphism

(d, pr2) : Γ × (′→ (′ ×( (
′

is an isomorphism. By [2, §1.2, Prop. 8], �′ is the Néron model of � ′ . By the universal property of

Néron models, the Γ-action on � ′ extends to a unique Γ-action

d̃ : Γ × �′→ �′ (3.1)

on �′, which is compatible with the Γ-action d on (′ and the group structure of �′. We endow �′ with

the induced log structure from (′.

Let ?′ denote the structure morphism �′→ (′, U denote the morphism (′→ ( and ? := U ◦ ?′. For

any * ∈ (fs/() and any (0, 1) ∈ (�′ ×( �
′) (*), we have U(?′(0)) = U(?′(1)). Hence, there exists a

unique W ∈ Γ such that ?′(0) = d(W, ?′(1)). Because

?′( d̃(W, 1)) = d(W, ?′(1)) = ?′(0),
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we get (0, d̃(W, 1)) ∈ (�′ ×(′ �
′) (*). We define a morphism

Φ : �′ ×( �
′→ Γ × (�′ ×(′ �

′)

by sending (0, 1) to (W−1, (0, d̃(W, 1)).

Lemma 3.2. The morphism Φ is an isomorphism with inverse

Ψ : Γ × (�′ ×(′ �
′) → �′ ×( �

′, (W, (0, 1)) ↦→ (0, d̃(W, 1))

for any* ∈ (fs/(), any (0, 1) ∈ (�′ ×(′ �′) (*) and any W ∈ Γ.

Proof. Clearly Φ and Ψ are inverse to each other. �

Lemma 3.3. The canonical morphism

( d̃, pr2) : Γ × �′→ �′ ×( �
′ (3.2)

is a monomorphism of sheaves on (fs/()két.

Proof. The composition

Γ × �′
(d̃,pr2)
−−−−−→ �′ ×( �

′ ]−→ �′ ×( �
′ Φ
−→ Γ × (�′ ×(′ �

′)

is identified with the morphism 1Γ × Δ�′/(′ , where ] denotes the morphism switching the two factors

and Δ�′/(′ denotes the diagonal embedding. Therefore, the result follows. �

By [17, Tag 0234], the action d̃ defines a groupoid scheme over (; hence, by [17, Tag 0232] the

morphism

( d̃, pr2) : Γ × �′→ �′ ×( �
′

is a pre-equivalence relation. Moreover, ( d̃, pr2) is an equivalence relation by Lemma 3.3. The morphism

(d, pr2) : Γ × (′→ (′ ×( (
′

being an isomorphism is clearly an equivalence relation.

Now we are following [17, Tag 02VE] to construct a két abelian scheme over (. We remark that

although the setup there does not agree with ours, the proofs there work verbatim in our case.

Following the approach of [17, Tag 02VG], we take the quotient sheaves for the equivalence relations

( d̃, pr2) and (d, pr2) on the site (fs/()két. Because (d, pr2) is an isomorphism, the corresponding

quotient sheaf is representable by the terminal object (. Let � =  4́C (� ) be the quotient sheaf for the

equivalence relation ( d̃, pr2). Because the two equivalence relations are compatible with each other, we

get a morphism � → (. Since the equivalence relation ( d̃, pr2) is compatible with the group structure

of �′, the quotient sheaf �′ carries a structure of sheaf of abelian groups. The verbatim translations of

the proof of [17, Tag 045Y] and the proof of [17, Tag 07S3] show that

Γ × �′
�

−→ �′ ×� �
′ (3.3)

and

�′
�

−→ � ×( (
′, (3.4)

respectively; hence, � is a két abelian scheme over (.

Let � be another tamely ramified abelian variety over  , which has potentially good reduction, and

let 5 : � → � be a homomorphism of group schemes over  . By enlarging the field  ′ such that  ′

remains a finite tamely ramified extension of  , we may assume that� ′ := � ×Spec Spec ′ extends
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to an abelian scheme � ′ over (′. By the same reason as for � , we have a natural action of Γ on � ′ that

is compatible with the natural action of Γ on (′ and the quotient for the action gives rise to a két abelian

scheme over (. Let 5 ′ be the base change of 5 to  ′. Then it extends to a unique homomorphism

5 ′ : �′ → � ′ of group schemes over (′ by the universal property of the Néron model. For any W ∈ Γ,

the compatibility of the canonical actions of Γ on � ′ and � ′ gives rise to a commutative diagram

� ′
W

//

✆
✆
✆
✆
✆
✆
✆
✆

��✆
✆
✆
✆
✆
✆
✆
✆

� ′

��✟
✟
✟
✟
✟
✟
✟
✟
✟
✟
✟
✟
✟
✟
✟
✟

� ′
W

//

5 ′
99
r
r
r
r
r
r
r
r
r
r

��

� ′

5 ′
::
✉
✉
✉
✉
✉
✉
✉
✉
✉

��

Spec ′
W

// Spec ′.

Hence, the following diagram

� ′
W

//

✍
✍
✍
✍
✍
✍
✍

��✍
✍
✍
✍
✍
✍
✍

� ′

��✍
✍
✍
✍
✍
✍
✍
✍
✍
✍
✍
✍
✍
✍

�′
W

//

5 ′
>>
⑥
⑥
⑥
⑥
⑥
⑥
⑥
⑥

��

�′

5 ′
>>
⑤
⑤
⑤
⑤
⑤
⑤
⑤
⑤

��

(′
W

// (′

is commutative by the universal property of the Néron model for any W ∈ Γ. It follows that the Γ-actions

on �′ and � ′ are compatible with each other; hence, 5 ′ induces a homomorphism 5 : � → � of két

abelian schemes over (, where � =  4́C (� ) is the két abelian scheme for � defined in the same way

as � =  4́C (� ) for � .

Therefore, we get a functor

 4́C : TameStAb → KétAb( , � ↦→  4́C (� )

from the category of tamely ramified abelian varieties with potentially good reduction over  to the

category of két abelian schemes over (.

Theorem 3.2.

(1) Let � and� be two két abelian schemes over (, and let � := �×( Spec and� := �×( Spec .
Then the restriction map

Hom( (�,�) → HomSpec (� , � )

is an isomorphism.
(2) The functor

 4́C : TameStAb → KétAb( , � ↦→  4́C (� )

is an equivalence of categories, and it restricts to an equivalence from the category of abelian
varieties with good reduction over  to the category of abelian schemes over (.

Proof. (1) By Lemma 3.1, there exists a positive integer = such that both �= := �×((= and�= := �×((=
are classical abelian schemes over (=, where (= is as defined in the beginning of Subsection 3.1.

Let (̃= := (= ×( (=, �̃= := � ×( (̃=, �̃= := � ×( (̃=,  = := (= ×( Spec ,  ̃= := (̃= ×( Spec ,

� = := �= ×( Spec , � = := �= ×( Spec , �̃ = := �̃= ×( Spec and �̃ = := �̃= ×( Spec . Because

(= is a Kummer étale cover of (, we get the following commutative diagram:
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0 // Hom( (�,�) //

��

Hom(= (�=, �=)
//

�

��

Hom(̃=
(�̃=, �̃=)

�

��

0 // Hom (� , � ) // Hom = (� = , � = )
// Hom ̃=

(�̃ = , �̃ = )

with exact rows. Here we abbreviate HomSpec?(−,−) as Hom?(−,−) for ? =  ,  =,  ̃=, in order to make

the diagram not too big. The middle vertical map and the right vertical map are isomorphisms by the

universal property of Néron models, it follows that the first vertical map is also an isomorphism.

(2) By part (1), the functor 4́C is fully faithful. Given any � ∈ KétAb( , we have � := �×(Spec ∈

TameStAb by Lemma 3.1 (2). By part (1), the identity map on � extends to a unique isomorphism

 4́C (� )
�

−→ �. Hence, the functor  4́C is essentially surjective, and so is an equivalence of categories.

In fact, it is easy to see that the functor

(−) : KétAb( → TameStAb , � ↦→ � ×( Spec 

is inverse to the functor  4́C by the construction of  4́C. If � ∈ TameStAb has good reduction – that

is, it extends to an abelian scheme � over ( (which is unique by the theory of Néron models) – then

there exists a unique isomorphism � →  4́C (� ) extending id� . Therefore,  4́C (� ) = �, and so

the functor  4́C restricts to an equivalence from the category of abelian varieties with good reduction

over  to the category of abelian schemes over (. �

Example 3.3. Let � ∈ TameStAb , which has no good reduction. Then  4́C (� ) is a két abelian

scheme over ( that is not a classical abelian scheme by Theorem 3.2 (2).

It is natural to investigate whether the functor  4́C is compatible with the dualities on both sides.

Proposition 3.3. The functor  4́C : TameStAb → KétAb( is compatible with the dualities; that is,
we have a canonical identification

 4́C (�∨ ) �  4́C (� )
∨.

Proof. Let (′, Γ, �′ and � be as in (3.3) and (3.4). Then � =  4́C (� ). By (3.4), we have

�∨ ×( (
′ = EGC1(kfl

(�,Gm) ×( (
′ = EGC1(′

kfl
(� ×( (

′,Gm)

= EGC1(′
kfl
(�′,Gm) = �

′∨.

It follows that �∨ = EGC1
(két
(�,Gm) is the quotient sheaf for a descent data with respect to the Galois

Kummer étale cover (′/(. Such a descent data is given by a group action g : Γ × �
′∨ → �

′∨. In order

to have the identification  4́C (�∨
 
) �  4́C (� )

∨ = �∨, we are reduced to identify the action g with the

action d̃∨ : Γ × �
′∨ → �

′∨ for �∨
 

that corresponds to the action (3.1) for � . But this is clear, because

Γ × �
′∨ = ⊔W∈Γ�

′∨ and these two actions agree over the generic fibre. �

3.4. Proof of Theorem 3.1

In this subsection, we prove Theorem 3.1.

Let E be the composition . 
D 
−−→ � → � , - the character group of the torus ) and

E∨
 

: - → �∨
 

the homomorphism corresponding to the semi-abelian variety � . By [16, §2.4.1],

the 1-motive " is uniquely determined by a commutative diagram of the form
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% 

��

. ×Spec - 
E ×E

∨
 
//

B 

66♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠

� ×Spec �
∨
 
,

(3.5)

where B is a bilinear map. Note that B corresponds to a unique section

C : . ×Spec - → � , (3.6)

where � denotes the pull-back of the Poincaré biextension % of � and its dual �∨
 

along E × E
∨
 

.

Let  ′ be a finite tamely ramified Galois extension of  such that

� ×Spec Spec ′

extends to an abelian scheme �′ over (′ := Spec '′,

. ×Spec Spec ′

extends to a constant group scheme over (′ and

) ×Spec Spec ′

extends to a split torus over (′, where '′ denotes the integral closure of ' in  ′. Let c′ be a uniformiser

of '′ such that c′ = c
1
4 with 4 the ramification index of the extension  ′/ , and we endow (′ with the

log structure associated to N → '′, 1 ↦→ c′. Then (′ is a finite Galois Kummer étale cover of ( with

Galois group Γ := Gal( ′/ ).

Let . (respectively -) be the két lattice over ( extending . (respectively - ) as constructed in

Subsection 3.1. Then . (respectively -) can be regarded as a Γ-module. Let ) be the két torus over

( extending ) as constructed in Subsection 3.2. Note that ) is nothing but H><(két
(-,Gm). Let �

(respectively �∨) be the két abelian scheme extending � (respectively �∨
 

) as constructed in Subsection

3.3, and let % be the Poincaré biextension of (�, �∨) by Gm.

Lemma 3.4. The homomorphism E (respectively E∨
 

) extends to a unique homomorphism E : . → �

(respectively E∨ : - → �∨).

Proof. We only treat the case of E , and the other case can be done in the same way. We have �×((
′ = �′

by (3.4). Therefore,

�((′) = �′((′) = �′(Spec ′) = � (Spec ′).

Because . is equivalent to a Γ-module, we get

Hom( (., �) = HomZ−Mod(., �((
′))Γ = HomZ−Mod (. , � (Spec ′))Γ .

It follows that E extends to a unique homomorphism E : . → �. �

By Lemma 3.4, we get a map E × E∨ : . ×( - → � ×( �
∨. Letting %log be the pushout of % along

the inclusion Gm ↩→ Gm,log, we get the following diagram:

%log

��

. ×( -
E×E∨

//

B 

99

� ×( �
∨

(3.7)

over (. The dotted arrow in (3.7) means that it is only a map over Spec . The restriction of (3.7) to

Spec is clearly just the diagram (3.5).

https://doi.org/10.1017/fms.2021.5 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2021.5


22 Heer Zhao

Lemma 3.5. The bilinear map B from (3.5) extends uniquely to a bilinear map Blog : . ×( - → %log

making the diagram (3.7) commutative.

Proof. Let � be the pull-back of % along the map E × E∨ on (fs/()kfl, and let � log be the pushout of �

along the canonical map Gm ↩→ Gm,log on (fs/()kfl. Because both . and - are Kummer étale locally

representable by a finitely generated free abelian group, we have

Biext1(kfl
(., -;−) = Ext1(kfl

(. ⊗LZ -,−) = Ext1(kfl
(. ⊗Z -,−)

by [5, Exp. VII, §3.6.5]. Therefore, � (respectively � log) can be regarded as an element of Ext1
(kfl
(. ⊗Z

-,Gm) (respectively Ext1
(kfl
(.⊗Z-,Gm,log)), and � log is still the pushout of � under these identifications.

Similarly, � := � ×( Spec can be regarded as an element of Ext1
(Spec )fl

(. ⊗Z - ,Gm). Note that

both � and � log over ( restrict to � over  . The extensions � , � log and � give rise to exact sequences

0→ Gm((
′) → � ((′) → . ⊗Z - ((

′) → �1
kfl ((

′,Gm), (3.8)

0→ Gm,log((
′) → � log ((′) → . ⊗Z - ((

′) → �1
kfl ((

′,Gm,log) (3.9)

and

0→ Gm( 
′) → � ( 

′) → . ⊗Z - ( 
′) → �1

fl (Spec ′,Gm), (3.10)

respectively. Clearly, we have

�1
fl ((
′,Gm) = �

1
ét ((

′,Gm) = 0

and

�1
fl (Spec ′,Gm) = �

1
ét (Spec ′,Gm) = 0.

The short exact sequence 0→ Gm → Gm,log → (Gm,log/Gm)(fl
→ 0 gives rise to an exact sequence

�1
fl ((
′,Gm) → �1

fl ((
′,Gm,log) → �1

fl ((
′, (Gm,log/Gm)(fl

).

Let 8′ denote the inclusion of the closed point B′ of (′ into itself. Then we get

�1
fl ((
′, (Gm,log/Gm)(fl

) = �1
fl ((
′, 8′∗Z) = �

1
fl (B
′,Z) = �1

ét (B
′,Z) = 0.

It follows that �1
fl
((′,Gm,log) = 0. By Kato’s logarithmic Hilbert 90 (see [15, Thm. 3.20]), we get

�1
kfl ((

′,Gm,log) = �
1
fl ((
′,Gm,log) = 0.

The exact sequences (3.8), (3.9) and (3.10) fit into the following commutative diagram

0 // Gm((
′) //

��

� ((′) //

��

/ ((′)
X

// �1
kfl
(Gm)

��

0 // Gm,log((
′) //

��

� log((′) //

��

/ ((′) //

��

0

0 // Gm (Spec ′) // � (Spec ′) // / (Spec ′) // 0

(3.11)
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with exact rows,4 where �1
kfl
(Gm) (respectively / , respectively / ) denotes �1

kfl
((′,Gm) (respectively

. ⊗Z - , respectively . ⊗Z - ). Because . and - become constant over (′, the map

/ ((′) → / (Spec ′)

is an isomorphism. The map Gm,log((
′) → Gm (Spec ′) is also an isomorphism. Therefore, the

restriction map

� log((′) → � (Spec ′) = � log (Spec ′)

is an isomorphism. We regard � as an extension of . ⊗Z - by Gm, then the section C (see (3.6))

of � induces a section to the surjection � log ((′) → . ⊗Z - ((
′). This induced section is clearly

Gal((′/()-equivariant and therefore gives rise to a section

Clog : . ⊗Z - → � log (3.12)

to the extension � log of . ⊗Z - by Gm,log. The homomorphism Clog is automatically a section to the

corresponding biextension � log of (., -) by Gm,log. Note that � log is also the pull-back of %log along

E × E∨, and Clog gives rise to a bilinear map Blog : . ×( - → %log that extends B . Clearly, we have the

following commutative diagram:

%log

��

. ×( -
E×E∨

//

Blog

99
sssssssssss

� ×( �
∨.

(3.13)

This finishes the proof. �

Now we are ready to prove Theorem 3.1.

Proof of Theorem 3.1.
Step 1: We prove that " extends to a két log 1-motive over (. Recall that ) = H><( (-,Gm), and

let )log := H><( (-,Gm,log). We have the following two commutative diagrams:

Ext1
(kfl
(�,))

E∗

��

�
// Biext1

(kfl
(�, -;Gm)

(E,1- )
∗

��

Ext1
(kfl
(., ))

�
// Biext1

(kfl
(., -;Gm)

and

Ext1
(kfl
(�,)log)

E∗

��

�
// Biext1

(kfl
(�, -;Gm,log)

(E,1- )
∗

��

Ext1
(kfl
(., )log)

�
// Biext1

(kfl
(., -;Gm,log)

,

where the horizontal maps being isomorphisms comes from

EGC1(kfl
(-,Gm) = EGC1(kfl

(-,Gm,log) = 0

with the help of [5, Exp. VIII, §1.1.4]. Let � ∈ Ext1
(kfl
(�,)) (respectively � log ∈ Ext1

(kfl
(�,)log))

be the extension corresponding to the biextension (1�, E
∨)∗% (respectively (1�, E

∨)∗%log). Then the

4We will see that the map X is zero in Subsection 4.2.
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section Clog of � log (see (3.12)) gives rise to a homomorphism Dlog : . → � log fitting into the following

commutative diagram

.

E

��

Dlog

}}⑤⑤
⑤
⑤
⑤
⑤
⑤
⑤

0 // )log
// � log

// � // 0

0 // ) //

OO

� //

OO

� // 0

(3.14)

of sheaves of abelian groups on (fs/()kfl. This gives rise to a two-term complex

.
Dlog

−−−→ � log.

Because both - and . are representable by a finitely generated free abelian group over (′, we have that

� ×( (
′ is an extension of the abelian scheme � ×( (

′ by the torus ) ×( (
′ on (fs/(′)ét by Remark 2.1

and

Dlog ×( (
′ : . ×( (

′→ � log ×( (
′

is a log 1-motive over (′. Therefore, [.
Dlog

−−−→ � log] is a két log 1-motive over (. Clearly, the két log

1-motive [.
Dlog

−−−→ � log] extends " , and its construction is functorial. Therefore, we get a functor

 4́C : TameSt-1-Mot → KétLog-1-Mot( .

Step 2: We show that

Mor(", " ′)
�

−→ Mor(" , "
′
 )

for any two objects " = [.
D
−→ � log] and " ′ = [. ′

D′

−→ � ′
log
] in KétLog-1-Mot( , where " :=

" ×( Spec and " ′
 

:= " ′ ×( Spec . It suffices to show that any morphism (f−1, f0) : " → " ′
 

extends to a unique morphism from " to " ′. We rewrite the két log 1-motive " and " ′ as

(.
E
−→ �, -

E∨

−−→ �∨, . × -
B
−→ %log)

and

(. ′
E′

−→ �′, - ′
E
′∨

−−→ �
′∨, . ′ × - ′

B′

−→ %
′log),

respectively, according to (2.15). Let E := E ×( Spec , and similarly for - , . and so on. By [3,

§10.2.12, §10.2.13, §10.2.14], the morphism (f−1, f0) gives rise to a diagram
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%
log

 

tt❥❥❥
❥❥
❥❥
❥❥
❥❥
❥❥
❥❥
❥❥
❥❥
❥❥

. × - 
E ×E

∨
 

//

B 

22❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡
� × �

∨
 

(1 × f∨
ab
)∗%

log

 
= (fab × 1)∗%

′log

 
=: &

log

 

tt❥❥❥
❥❥
❥❥
❥❥
❥❥
❥❥
❥❥
❥❥

OO

��

. × -
′
 

E ×E
′∨
 

//

1×f∨
−1

OO

f−1×1

��

❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡

22❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡

� × �
′∨
 

1×f∨
ab

OO

fab×1

��

%
′log

 

tt❥❥❥
❥❥
❥❥
❥❥
❥❥
❥❥
❥❥
❥❥
❥❥
❥

. ′
 
× - ′

 
E′
 
×E
′∨
 

//

B′
 

❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡

22❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡

�′
 
× �

′∨
 
,

(3.15)

such that

(1) the two squares are commutative;

(2) for any H ∈ . and any G ′ ∈ - ′
 

we have

B (H, f
∨
−1(G

′)) = B′ (f−1(H), G
′) (3.16)

after identifying the Gm-torsors

(%
log

 
)E (H) ,E∨ (f

∨
−1
(G′))

and

(%
′log

 
)E′
 
(f−1 (H)) ,E

′∨
 
(G′)

along the composition

(%
log

 
)E (H) ,E∨ (f

∨
−1
(G′))

�

←− (&
log

 
)E (H) ,E

′∨
 
(G′)

�

−→ (%
′log

 
)E′
 
(f−1 (H)) ,E

′∨
 
(G′) .

By Proposition 3.1, f−1 (respectively f∨
−1

) extends to a unique homomorphism 5−1 : . → . ′ (respectively

5 ∨
−1

: - ′ → -). By Theorem 3.2 (1), fab (respectively f∨
ab

) extends to a unique homomorphism 5ab :

� → �′ (respectively 5 ∨
ab

: �
′∨ → �∨). Because fab ◦ E = E′

 
◦ f−1, we have 5ab ◦ E = E′ ◦ 5−1

by the same reason as for Lemma 3.4. Similarly, we have 5 ∨
ab
◦ E

′∨ = E∨ ◦ 5 ∨
−1

. In order to show that

(( 5−1, 5ab), ( 5
∨
−1
, 5 ∨

ab
)) gives a morphism ( 5−1, 50) from " to " ′, we are left with checking the condition

(2.18). But this follows from the equality (3.16) and Γ(Spec '̃,Gm,log) = Γ(Spec  ̃,Gm) for any finite

field extension  ̃ of  , where '̃ denotes the normalisation of ' in  ̃ and Spec '̃ is endowed with the

canonical log structure. The uniqueness of ( 5−1, 50) follows from those of 5−1, 5ab, 5 ∨
−1

and 5 ∨
ab

.

Step 3: By Step 1 and Step 2, the functor Két is fully faithful. For any " ∈ KétLog-1-Mot( , the base

change " of " to Spec lies in TameSt-1-Mot . By Step 2, the identity morphism of " extends

to a unique isomorphism from " to Két(" ). Therefore, Két is essentially surjective and hence an

equivalence of categories. This finishes the proof of Theorem 3.1.
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Example 3.4. Let " = [. 
D 
−−→ � ] ∈ TameSt-1-Mot , and � an extension of an abelian variety

� by a torus ) over  . Assume that either . is not unramified, or ) is not unramified or � does

not have good reduction. Then the két log 1-motive " log :=  4́C (" ) is not a log 1-motive by Example

3.1, Example 3.2 and Example 3.3.

Corollary 3.1. Let the notation and assumptions be as in Theorem 3.1. We further assume that both . 

and � have good reduction. Then the két log 1-motive " log :=  4́C (" ) = [.
Dlog

−−−→ � log] associated
to " is a log 1-motive.

Proof. Because both . and � have good reduction, both - and . are étale locally representable

by a finitely generated free abelian group over (. Therefore, � is an extension of the abelian scheme

� by the torus ) on (fs/()kfl. By Remark 2.1, � comes from an extension on (fs/()ét. It follows that

[.
Dlog

−−−→ � log] is a log 1-motive over (. �

Remark 3.1. Corollary 3.1 shows that a log 1-motive in the sense of [13, §4.6.1] extends uniquely to

a log 1-motive in our sense (i.e., in the sense of [8, Defn. 2.2]). This must have been known to Kazuya

Kato, who is one of the authors of both [13] and [8].

Remark 3.2. As we have proposed in Section 1, as a generalisation of Theorem 3.1, it is natural to

ask whether every strict (not just strict tamely ramified) 1-motive over  extends to a unique kfl log

1-motive over (, where a kfl log 1-motive can be defined as in Definition 2.6 by using the Kummer flat

topology instead of the Kummer étale topology. In the proofs of Proposition 3.1, Proposition 3.2 and

Theorem 3.2, we have used explicitly the theory of logarithmic fundamental group, which is only

available in the Kummer étale topology. Therefore, our method in this article does not work for the

Kummer flat case.

4. Monodromy

In this section, we construct a monodromy pairing for a tamely ramified strict 1-motive " over a

discrete valuation field via the két log 1-motive " log associated to " . We compare our monodromy

pairing with Raynaud’s geometric monodromy pairing from [16, §4.3]. Note that although the base field

 in [16, §4.3] is assumed to be complete, the definition of the geometric monodromy works for any

discrete valuation field. We remark that Raynaud’s geometric monodromy paring is defined for all strict

1-motives over  , whereas our monodromy pairing is only defined for tamely ramified strict 1-motives.

4.1. Logarithmic monodromy pairing

We adopt the setup and notation from last section. Consider the following pushout diagram:

0 // Gm
//

� _

��

� //
� _

��

. ⊗Z - // 0

0 // Gm,log
// � log // . ⊗Z - //

C log

ee 0,

(4.1)

where Clog is the section (3.12). Then the section Clog induces a linear map

. ⊗Z -
C log

−−→ � log → � log/� � (Gm,log/Gm)(kfl
,

which corresponds to a bilinear map

〈−,−〉 : . × - → (Gm,log/Gm)(kfl
. (4.2)

This pairing is nothing but the monodromy pairing (2.6) for the két log 1-motive " log.
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Definition 4.1. We call the pairing (4.2) the logarithmic monodromy pairing of the tamely ramified

strict 1-motive " .

Proposition 4.1. Let the assumptions and notation be as in Theorem 3.1 and its proof. The monodromy
pairing (4.2) vanishes if and only if the section Clog is induced from a section C : . ⊗Z - → � of � .

When such a section C exists, it corresponds to a section B : .×( - → %, which further corresponds to
a map D : . → �. The maps B and D extend the diagrams (3.13) and (3.14) to the commutative diagrams

% //

��

%log

��

. ×( -
E×E∨

//

B

99
s
s
s
s
s
s
s
s
s
s
s

Blog

44✐
✐

✐
✐

✐
✐

✐
✐

✐
✐

✐

� ×( �
∨ � ×( �

∨

(4.3)

and

.

E

��

Dlog

}}⑤⑤
⑤
⑤
⑤
⑤
⑤
⑤

D

��✍

✍

✍

✍

✍

✍

✍

✍

0 // )log
// � log

// � // 0

0 // ) //

OO

� //

OO

� // 0,

(4.4)

respectively. Therefore, the given 1-motive " extends to a unique két 1-motive " = [.
D
−→ �] such

that the két log 1-motive " log associated to " is induced from " .

Proof. By the construction of the monodromy pairing, its vanishing is clearly equivalent to Clog being

induced from a section C : . ⊗Z - → � of � . The proof of the rest is similar to the proof of

Theorem 3.1. �

Proposition 4.2. Let " be a tamely ramified strict 1-motive over  and " log = [.
Dlog

−−−→ � log] the két
log 1-motive associated to " . Assume that the logarithmic monodromy pairing of " is induced by
a pairing `c : . × - → cZ. Let

D
log

2, c
: . → )log = H><(kfl

(-,Gm,log) ⊂ � log

be the map induced by `c , and Dlog

1, c
:= Dlog − D

log

2, c
. Then Dlog

1, c
factors as

.
D1, c

−−−→ � ↩→ � log;

that is, the két log 1-motive [.
D

log

1, c

−−−→ � log] is induced from the két 1-motive [.
D1, c

−−−→ �].

Proof. It suffices to prove that D
log

1, c
factors through� ↩→ � log; the rest is clear. The monodromy pairing

of the két log 1-motive [.
D

log

1, c

−−−→ � log] is the difference of the monodromy pairings of [.
Dlog

−−−→ � log] and

[.
D

log

2, c

−−−→ � log]. Because the two monodromy pairings agree, the monodromy pairing of [.
D

log

1, c

−−−→ � log]

vanishes. By Proposition 4.1, we are done. �
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Example 4.1. Let " = [. 
D 
−−→ � ] be a tamely ramified strict 1-motive over  . Assume that

both . and � have good reduction. Then both . and - are étale locally constant. Therefore, the

monodromy pairing

〈−,−〉 : . × - → (Gm,log/Gm)(kfl

factors through the canonical homomorphism

cZ � "
gp

(
/O×( → (Gm,log/Gm)(kfl

.

In other words, the monodromy pairing of " satisfies the assumption of Proposition 4.2 in this case.

Proposition 4.2 gives rise to a decomposition Dlog = D
log

1, c
+ D

log

2, c
whose construction involves the

chosen uniformiser c. Next we look for a decomposition Dlog = D
log

1
+ D

log

2
that is independent of the

choice of a uniformiser and satisfies the following condition:

D
log

1
is induced by some map D1 : . → � and D

log

2
factors through )log ↩→ � log. (4.5)

Proposition 4.3. Let " be a tamely ramified strict 1-motive over  and " log = [.
Dlog

−−−→ � log] the

két log 1-motive associated to " . The decompositions Dlog = D
log

1
+ D

log

2
satisfying the condition (4.5)

correspond canonically to the trivialisations C : . ⊗Z - → � of the extension � from (4.1). And under
this correspondence, the homomorphism D

log

2
is induced by the difference homomorphism Clog− C, where

Clog is as in (4.1).

Proof. Given a decomposition Dlog = D
log

1
+ D

log

2
satisfying the condition (4.5), the map D1 associated to

D
log

1
gives rise to a section C : . ⊗Z - → � of � .

Conversely, given a section C : . ⊗Z - → � of � , the decomposition

Clog = C + (Clog − C) := C1 + C2

gives rise to a decomposition Dlog = D
log

1
+D

log

2
with D

log

8
induced by C8 . It is clear that D

log

1
factors through

� ↩→ � log. By an easy calculation Clog − C factors through Gm,log ↩→ � log; therefore, D
log

2
factors as

. → )log → � log. Hence, the decomposition Dlog = D
log

1
+ D

log

2
satisfies the condition (4.5). �

As before, let / := . ⊗Z - . We abbreviate (Gm,log/Gm)(kfl
as Gm,log. Applying the functor

Hom(kfl
(/,−) to the short exact sequence

0→ Gm → Gm,log → Gm,log → 0,

we get an exact sequence

Hom(kfl
(/,Gm,log)

U
−→ Hom(kfl

(/,Gm,log) → Ext1(kfl
(/,Gm) → Ext1(kfl

(/,Gm,log).

Let `log ∈ Hom(kfl
(/,Gm,log) be the element corresponding to the logarithmic monodromy pair-

ing 〈−,−〉 of " . Then the element � of Ext1
(kfl
(/,Gm) is the image of `log along the map

Hom(kfl
(/,Gm,log) → Ext1

(kfl
(/,Gm). If � is trivial, then the subset

U−1(`log) ⊂ Hom(kfl
(/,Gm,log) = Hom(kfl

(., )log)

is not empty, and its elements correspond to the choices of D
log

2
.
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4.2. Comparison with Raynaud’s geometric monodromy

Because � and �∨ become abelian schemes after base change to (′, % ×( (
′ is the Poincaré biextension

of the abelian schemes � ×( (
′ and �∨ ×( (

′; in particular,

% ×( (
′ ∈ Biext1(′

fl
(� ×( (

′, �∨ ×( (
′;Gm).

It follows that the extension � ×( (
′ lies in the subgroup Ext1

(′
fl

((. ⊗Z -) ×( (
′,Gm) of the group

Ext1
(′

kfl

((. ⊗Z -) ×( (
′,Gm). Therefore, the image of the map X from (3.11) lands in the subgroup

�1
fl
((′,Gm) of �1

kfl
((′,Gm). Because �1

fl
((′,Gm) = 0, the diagram (3.11) gives rise to the following

commutative diagram

0 // Gm((
′) //

��

� ((′) //

��

. ⊗Z - ((
′) // 0

0 // Gm,log((
′) //

�

��

� log((′) //

�

��

. ⊗Z - ((
′) //

�

��

C log

jj
0

0 // Gm(Spec ′) // � (Spec ′) // . ⊗Z - (Spec ′) //

C 

jj
0

(4.6)

with exact rows. Then the pairing (4.2) induces a pairing

. ((′) × - ((′) → Γ((′, (Gm,log/Gm)(kfl
),

which actually factorises through a pairing

〈−,−〉 : . ((′) × - ((′) → Gm,log((
′)/Gm((

′) (4.7)

by the diagram (4.6). The pairing (4.7) is clearly Gal((′/()-equivariant and also determines the mon-

odromy pairing (4.2). We have the canonical identification Gm,log((
′)/Gm((

′) = ( ′)×/('′)×. Let

 be a separable closure of  containing  ′. Then the valuation of  extends to a unique valua-

tion of  taking value in Q. Applying the valuation of  on ( ′)×/('′)×, we get a monomorphism

Gm,log ((
′)/Gm((

′) = ( ′)×/('′)× ↩→ Q. Then the pairing (4.7) induces a pairing

〈−,−〉 : . ((′) × - ((′) → Q (4.8)

that is equivariant with respect to the action of Gal((′/() = Gal( ′/ ).

Proposition 4.4. The pairing (4.8) coincides with the geometric monodromy pairing ` : . (Spec ′) ×

- (Spec ′) → Q from [16, §4.3].

Proof. The map C in the diagram (4.6) induces a homomorphism

. ⊗Z - (Spec ′) → � (Spec ′)/� ((′) � Gm (Spec ′)/Gm((
′)

= ( ′)×/('′)×

that gives rise to exactly the monodromy pairing from [16, §4.3] after applying the unique valuation of

 , which extends the valuation on  . Because the second row and the third row in the diagram (4.6) are

isomorphic, we are done. �
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If Raynaud’s geometric monodromy pairing ` factors through Z ↩→ Q, [16, Prop. 4.5.1] gives a

decomposition D = D1
 ,c
+ D2

 ,c
such that

the  -1-motive "1
 ,c = [. 

D1
 ,c

−−−→ � ] has potentially good reduction;

and D2
 ,c factors through the torus part ) of � . (4.9)

When the field  is complete, such a decomposition is made independent of the choice of the

uniformiser c in [16, Prop. 4.5.3] via rigid geometry. And a decomposition D = D1
 
+ D2

 
that satisfies

the condition analogous to (4.9) and is independent of the choice of a uniformiser corresponds to a

trivialisation g : / = . ⊗Z - → Erig of the extension Erig of / by*rig defined in [16, Rmk. 4.5.2

(iii)].

Lemma 4.1. Raynaud’s monodromy pairing factors through Z ↩→ Q if and only if the assumption of
Proposition 4.2 holds; that is, the logarithmic monodromy pairing (4.2) of " is induced by a pairing
`c : . × - → cZ.

Proof. If the logarithmic monodromy is induced by `c , then the image of the composition

. ⊗Z - ((
′)

C log

−−→ � log((′)/� ((′) � Gm,log((
′)/Gm((

′) (4.10)

lands in cZGm ((
′)/Gm((

′). Because Clog restricts to C , the image of the composition

. ⊗Z - (Spec ′) → � (Spec ′)/� ((′) � Gm (Spec ′)/Gm((
′)

= ( ′)×/('′)×

lands in cZ('′)×/('′)×. Thus, Raynaud’s monodromy factors through Z ↩→ Q.

Conversely, if Raynaud’s monodromy factors through Z ↩→ Q, we clearly have that the image of the

composition (4.10) lands in cZGm ((
′)/Gm((

′) � cZ. Because the logarithmic monodromy pairing is

induced by the pairing (4.7), we are done. �

Under the assumption that Raynaud’s monodromy factors through Z ↩→ Q, we have Raynaud’s

decomposition D = D1
 ,c
+D2

 ,c
, as well as the decompositions Dlog = D

log

1, c
+D

log

2, c
and Dlog = D

log

1
+D

log

2

from Proposition 4.2 by Lemma 4.1. If  is complete, we also have Raynaud’s decomposition D =

D1
 
+ D2

 
. From the constructions of these decompositions, it is easy to check the following proposition.

Proposition 4.5. The restriction of the decomposition Dlog = D
log

1, c
+ D

log

2, c
from ( to Spec gives rise

to Raynaud’s decomposition D = D1
 ,c
+ D2

 ,c
. If  is complete, the decomposition Dlog = D

log

1
+ D

log

2

restricts to D = D1
 
+ D2

 
.

5. Log finite group objects associated to két log 1-motives

5.1. Log finite group objects

Let ( be a locally noetherian fs log scheme. Kato has developed a theory of log finite group objects that

is parallel to the theory of finite flat group schemes in the non-log world. The main references are [12]

and [14].

Definition 5.1. The category (fin/()c is the full subcategory of the category of sheaves of finite abelian

groups over (fs/()kfl consisting of objects that are representable by a classical finite flat group scheme

over (. Here ‘classical’ means that the log structure of the representing log scheme is the one induced

from (.

The category (fin/()f is the full subcategory of the category of sheaves of finite abelian groups over

(fs/()kfl consisting of objects that are representable by a classical finite flat group scheme over a Kummer

https://doi.org/10.1017/fms.2021.5 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2021.5


Forum of Mathematics, Sigma 31

flat cover of (. For � ∈ (fin/()f , let* → ( be a log flat cover of ( such that �* := � ×( * ∈ (fin/*)c.

Then the rank of � is defined to be the rank of �* over *.

The category (fin/()r is the full subcategory of (fin/()f consisting of objects that are representable

by a log scheme over (.

The category (fin/()é is the full subcategory of (fin/()f consisting of objects � such that there exists

a Kummer étale cover * of ( such that � ×( * ∈ (fin/*)r.

Let � ∈ (fin/()f . Then the Cartier dual of � is defined to be the sheaf

�∗ := H><(kfl
(�,Gm).

By the definition of (fin/()f , it is clear that �∗ ∈ (fin/()f .

The category (fin/()d is the full subcategory of (fin/()r consisting of objects whose Cartier dual also

lies in (fin/()r.

Proposition 5.1 (Kato). The categories (fin/()f , (fin/()é, (fin/()r and (fin/()d are closed under
extensions in the category of sheaves of abelian groups on (fs/()kfl.

Proof. See [12, Prop. 2.3]. �

Definition 5.2. Let ? be a prime number. A log ?-divisible group (respectively két log ?-divisible

group, respectively kfl log ?-divisible group) over ( is a sheaf of abelian groups � on (fs/()kfl

satisfying the following:

(1) � =
⋃

=≥0�= with �= := ker(?= : � → �);

(2) ? : � → � is surjective;

(3) �= ∈ (fin/()r (respectively �= ∈ (fin/()é, respectively �= ∈ (fin/()f) for any = > 0.

We denote by (?-div/()log (respectively (?-div/()
log

é
, respectively (?-div/()

log

f
) the category of log

?-divisible groups (respectively két log ?-divisible groups, respectively kfl log ?-divisible groups) over

(. The full subcategory of (?-div/()log consisting of objects � with �= ∈ (fin/()d for all = > 0 will

be denoted by (?-div/()
log

d
. A log ?-divisible group � with �= ∈ (fin/()c for all = > 0 is clearly just

a classical ?-divisible group, and we denote the full subcategory of (?-div/()
log

d
consisting of classical

?-divisible groups by (?-div/().

Remark 5.1. For � ∈ (?-div/()log to lie in (?-div/()
log

d
, it is enough to require �1 ∈ (fin/()d. We

explain this as follows. The short exact sequence 0→ �1 → �2 → �1 → 0 gives an exact sequence

0→ �∗1 → �∗2
U
−→ �∗1 → EGC1(fl

(�1,Gm).

We claim that U is an epimorphism for the Kummer flat topology. To prove the claim, we may assume

that �1 is a classical finite flat group scheme. Then we have EGC1
(fl
(�1,Gm) = 0 by [5, Exp. VIII, Prop.

3.3.1] and '1<∗Gm = 0, where < denotes the natural map from the classical flat site to the classical

étale site. Therefore, we get a short exact sequence

0→ �∗1 → �∗2 → �∗1 → 0

of sheaves of abelian groups on (fs/()kfl. Thus, �∗
2
∈ (fin/()r by [12, Prop. 2.3]. Inductively we get

�∗= ∈ (fin/()r for all = > 1.

5.2. Log finite group objects associated to két log 1-motives

Definition 5.3. Let ( be an fs log scheme, " log = [.
D
−→ � log] a két log 1-motive over ( and = a positive

integer. By Lemma 2.2 and Corollary 2.1, we can regard " log as a complex of sheaves on (fs/()kfl and
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define

)Z/=Z ("
log) := �−1(" log ⊗L

Z Z/=Z).

Proposition 5.2. Let ( be a locally noetherian fs log scheme,

" log = [.
D
−→ � log]

a két log 1-motive over ( and = a positive integer. Then we have the following:

(1) )Z/=Z ("
log) fits into the following exact sequence

0→ � log [=] → )Z/=Z ("
log) → ./=. → 0

of sheaves of abelian groups on (fs/()kfl, where � log [=] denotes the =-torsion subgroup sheaf of
� log.

(2) )Z/=Z ("
log) ∈ (fin/()é.

(3) Let < be another positive integer. Then the map

)Z/<=Z ("
log) → )Z/=Z ("

log)

induced by Z/<=Z
mod<
−−−−−→ Z/=Z is surjective.

(4) If " log is a log 1-motive, then )Z/=Z (" log) ∈ (fin/()d.

Proof. For part (1), by [16, §3.1], it suffices to show that the multiplication by = is injective on . and

surjective on � log for the Kummer flat topology. The injectivity of the map .
=
−→ . is trivial. We are

reduced to show the surjectivity of the map � log
=
−→ � log. Without loss of generality, we may assume

that " log is a log 1-motive. Let � be an extension of an abelian scheme � by a torus ) over (. Consider

the following commutative diagram

0 // )log
//

=

��

� log
//

=

��

� //

=

��

0

0 // )log
// � log

// � // 0

with exact rows. The multiplication by = is clearly surjective on �, and the surjectivity of the multi-

plication by = on )log follows from the surjectivity of Gm,log
=
−→ Gm,log. It follows that � log

=
−→ � log is

surjective.

For part (2), we may still assume that " log is a log 1-motive. We have a short exact sequence

0 → )log [=] → � log [=] → �[=] → 0. Let - be the character group of ) . Then we get an exact

sequence

0→ ) → )log → H><(kfl
(-,Gm,log/Gm) → 0.

Because Gm,log/Gm is torsion free, we get ) [=] = )log [=]. Then we get a short exact sequence 0 →

) [=] → � log [=] → �[=] → 0. Therefore,� log [=] ∈ (fin/()r by Proposition 5.1. Applying Proposition

5.1 again to the short exact sequence

0→ � log [=] → )Z/=Z ("
log) → ./=. → 0,

we get )Z/=Z ("
log) ∈ (fin/()r.

Part (3) is clearly true for the two két log 1-motives [. → 0] and [0→ � log]. It follows that it also

holds for " log.
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At last, we prove part (4). By the proof of part (2) we get )Z/=Z ("
log) ∈ (fin/()r. Similarly, we have

)Z/=Z ("
log)∗ = )Z/=Z (("

log)∨) ∈ (fin/()r, where (" log)∨ denotes the dual of the log 1-motive " log.

It follows that )Z/=Z ("
log) ∈ (fin/()d. �

Definition 5.4. Let ( be a locally noetherian fs log scheme,

" log = [.
D
−→ � log]

a két log 1-motive over ( and ? a prime number. The két log ?-divisible group of " log is defined to be

" log [?∞] :=
⋃

= )Z/?=Z("
log).

5.3. Extending finite group schemes associated to tamely ramified strict 1-motives

Theorem 5.1. Let the notation and the assumptions be as in Theorem 3.1, and let = be a positive integer.
Then )Z/=Z (" log) lies in (fin/()é, and it extends the finite group scheme )Z/=Z (" ) over Spec to (.

Proof. Because )Z/=Z ("
log) ×( (

′ = )Z/=Z ("
log ×( (

′) ∈ (fin/()r and (′ is a Kummer étale cover of

(, we get )Z/=Z ("
log) ∈ (fin/()é. Because " log ×( Spec = " , we get )Z/=Z ("

log) ×( Spec =

)Z/=Z (" ). �

The following theorem is stated in [12, §4.3] without proof. Here we present a proof.

Theorem 5.2 (Kato). Let  be a complete discrete valuation field with ring of integers ', ? a prime
number and � a tamely ramified abelian variety over  . We endow ( := Spec ' with the canonical
log structure. Then the ?-divisible group � [?∞] of � extends to an object of (?-div/()

log

é
. It extends

to an object of (?-div/()
log

d
if any of the following two conditions is satisfied:

(1) � has semistable reduction.
(2) ? is invertible in '.

Proof. By [16, §4.2], there exists a tamely ramified strict 1-motive

" = [. 
D 
−−→ � ]

such that " [?
∞] = � [?

∞], and both . and � have good reduction provided that � has

semistable reduction. By Theorem 3.1, " extends to a két log 1-motive " log = [.
Dlog

−−−→ � log]. Then

" [?
∞] extends to " log [?∞] ∈ (?-div/()

log

é
by Theorem 5.1.

If � has semistable reduction, then both . and � have good reduction. Therefore, the két log

1-motive" log is actually a log 1-motive over ( by Corollary 3.1. It follows that" log [?∞] ∈ (?-div/()
log

d
.

If ? is invertible in ', then the object )Z/?=Z("
log) ∈ (fin/()é actually lies in (fin/()d by [12, Prop.

2.1]. It follows that " log [?∞] ∈ (?-div/()
log

d
. �

Acknowledgments. In an email, Professor Chikara Nakayama informed the author that Professor Kazuya Kato thought it plausible

that every abelian variety (not necessarily with semistable reduction) over a complete discrete valuation field extends uniquely to a

Kummer log flat log abelian variety over the corresponding discrete valuation ring. This work is partly motivated by that piece of

information. It is also motivated by Theorem 5.2, which is taken from [12, §4.3]. The author thanks Professor Chikara Nakayama

for his generosity. The author also thanks Professor Ulrich Görtz for very helpful discussions concerning taking quotient for

equivalence relations, as well as for his support during the past few years.

The author thanks the anonymous referee for her or his corrections. More important, he thanks the referee for her or his

questions and comments that not just motivated the author to give a more systematic treatment to the results in Section 3 but also

directed him to possible research problems in the future.

This work has been partially supported by SFB/TR 45 ‘Periods, Moduli Spaces and Arithmetic of Algebraic Varieties’.

Conflict of Interest: None.

https://doi.org/10.1017/fms.2021.5 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2021.5


34 Heer Zhao

References

[1] A. Bertapelle, M. Candilera and V. Cristante, ‘Monodromy of logarithmic Barsotti-Tate groups attached to 1-motives’,

J. Reine Angew. Math. 573 (2004), 211–234.

[2] S. Bosch, W. Lütkebohmert and M. Raynaud, Néron Models, volume 21 of Ergebnisse der Mathematik und ihrer Grenzgebiete
(3) [Results in Mathematics and Related Areas (3)] (Springer-Verlag, Berlin, 1990).

[3] P. Deligne, ‘Théorie de Hodge. III’, Publ. Math. Inst. Hautes Études Sci. 44 (1974), 5–77.

[4] P. Deligne, ‘Le lemme de gabber’, Astérisque 127(5) (1985), 131–150.

[5] A. Grothendieck, M. Raynaud and D. S. Rim, Groupes de monodromie en géométrie algébrique. I Monodromy groups in
algebraic geometry. I, Vol. 288 of Lecture Notes in Mathematics (Springer-Verlag, Berlin–New York, 1972). Séminaire de

Géométrie Algébrique du Bois-Marie 1967–1969 (SGA 7 I).

[6] L. H. Halle and J. Nicaise, Néron Models and Base Change, Vol. 2156 of Lecture Notes in Mathematics (Springer, Cham,

Switzerland, 2016).

[7] L. Illusie, ‘An overview of the work of K. Fujiwara, K. Kato, and C. Nakayama on logarithmic étale cohomology. Coho-

mologies ?-adiques et applications arithmétiques, II’p-adic cohomologies and arithmetic applications. II, Astérisque 279

(2002), 271–322.

[8] T. Kajiwara, K. Kato and C. Nakayama, ‘Logarithmic abelian varieties’, Nagoya Math. J. 189 (2008), 63–138.

[9] T. Kajiwara, K. Kato and C. Nakayama, ‘Logarithmic abelian varieties, part IV: proper models’, Nagoya Math. J. 219 (2015),

9–63.

[10] T. Kajiwara, K. Kato and C. Nakayama, ‘Logarithmic abelian varieties, part VI: local moduli and GAGF’, Yokohama Math.
J. 65 (2019), 53–75.

[11] K. Kato, ‘Logarithmic structures of Fontaine-Illusie. II’, Preprint, 2019, arXiv:1905.10678.

[12] K. Kato, Logarithmic Dieudonné Theory, Preprint, 1992.

[13] K. Kato and F. Trihan, ‘On the conjectures of Birch and Swinnerton-Dyer in characteristic ? > 0’, Invent. Math. 153(3)

(2003), 537–592.

[14] K. Madapusi Sampath, Log ?-divisible groups (D’aprés Kato) (2009). URL: https://sites.google.com/a/bc.edu/keerthi/.

[15] W. Nizioł, ‘ -theory of log-schemes. I’, Doc. Math. 13 (2008), 505–551.

[16] M. Raynaud, ‘1-motifs et monodromie géométrique’ 1-motives and geometric monodromy, Astérisque 223 (1994), 295–319.

[17] The Stacks Project Authors, Stacks Project (2020). URL: http://stacks.math.columbia.edu.

[18] J. Stix, ‘Projective anabelian curves in positive characteristic and descent theory for log-étale covers’, Bonner Mathematische
Schriften 354 (2002).

[19] H. Zhao, ‘Log abelian varieties over a log point’, Doc. Math. 22 (2017), 505–550.

https://doi.org/10.1017/fms.2021.5 Published online by Cambridge University Press

1905.10678
https://sites.google.com/a/bc.edu/keerthi/
http://stacks.math.columbia.edu
https://doi.org/10.1017/fms.2021.5

	1 Introduction
	2 Két log 1-motives
	2.1 Két log 1-motives
	2.2 Két log 1-motives in the Kummer flat topology
	2.3 Duality of két abelian schemes
	2.4 Duality of két 1-motives
	2.5 Duality of két log 1-motives

	3 Extending tamely ramified strict 1-motives into két log 1-motives
	3.1 Extending tamely ramified lattices into két lattices
	3.2 Extending tamely ramified tori into két tori
	3.3 Extending tamely ramified abelian varieties with potentially good reduction into két abelian schemes
	3.4 Proof of Theorem 3.1

	4 Monodromy
	4.1 Logarithmic monodromy pairing
	4.2 Comparison with Raynaud's geometric monodromy

	5 Log finite group objects associated to két log 1-motives
	5.1 Log finite group objects
	5.2 Log finite group objects associated to két log 1-motives
	5.3 Extending finite group schemes associated to tamely ramified strict 1-motives


