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THE CARDINALITY OF THE CENTER OF A PI RING

CHARLES LANSKI

ABSTRACT. The main result shows that if R is a semiprime ring satisfying a poly-
nomial identity, and if Z(R) is the center of R, then card R � 2card Z(R) . Examples show
that this bound can be achieved, and that the inequality fails to hold for rings which are
not semiprime.

The purpose of this note is to compare the cardinality of a ring satisfying a polynomial
identity (a PI ring) with the cardinality of its center. Before proceeding, we recall the def-
inition of a central identity, a notion crucial for us, and a basic result about polynomial
identities. Let C be a commutative ring with 1, FfXg ≥ Cfx1, . . . , xng the free algebra
over C in noncommuting indeterminates fxig, and set G ≥

n
f (x1, . . . , xn) 2 FfXg j some

coefficient of f is a unit in C
o

. If R is an algebra over C, then f (x1, . . . , xn) 2 G is a polyno-
mial identity (PI) for R if for all ri 2 R, f (r1, . . . , rn) ≥ 0. The standard identity of degree
n is Sn(x1, . . . , xn) ≥

P
õ(�1)sgõxõ(1) Ð Ð Ð xõ(n) where õ ranges over the symmetric group

on n letters. The Amitsur-Levitzki theorem is an important result about Sn and shows that
Mk(C) satisfies Sn exactly for n ½ 2k [5; Lemma 2, p. 18 and Theorem, p. 21]. Call f 2 G
a central identity for R if f (r1, . . . , rn) 2 Z(R), the center of R, for all ri 2 R, but f is not
a polynomial identity. One can obtain a trivial example of a central identity by adding a
polynomial identity to a fixed element from Z(R). A result with major consequences for
the theory of PI rings was the proof of the existence of nonconstant central identities for
matrix rings Mn(F) by E. Formanek [1]. One among the many important applications of
this work was a result of L. Rowen [6] showing that any nonzero ideal in a semiprime PI
ring must intersect the center of the ring nontrivially. Thus, for a semiprime PI ring, there
is an important and interesting relationship between the ring and its center. In particular,
the center cannot be too small. A natural and intriguing question which arises is how
small the center can be relative to the size of the ring? When R is a prime PI ring with
center Z(R), then R and Z(R) have the same cardinality unless R is finite. This follows
from a theorem of E. Formanek [2; Theorem 1, p. 79], which uses Rowen’s result and
shows that when R is a prime PI ring, the Z(R) module R embeds in a free Z(R) module
of finite rank. Another approach is to observe that if S is the central localization of R
at Z(R) � (0), then S is a finite dimensional (simple) algebra over the quotient field of
Z(R) [5; Theorem 2, p. 57]. For future reference we record this observation as a theorem.
Denote the cardinality of S by jSj.
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THEOREM A. If R is a prime PI ring then either R is finite or jRj ≥ jZ(R)j.

We shall need to refer to the theorem of L. Rowen [6; Theorem 2, p. 221] mentioned
above, so we state it for convenience.

THEOREM B. If R is a semiprime PI ring and I Â≥ 0 is an ideal of R then I\Z(R) Â≥ 0.

We begin with some examples, the first of which is easy and shows that when R is not
semiprime, no particular relation exists between jRj and jZ(R)j, except for jZ(R)j � jRj.

EXAMPLE 1. Let 1 Ú ã Ú å be cardinal numbers with å infinite, F a field with
jFj � ã, and X a set of commuting indeterminates over F with jXj ≥ å. Then R ≥"

F F[X]
0 F

#
� M2(F[X]) satisfies the standard identity S4, Z(R) ≥ F Ð I2, so jZ(R)j �

ã Ú å ≥ jRj.
If the ring R in Example 1 satisfies a central identity, then by linearization it satisfies

one which is additive in each variable. Substituting elements from fFe11, F[X]e12, Fe22g

into this central identity shows that it must be a PI for R. Thus, R satisfies no central iden-
tity. We present another less obvious, but still easy example which satisfies a nonconstant
central identity.

EXAMPLE 2. Again let 2 Ú ã Ú å be cardinal numbers with å infinite, F a field
with char F Â≥ 2, jFj � ã, and V ≥ fvi j i 2 Wg, Y ≥ fyi j i 2 Wg, and fzg disjoint
sets of noncommuting indeterminates over F with jWj ≥ å. Let H be the ideal of the free
algebra F

n
V [ Y [ fzg

o
generated by viyi � z and yivi + z, for all i 2 W, and all other

products of two elements from V [ Y [ fzg except for fviyi and yivi j i 2 Wg. If R is
the quotient F

n
V [ Y [ fzg

o
ÛH, then by identifying indeterminates with their images,

consider R ≥ F + Fz +
P

W Fvi +
P

W Fyi. Note that, Fz +
P

W Fvi +
P

W Fyi is an ideal of R
whose cube is zero because all its products are zero except that viyi ≥ z and yivi ≥ �z,
for all i 2 W. Now jRj ≥ å, Z(R) ≥ F + Fz is finite or jZ(R)j � ã when ã is infinite,
uv � vu 2 Z(R) for all u, v 2 R, and viyi � yivi ≥ 2z Â≥ 0. Therefore, R satisfies the
central identity [x1, x2] ≥ x1x2 � x2x1, and the PI

h
[x1, x2], x3

i
.

In view of these examples and Theorem A, only semiprime PI rings which are not
prime are left for consideration. Here the situation is not as clear as for prime rings since
jZ(R)j Ú jRj can hold when Z(R) is infinite, as our next example shows.

EXAMPLE 3. Let å be an infinite cardinal, C a commutative semiprime ring with
jCj ≥ å, I a set with jIj ≥ å, and k Ù 1 an integer. Set H ≥

Q
I Mk(C) ≥ Mk(C)I, the

complete direct product of å copies of Mk(C). Fix a nonzero subring S ² Mk(C) so that
S \ Z

�
Mk(C)

�
≥ (0) and let R ≥ fh: I ! Mk(C) j h(i) 2 S for all but finitely many

i 2 Ig with pointwise addition and multiplication; that is, R consists of all elements inQ
I Mk(C) having finitely many coordinates arbitrary in Mk(C) and all other coordinates

in S. To see that R is a semiprime ring let h 2 R with h(i) Â≥ 0 and observe that (hRh)(i) ≥
h(i)Mk(C)h(i) Â≥ 0, since C a semiprime ring forces Mk(C) to be semiprime. Using S \
Z
�
Mk(C)

�
≥ (0), it is easy to see that Z(R) ¾≥

L
I C, and so jZ(R)j ≥ å. Finally, jRj �

jMk(C)Ij ≥ åå ≥ 2å, and in fact jRj ≥ 2å, because 2å � jSIj � åå ≥ 2å and there is an
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obvious inclusion of SI into R ≥ Mk(C)I . Note that although jZ(R)j ≥ å and ideals of R
intersect Z(R), R has 2å different ideals defined by the subsets A of I as T(A) ≥ fr 2 R j
r(i) ≥ 0 for all i 2 Ag. For a specific example one could let C ≥ F, a field, or C ≥ Fp[X],
and let S ≥ Ce11, or S ≥ Ce12. The same construction for C finite and I countable yields
R uncountable with Z(R) countable.

Our first result for finite centers is presumably well known, but we could not locate it
specifically in the literature. Its proof is easy and it will be convenient to have the result,
so we present it.

THEOREM 1. If R is a semiprime PI ring with finite center, then R is finite.

PROOF. Since R is a semiprime ring, Z(R) is a finite commutative ring with no
nonzero nilpotent elements, so Z(R) is a direct sum of finite fields. Let Z(R) ≥ Z ≥

Ze1 ý Ð Ð Ð ý Zek ≥ Ze, where e ≥ 1z and feig are minimal orthogonal idempotents in Z
whose sum is e. Therefore, R ≥ Reý R(1� e), where R(1� e) ≥ fr� re j r 2 Rg, and
Z(R) \ R(1 � e) ≥ 0. But R(1� e) is an ideal of R and Z

�
R(1� e)

�
≥ Z(R) \ R(1� e),

so by Theorem B, R(1� e) ≥ 0 forcing e ≥ 1R, and it follows that R ≥ Re1ý Ð Ð Ð ýRek.
Hence, Rei is a semiprime PI ring with Z(Rei) ≥ Zei, a finite field, so Theorem B forces
each Re1 to be simple, and so finite by Theorem A, proving that R is finite.

We come to our main result, which shows that Example 3 illustrates the largest differ-
ence which can occur between jZ(R)j and jRj, for R a semiprime PI ring. We shall need
to know that there is a central identity gn(x1, . . . , xk) for the matrix ring Mn(C) which has
no constant term and is linear in x1 ([1] or [5: p. 45]). The construction of gn in [1] or [5]
shows that for any commutative ring K, gn is not a PI for Mn(K).

THEOREM 2. If R is a semiprime PI ring and Z(R) is infinite, then jRj � 2jZ(R)j.

PROOF. There is a natural embedding of R into the direct product of its prime images,
each satisfying the same PI as R, so a well known result of S. A. Amitsur [5; Lemma 2,
p. 55] forces R to satisfy a standard identity S2n for some n ½ 1. Let n be minimal so that
R satisfies S2n. If R satisfies S2 ≥ x1x2 � x2x1, then R is commutative and R ≥ Z(R), so
we may assume that n Ù 1 and proceed by induction on n; that is, if A is a semiprime PI
ring satisfying S2m for m Ú n, and if Z(A) is infinite, then jAj � 2jZ(A)j.

Since no nonzero z 2 Z(R) is nilpotent, by using Zorn’s Lemma one produces an ideal
Pz of R maximal with respect to Pz\fzi j i ½ 1g ≥ ;, and it is straightforward to see that
Pz is a prime ideal of R. It follows from the definition of Pz that Z(R) \ (

T
Z(R) Pz) ≥ 0,

where P0 ≥ R. But
T

Z(R) Pz is an ideal in the semiprime ring R, so Z(
T

Z(R) Pz) ≥ 0 [3;
Lemma 1.1.5, p. 6], forcing

T
Z(R) Pz ≥ 0 by Theorem B, and R embeds naturally in the

direct product
Q

Z(R) RÛPz. Now each RÛPz satisfies S2n and some of these quotients do
not satisfy S2(n�1) since R does not. Let gn(x1, . . . , xk) be a central identity for Mn(F), F
a field, where gn has integer coefficients, one of which is 1, no constant term, is linear
in x1, and is not a PI for any Mn(D) where D is a commutative ring ([1] or [5; p. 45]).
We argue that gn is a central identity for R. A result of C. Procesi [5; Proposition, p. 43]
shows that gn is a polynomial identity for Mn�1(F), so for Mk(F) with k � n� 1, but not
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a PI for Mn(F) by choice of gn. If T is any prime ring satisfying a PI p(x1, . . . , xk), then
W ≥ TZ�1, the localization of T at Z(T)� (0), also satisfies p(x1, . . . , xk) and is a simple
algebra, finite dimensional over its center K [5; Theorem 2, p. 57]. Either W ≥ Mt(K) or
W
K L ≥ Mt(L), for L an algebraic closure of K, and W
K L also satisfies p(x1, . . . , xk)
[5; Lemma 1, p. 89], so 2t � deg p by the Amitsur-Levitzki theorem. In our case, if RÛPz

satisfies S2(n�1) then it embeds in some Mn�1(F) and gn is an identity for RÛPz. If RÛPz

does not satisfy S2(n�1) but gn is an identity for it, then we conclude first that RÛPz does
not embed in any Mk(F) for k Ú n by the Amitsur-Levitzki theorem. Secondly, since
S2n and gn are identities for RÛPz, as above, RÛPz embeds in Mn(F), which satisfies the
PI gn, contradicting the choice of gn. Therefore, gn is a central identity or a PI for each
RÛPz, so a central identity for R; it is not a PI for R since it is not a PI for any quotient
RÛPz which fails to satisfy S2(n�1).

Choose z 2 Z(R) so that gn is not a PI on RÛPz. Writing r + Pz ≥ r̄ 2 RÛPz, the fact
that gn is a central identity for RÛPz means that there are r̄i 2 RÛPz, so that gn(r̄i) ≥
c̄ 2 Z(RÛPz) � (0). For any ȳ 2 Z(RÛPz), ȳc̄ ≥ gn( ȳr̄i, . . . , r̄k), since gn is linear in its
first variable. But gn( ȳr̄1, . . . , r̄k) ≥ gn( yr1, . . . , rk) + Pz with gn( yr1, . . . , rk) 2 Z(R), so
c̄Z(RÛPz) � Z(R) and since Z(RÛPz) is a domain, jZ(RÛPz)j � jZ(R)j results. Applying
Theorem A gives jRÛPzj � jZ(R)j. If I ≥ fz 2 Z(R) j gn is not a PI of RÛPzg, J ≥

Z(R)�
n

I[f0g
o
, A ≥

T
I Pz, and B ≥

T
J Pz, then A\B �

T
Z(R) Pz ≥ 0, so R embeds in

RÛAýRÛB. Now RÛA itself embeds in
Q

I RÛPz, and as we have just observed, for z 2 I,
jRÛPzj � jZ(R)j. Therefore, j

Q
I RÛPzj � jZ(R)jjZ(R)j ≥ 2jZ(R)j since Z(R) is infinite.

Hence jRÛAj � 2jZ(R)j and the proof is complete when A ≥ 0.
Assuming that A Â≥ 0, it follows that A embeds in RÛB since A\B ≥ 0, and of course

RÛB embeds in
Q

J RÛPz. For each z 2 J, gn is a PI of RÛPz, so by our observations above
and Procesi’s theorem, RÛPz satisfies S2(n�1) which means that

Q
J RÛPz and RÛB satisfy

S2(n�1). Since A embeds in RÛB, A is a semiprime ring satisfying S2(n�1). By Theorem 1
and the induction assumption, either A is finite or jAj � 2jZ(A)j � 2jZ(R)j since Z(A) � Z(R)
[3; Lemma 1.1.5, p. 6]. Thus jRj ≥ jRÛAj jAj � 2jZ(R)j2jZ(R)j ≥ 2jZ(R)j completing the
proof of the theorem.

We record a simple consequence of Theorem 2 for algebraic algebras.

THEOREM 3. Let R be a semiprime ring and algebra over the integral domain C. If
R is integral over C of bounded degree, then either R is finite or jRj � 2jZ(R)j.

PROOF. If R is integral over C of bounded degree n, then every r 2 R satisfies some
relation rn+1 + cnrn + Ð Ð Ð + c1r ≥ 0. It is well known and straightforward to show that this
relation implies that f[xi, y], j 1 � i � n + 1g is C-dependent for any x, y 2 R, so that
R satisfies the polynomial identity Sn+1([xn+1, y], . . . , [x2, y], [x, y]) [4; p. 230]. Applying
Theorem 2 finishes the proof.

We note that Example 1 and Example 2 show that if R is not semiprime, then R alge-
braic of bounded degree over a field does not imply any particular relationship between
jZ(R)j and jRj. A similar example for semiprime rings is provided by Example 3 when
C ≥ F, a field, and S ≥ Fe12. Our last example shows that the assumption of bounded
degree in Theorem 3 is essential, even for prime or simple algebras.
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EXAMPLE 4. Let 1 Ú ã Ú å be cardinal numbers with å infinite, F a field with
jFj � ã, and VF an F-vector space with dimF V ≥ å. If fvi j i 2 Ig is an F-basis of V,
for I a well ordered set with jIj ≥ å, then one can represent the elements of HomF(V, V)
as column (or row) finite å ð å matrices, say Må(F) with matrix units feij j i, j 2 Ig.
Set M0 ≥ fA 2 Må(F) j A has only finitely many nonzero entriesg, or equivalently,
M0 ≥ fT 2 HomF(V, V) j vj 2 ker T for all but finitely many j 2 Ig. It is easy to see
that M0 is a simple algebraic F-algebra with jM0j ≥ å, and that Z(M0) ≥ 0. By taking
R ≥ M0 + F Ð IV , so adding scalar matrices to M0, it follows that R is a prime algebraic
algebra over F, jRj ≥ å, and jZ(R)j ≥ jFj � ã.
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