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A runaway avalanche can result in a conversion of the initial plasma current into a
relativistic electron beam in high-current tokamak disruptions. We investigate the effect
of massive material injection of deuterium–noble gas mixtures on the coupled dynamics
of runaway generation, resistive diffusion of the electric field and temperature evolution
during disruptions in the deuterium–tritium phase of ITER operations. We explore the
dynamics over a wide range of injected concentrations and find substantial runaway
currents, unless the current quench time is intolerably long. The reason is that the
cooling associated with the injected material leads to high induced electric fields that,
in combination with a significant recombination of hydrogen isotopes, leads to a large
avalanche generation. Balancing Ohmic heating and radiation losses provides qualitative
insights into the dynamics; however, an accurate modelling of the temperature evolution
based on energy balance appears crucial for quantitative predictions.
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1. Introduction

One of the critical areas of research supporting the successful operation of ITER and
other large-current tokamaks is the development of techniques to mitigate the high thermal
and magnetic energies released in plasma-terminating disruptions (Boozer 2015). The heat
loads resulting from the sudden loss of thermal energy – the thermal quench (TQ) – and
the electromechanical stresses induced by the subsequent loss of the plasma current – the
current quench (CQ) – might cause severe damage to plasma-facing components (Lehnen
et al. 2015).

Massive material injection (MMI) has been considered as a possible method to safely
terminate the discharge and avoid disruption-related damage (Hollmann et al. 2015). When
injected into a disrupting plasma, impurity atoms radiate energy away from the plasma
isotropically, thereby reducing localized heat loads. The choice of the impurity, quantity
and injection scheme provides means to control the CQ duration to a certain extent. This
is important since the CQ duration determines the magnitude of the induced eddy currents
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in the wall, and thus the related mechanical forces, together with the toroidal electric field
responsible for the generation of runaway electrons (REs).

During the CQ phase of disruptions in reactor-scale devices, such as ITER, large RE
currents are expected to form (Boozer 2015; Breizman et al. 2019). These energetic
electrons are of particular concern, as they may give rise to localized power deposition and
cause melting of plasma-facing components. ITER will have approximately an order of
magnitude higher plasma current compared to current devices, which makes a substantial
difference in the potential e-folds of the seed current (Rosenbluth & Putvinski 1997). As
MMI has a major impact on the runaway dynamics, it is also being considered as a runaway
mitigation method. However, no clear strategy regarding runaway mitigation with MMI
has emerged yet.

Recent results of Hesslow et al. (2019a) indicate a substantial increase in the avalanche
multiplication gain in the presence of MMI of heavy impurities compared to previous
estimates. The reason is that in the presence of partially ionized impurities, the increased
number of target electrons available for the avalanche multiplication of runaways is only
partially compensated by the increased friction force.

In this paper, we address the runaway current formation in connection with
material injection in ITER disruption scenarios. The simulations are performed with a
one-dimensional runaway fluid code, based on the GO framework, described in § 2. GO
has been used in the past for evaluating material injection scenarios (Gál et al. 2008;
Fehér et al. 2011), and for interpretative modelling of experiments (Papp et al. 2013). The
version used in this paper includes Dreicer, tritium decay and Compton contributions to
the runaway seed formation, and avalanche generation. A careful modelling of the effect of
partially ionized atoms is particularly important as we consider heavy noble gas impurities.
Thus, we use the avalanche growth rate derived by Hesslow et al. (2019a), which has
been carefully benchmarked to kinetic simulations. In § 3, we present simulations in ITER
scenarios, with neon and argon impurity injections, as well as mixed impurity–deuterium
injections.

The model used here contains self-consistent calculations of the temperature and
electric field evolution during the CQ, including the main runaway generation mechanisms
except hot-tail generation. The omission of part of the hot-tail source is motivated with
radial losses due to the breakup of magnetic surfaces that accompanies the TQ. Indeed,
recent work based on fluid-kinetic simulations shows that taking into account all the
hot-tail electrons overestimates the final runaway current by a factor of approximately four
in ASDEX Upgrade (Hoppe et al. 2020). Even if it is difficult to know how large a part of
the hot-tail runaways become deconfined in an ITER TQ, it is reasonable to assume that
some of the hot-tail seed survives. Indeed, deeply trapped electrons do not get lost even
when the magnetic surfaces break up, and can be scattered into the passing region and run
away after the magnetic surfaces have re-formed. Therefore, the model presented here is
likely to underestimate the runaway seed.

Even in the absence of the hot-tail seed, our results indicate that if losses due to magnetic
perturbations do not occur during a large fraction of the CQ, impurity injection leads to
high runaway currents in the deuterium–tritium (DT) phase of ITER operation, even if
it is combined with deuterium injection. The reason is that the cooling associated with
a large amount of injected material results in low temperatures leading to recombination
and corresponding high value of the total-to-free electron density ratio, which in turn
enhances the avalanche growth rate. A consequence of these results is that successful
runaway mitigation during the non-nuclear phase of ITER operation may not provide
a sufficient validation of the ITER disruption mitigation strategy, since the presence of
radioactive sources of superthermal electrons during the DT phase changes the dynamics.
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Runaway dynamics in the DT phase of ITER operations 3

2. Current dynamics and temperature evolution during material injection

In a cooling plasma, the conductivity drops and an electric field is induced to maintain
the plasma current. The evolution of the parallel electric field E‖ is modelled by the
flux-surface averaged induction equation (Fülöp et al. 2020)

1 + κ−2

2
1
r

∂

∂r
r
∂E‖
∂r

= μ0
∂j‖
∂t

, (2.1)

where κ is the elongation (assumed to be constant here) and j‖ = σSpE‖ + jRE ≈ σSpE‖ +
ecnRE is the sum of Ohmic and runaway current densities, with nRE being the number
density, jRE the current density of runaways and σSp the Spitzer conductivity. Furthermore,
r denotes the minor radius at the mid-plane, while μ0, e and c denote the magnetic
permeability, the elementary charge and the speed of light, respectively. The boundary
conditions for (2.1) are ∂E‖/∂r|r=0 = 0, while at r = a, where a = 2 m is the mid-plane
minor radius of the plasma, E‖ is determined by a perfectly conducting wall at r = b =
2.15 m. Matching the solution for r < a to the vacuum solution for a < r < b gives
E‖(a) = a ln (a/b)∂E‖/∂r|r=a. Note that j‖ and E‖ represent flux-surface averaged values.
Toroidicity effects are neglected here.

When the electric field is larger than a critical field, runaways are produced by velocity
space diffusion into the runaway region due to small-angle collisions (Dreicer generation),
and, in DT operation, by tritium decay and Compton scattering of γ photons originating
from the activated wall. In addition, existing runaways can create new ones through
close collisions with lower-energy electrons (Rosenbluth & Putvinski 1997). The resulting
exponential growth in the number of REs – the avalanche – can be substantially increased
in disruptions mitigated by MMI, according to recent estimates by Hesslow et al. (2019a).

2.1. Runaway generation rates
To compute the Dreicer runaway generation rate for given plasma conditions, we use a
neural network1 (Hesslow et al. 2019b) trained on a large number of kinetic simulations by
the CODE kinetic equation solver (Landreman, Stahl & Fülöp 2014), which accounts for
the effect of partially ionized atoms as described by Hesslow et al. (2018a). In ITER-like
disruptions we find, however, that Dreicer generation is always negligible compared to the
other reactor-relevant seed generation mechanisms, hot-tail generation, tritium decay and
Compton scattering, but for completeness it is included in the simulations.

The runaway seed produced by tritium decay is modelled as (Martín-Solís, Loarte &
Lehnen 2017; Fülöp et al. 2020)(

∂nRE

∂t

)tritium

= ln (2)
nT

τT
f (Wcrit), (2.2)

where nT is the tritium density, τT ≈ 4500 days is the half-life of tritium and f (Wcrit) ≈
1 − (35/8)w3/2 + (21/4)w5/2 − (15/8)w7/2 is the fraction of the electrons created by
tritium decay above the critical runaway energy Wcrit, with w = Wcrit/Q and Q = 18.6 keV.
The critical runaway energy Wcrit is given by Wcrit = mec2(

√
p2

� + 1 − 1), in terms of

p� = 4
√

ν̄s( p�)ν̄D( p�)/
√

E‖/Ec, (2.3)

the critical momentum for runaway acceleration, where the runaway probability makes
a rapid transition between values of essentially 0 and 1, as shown in appendix A.

1The neural network is available at https://github.com/unnerfelt/dreicer-nn
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We normalize momenta to mec, and we have introduced the critical electric field
Ec = nee3 ln Λc/(4πε2

0mec2), where ne is the free electron density, ln Λc ≈ 14.6 +
0.5 ln(TeV/ne20) is the relativistic Coulomb logarithm, TeV is the electron temperature in
electronvolts and ne20 is the density of the background electrons in units of 1020 m−3, ε0 is
the vacuum permittivity and me is the electron mass.

Here, the normalized slowing-down and deflection frequencies, ν̄s and ν̄D, are defined
in terms of the full ones (νs and νD) through (5) and (9) of (Hesslow et al. 2018b):

νs = eEc

mec
γ 2

p3
ν̄s, νD = eEc

mec
γ

p3
ν̄D. (2.4a,b)

In the case of a fully ionized plasma and with a constant Coulomb logarithm,ν̄s = 1 and
ν̄D = 1 + Zeff.

Runaways can also be created via Compton scattering of electrons to the runaway
region in momentum space. These events are caused by γ photons emitted from the
plasma-facing components that are activated by the neutrons produced in the DT fusion
reactions. Using radiation transport calculations performed at several poloidal locations
in ITER, Martín-Solís et al. (2017) estimated the gamma flux energy spectrum to
be Γγ (Eγ ) = Γγ 0 exp (− exp (z) − z + 1), with z = [ln (Eγ [MeV]) + 1.2]/0.8 and Γγ 0 =
4.44 × 1017 m−2 s−1 MeV−1, giving a total flux of 1018 m−2 s−1, when integrated over
energy. Using the expression for the total Compton cross-section (Martín-Solís et al. 2017)

σ(Eγ ) = 3σT

8

{
x2 − 2x − 2

x3
ln

1 + 2x
1 + x(1 − cos θc)

+ 1
2x

[
1

[1 + x(1 − cos θc)]2 − 1
(1 + 2x)2

]

− 1
x3

[
1 − x − 1 + 2x

1 + x(1 − cos θc)
− x cos θc

]}
, (2.5)

with

cos θc = 1 − mec2

Eγ

Wcrit/Eγ

1 − (Wcrit/Eγ )
, (2.6)

the Thomson scattering cross-section σT = 8π/3[e2/(4πε0mec2)]2 and x = Eγ /(mec2),
the runaway generation rate can be evaluated as(

∂nRE

∂t

)γ

= ne

∫
Γγ (Eγ )σ (Eγ ) dEγ . (2.7)

Note that the Compton seed depends on the final configuration of the first wall and blanket,
as well as the time elapsed after the DT reactions cease; therefore the numbers used here
are only estimates.

Close collisions between existing runaways and thermal electrons generate new
runaways, leading to an exponential growth of the runaway density, from a usually tiny
seed population. In partially ionized plasmas, the growth rate for this avalanche process
is influenced by the extent to which fast electrons can penetrate the bound electron cloud
around the impurity ion, i.e. the effect of partial screening. Taking into account these
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effects, the growth rate is given by (Hesslow et al. 2019a)(
∂nRE

∂t

)screened

aval
= enRE

mec ln Λc

ntot
e

ne

E‖ − Eeff
c√

4 + ν̄s( p�)ν̄D( p�)
, (2.8)

where ne and ntot
e are the free and the total (free+bound) electron densities, respectively

(Hesslow et al. 2018a). The expression for (Eeff
c ) was derived in Hesslow et al. (2018b)2. To

obtain a well-behaved formula also for E‖ < Eeff
c , which we use to approximately describe

the runaway decay at near-critical electric fields (neglecting losses due to magnetic
perturbations), we replace p�(E‖) by p�(Eeff

c ) for E‖ < Eeff
c .

In the completely screened limit, when the electron only interacts with the net charge of
the ion, the avalanche growth rate reduces to (Rosenbluth & Putvinski 1997)(

∂nRE

∂t

)RP

aval
= enRE

mec ln Λc

E‖ − Ec√
5 + Zeff

. (2.9)

The Dreicer and the avalanche runaway generation processes can be reduced by finite
aspect ratio effects. However, recent results of McDevitt & Tang (2019) indicate that at
high densities and electric fields this reduction is negligible due to the high collisionality
of electrons at momentum p�. In such circumstances, the bounce-averaged approach for
collisionless electrons, previously employed to take into account the effect of toroidicity,
is not valid, and the runaway generation is approximately local. As we consider cases with
MMI, leading to high densities, in this paper the commonly used neoclassical factor that
would multiply the avalanche growth rate (ϕε = (1 + 1.46ε1/2 + 1.72ε)−1/2, with ε the
inverse aspect ratio) will be omitted.

Hot-tail generation occurs in the case of sudden cooling, when the collision frequency
is lower than the cooling rate, and fast electrons do not have time to thermalize. Hot-tail
generation is predicted to be the dominant primary generation when the TQ duration is
shorter than the collision time at the runaway threshold velocity (Helander et al. 2004),
which is likely to be the case in ITER (Smith et al. 2005). However, hot-tail runaways are
produced in the early phase of the TQ when the level of magnetic fluctuations is high, and
their losses due to radial transport are likely to be significant. Lacking reliable models for
self-consistently treating the hot-tail generation and the losses due to magnetic fluctuations
during the TQ, both of these processes will be ignored in this paper. The implications of a
remnant hot-tail seed will be discussed in § 4.

2.2. Temperature evolution
The major causes of energy loss during disruption are radial transport due to magnetic
fluctuations, induced by magnetohydrodynamic (MHD) instabilities, and line radiation
due to impurity influx. The MHD-induced energy loss is likely to dominate in the initial
part of the TQ until the temperature has dropped to ∼100 eV, due to its strong temperature
scaling ∼T5/2 (Ward & Wesson 1992). For simplicity, this part of the temperature drop is
modelled by an exponential decay according to

T(r, t) = Tf(r) + [T0(r) − Tf(r)] e−t/t0, (2.10)

where the temperature decays from the initial T0(r) towards the final Tf(r) temperature
profile with a characteristic time constant t0. This temperature evolution is employed
until the central temperature drops to ∼100 eV. After this, the MHD-induced losses are

2A numerical implementation of (Eeff
c ) is available at https://github.com/hesslow/Eceff
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assumed to be negligible, and the temperature evolution is determined by the energy
balance equation

3
2

∂(nT)

∂t
= 1 + κ−2

2
3n
2r

∂

∂r

(
χr

∂T
∂r

)
+ σ(T, Zeff)E2 −

∑
i,k

neni
kL

i
k(T, ne) − PBr − Pion,

(2.11)

where n is the total density of all species (electrons and ions), nk
i is the density of

the ith charge state (i = 0, 1, . . . , Z − 1) of the ion species k (e.g. deuterium, neon),
PBr[W m−3] = 1.69 × 10−38(ne[m−3])2

√
T[eV]Zeff is the Bremsstrahlung radiation loss

and Pion = ∑
i,k Ei

kI
i
kn

i
kne is the ionization energy loss. Here, Ii

k denotes the electron impact
ionization rate and Ri

k the radiative recombination rate for the ith charge state of species
k, respectively, and Ei

k denotes the corresponding ionization energy. The ionization and
recombination rates, as well as the line radiation rates Li

k(ne, T), are extracted from the
Atomic Data and Analysis Structure (ADAS) database3 . The heat diffusion term in the
equation is included for completeness, but its effect is negligible in all the considered
cases. In the simulations we use the constant heat diffusion coefficient χ = 1 m2 s−1, but
values in the range 0.1–100 m2 s−1 give similar final runaway currents.

We calculate the density of each charge state for every ion species from the
time-dependent rate equations

dni
k

dt
= ne[Ii−1

k ni−1
k − (Ii

k + Ri
k)n

i
k + Ri+1

k ni+1
k ]. (2.12)

To allow for comparison to previous work by Martín-Solís et al. (2017), we will also
show results using a temperature evolution assuming equilibrium between Ohmic heating
and line radiation losses, so that the temperature profile satisfies

E2σ [T, Zeff(T)] =
∑

i

ne(T)ni
kL

i
k[T, ne(T)]. (2.13)

Equation (2.13) is solved numerically using T = 5 eV as initial temperature. In this case,
the densities of the various ionization states, and the corresponding electron density, are
calculated assuming an equilibrium between ionization and recombination; that is, ni

k are
computed from

Ri+1
k ni+1

k − Ii
kn

i
k = 0, i = 0, 1, . . . , Z − 1,∑

i

ni
k = ntot

k , i = 0, 1, . . . Z,

⎫⎪⎬
⎪⎭ (2.14)

where ntot
k is the total density of species k.

3. Effect of massive material injection

In the following we present simulations of an ITER-like CQ with material injection.
For the scenario we consider, the initial plasma current is Ip(t = 0) = 15 MA, and the
major and minor radii are R = 6 m and a = 2 m, respectively. The pre-disruption density
profile is assumed to be flat with a value of ne(t = 0) = 1020 m−3. The initial temperature
profile is given by T(t = 0, r) = 20[1 − (r/a)2] keV. The initial current density profile
is assumed to be j‖(t = 0, r) = j0[1 − (r/a)0.41], with the normalization parameter j0
chosen to give a total plasma current of 15 MA (for a non-elongated plasma, κ = 1, it
is j0 = 1.69 MA m−2). The current density profile j‖(t = 0, r) corresponds to an internal

3ADAS: http://www.adas.ac.uk
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inductance of li = 0.7. This set of initial plasma parameters is similar to that used by
Martín-Solís et al. (2017).

We solve the induction equation, (2.1), with the runaway generation rate given by the
sum of the primary (Dreicer+tritium decay+Compton) and avalanche growth rates, for
different amounts of impurity and deuterium. We find that the tritium or Compton seed
dominates over Dreicer in all the considered cases.

The seed from tritium decay decreases with increasing impurity content. This is partly
due to the shorter CQ times associated with higher impurity content, leaving the seed less
time to be generated, and partly because the critical energy, Wcrit, increases with increasing
impurity content, so that a smaller fraction of the tritium spectrum falls within the runaway
region.

On the other hand, the Compton seed increases with increasing impurity content, due
to the increasing number of available target electrons for Compton scattering. The energy
of the γ photons is much larger than the ionization potential for all species present in
the plasma, hence both bound and free electrons can become runaways due to Compton
scattering. Furthermore, the energy of the γ photons is much larger than the critical
runaway energy, so an increase in the critical runaway energy only has a marginal effect
on the runaway generation due to Compton scattering by preventing electrons scattered at
large angles from becoming runaways.

As a result, a seed current of the order of a few amperes is obtained almost independently
of the injected amount of noble gas and/or deuterium. As we will see, even if the seed
current is very small, it results in a large final runaway current, due to the substantial
avalanche effect.

We assume the injected material to be uniformly distributed at the beginning of the
simulation. For the initial part of the TQ, we use an exponentially decaying temperature
evolution according to (2.10) with t0 = 1 ms and Tf(r) = 50 eV (flat profile), until t = 6
ms, when the central temperature has dropped to ≈ 100 eV. This represents the initial
phase of the disruption when the MHD-induced energy loss dominates. Below 100 eV
the temperature is determined by the energy balance equation (2.11). The density of the
charge states for every ion species is calculated from the time-dependent rate equations
(2.12) during the whole simulation, both in the initial exponential decay phase and when
the energy balance equation is employed. The main reason for using the exponentially
decaying temperature in the initial phase is to determine the initial charge states of the
impurities when the temperature reaches 100 eV, and the energy balance equation is
invoked. We have confirmed that the results are insensitive to the value of the decay time
and the value of the heat diffusion coefficient χ .

3.1. Pure neon injection
To illustrate the effect of impurity injection, we start by simulating the runaway dynamics
for pure noble gas injections. Figure 1(a) shows the runaway current as a function of
injected neon and argon density (normalized to the initial deuterium density, 1020 m−3),
using two models for avalanche generation: with partial screening effects, as given in (2.8),
and with complete screening (2.9), respectively. The effect of screening is substantial. It
increases the final runaway current from about 2–3 MA without screening to 6–7 MA
with screening, for both neon and argon injections. Including partial screening, i.e. using
(2.8), the avalanche growth rate increases with density for neon injection, while in the
completely screened case, i.e. using (2.9), it is slightly decreasing. Including the effect of
the elongation reduces the final runaway current at higher injected neon densities, but only
marginally.
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FIGURE 1. (a) Maximum runaway current as a function of injected noble gas density. Solid:
neon with partial screening (i.e. avalanche calculated with (2.8)); dash-dotted: neon complete
screening (‘CS’, i.e. using (2.9)); dotted: argon with partial screening; long dashed: argon
complete screening; dashed: neon with partial screening at κ = 1.6. Panels (b–d) correspond
to 1020 m−3 neon injection, with partial screening effects included and κ = 1. (b) Temporal
evolution of plasma current (solid), and breakdown into Ohmic (dash-dotted) and runaway
(dashed) contributions. (c) Snapshots from the time evolution of the temperature. (d) Initial
current profile (solid) and runaway current profile at the end of the Ohmic CQ (dashed).

Figure 1(b–d) shows details of the current and temperature evolution during the CQ for
a representative case with nNe = 1020 m−3. The temperature stabilizes at a few eV at the
centre with a rather flat radial profile, resulting in a CQ time scale of the order of a few
tens of milliseconds. The CQ is completed at ∼20 ms (14 ms after the TQ) and results in
the formation of a runaway beam with a current of 6.7 MA. At this time the radial profile
of the runaway beam is slightly more peaked around the magnetic axis compared to the
initial current profile. The dissipation rate (after 20 ms) is very slow for this relatively
modest injected impurity density.

3.2. Mixed deuterium and neon injection
We now turn to simulating the effect of injections of mixtures of noble gas and deuterium
using the same approach as in the previous section. Runaway currents right before
the dissipation phase (i.e. when IRE assumes its maximum) are shown in figure 2,
for different amounts of injected noble gas and deuterium. Below the green solid line
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FIGURE 2. Maximum runaway current as a function of injected density for the reference
ITER-like scenario. The horizontal and vertical axes show the injected deuterium and noble
gas densities (neon in (a–c), argon in d), respectively. The temperature evolution is determined
by (2.10) and (2.11) in (a) and (2.13) in (b). (c) Same as (a) but with plasma elongation κ = 1.6.
(d) Same as (a) but for argon. Below the green solid line the Ohmic CQ time is longer than
150 ms and above the green dashed line the Ohmic CQ time is shorter than 35 ms.

the injected gas mixture is insufficient to induce a complete radiative collapse, which
we characterize by requiring that the CQ time, defined as tCQ = [t(IOhm = 0.2I(t=0)

p ) −
t(IOhm = 0.8I(t=0)

p )]/0.6, is longer than 150 ms. For these injection parameters, the
temperature remains of the order of 100 eV in parts of the plasma, and the corresponding
CQ times in this region are therefore very long (of the order of seconds). Above the green
dashed line, the Ohmic CQ time is less than 35 ms, which is the boundary to avoid damage
due to torques on the first wall (Hollmann et al. 2015). Note, however, that in cases with
a large runaway conversion, the runaway current aborts the CQ rather abruptly, so that
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the ohmic CQ time calculated here is a lower estimate of the CQ time in the absence
of runaways. In the region between the solid and dashed green lines, we obtain runaway
currents ranging from 3 to 8 MA.

Comparing the case with time-dependent temperature, (2.10) and (2.11), with the case
when an equilibrium between Ohmic heating and line radiation is assumed, (2.13), we find
that the former leads to higher runaway currents, especially for high deuterium contents,
cf. figure 2(a) and 2(b). One reason for this is that in the time-dependent case, it takes a
finite time to reach the equilibrium ionization distribution. At low degrees of ionization,
both higher ionization states of neon and the corresponding higher electron density lead
to larger radiative losses, which decreases the temperature. This, in turn, leads to higher
induced electric fields, and thus higher runaway currents. Also, if the temperature drops
below ≈ 2 eV, the deuterium starts to recombine. The corresponding increase in partially
ionized species enhances the avalanche, which also leads to higher runaway currents, as
will be discussed later in more detail.

Another reason for the difference is that ionization energy losses are included in the
time-dependent approach, which further lowers the temperature. Note that ionization
losses are operational even when there is no net increase in free electron density (and
thus there is no net increase in the chemical potential of ionized species), as radiative
recombination may balance or outweigh the collisional ionization events that take place
continuously. As a possible intermediate step between the time-dependent energy balance,
(2.11), and the Ohmic–radiative equilibrium, (2.13), one may also consider evolving the
temperature according to (11) of Aleynikov & Breizman (2017), where the line radiation
and ionization coefficients assume the ionization states to be in a coronal equilibrium
and radiative recombination is disregarded, but the heat capacity and chemical potential
of ionized species are included. This would lead to results similar to our figure 2(b),
indicating that accounting for the heat capacity and chemical potentials of the ionized
species does not make a major difference.

Finally, starting the iterative solution of (2.13) from an initial temperature of 5 eV
ensures that a rather low equilibrium temperature is obtained whenever that exists, while
the time-dependent approach can evolve towards a higher equilibrium temperature. This
mainly affects the position of the solid green line in figure 2.

The results are similar for elongated plasmas; see figure 2(c) for a radially constant
κ = 1.6. Plasma elongation generally reduces the runaway generation due to its significant
effect on Dreicer generation (Fülöp et al. 2020), but it has only a marginal effect
for this ITER-like scenario, where tritium decay and Compton seed dominate over
Dreicer generation. Elongation does, however, extend the parameter regime of interest
as constrained by the CQ times. Injecting argon instead of neon leads to marginally higher
runaway currents for certain parameters (and reduces the parameter regime of interest as
constrained by the CQ times), compare figure 2(a) with 2(d), but the general conclusions
are the same.

We identify four qualitatively different regions: (1) a region with large conversion
at high neon densities and low deuterium densities, (2) a region with very long CQ
times and negligible runaway generation, (3) a region with large runaway conversion at
high deuterium densities and (4) a region between (1) and (3) with the lowest runaway
conversions. A representative case from region (1) has already been presented in the
previous subsection. In what follows, we analyse the representative cases from the three
remaining regions. These cases are marked in figure 2(a) and given in table 1.

The radial profiles of the temperature, electric field and runaway current density at a few
time slices are shown in figure 3 for Cases 2–4. In Case 2, shown in figure 3(a,d,g), the
temperature remains of the order of 100 eV in the central part of the plasma, resulting in
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Case nD/nD0 nNe/nD0 IRE [MA]

1 0 1 6.7
2 3 0.03 0
3 40 0.08 7.3
4 7 0.08 3.7

TABLE 1. Injected material in the four representative cases studied here (three of them are
indicated in figure 2(a)). The initial deuterium density is nD0 = 1020 m−3. The final column
shows the runaway currents right before the dissipation phase (i.e. when IRE assumes its
maximum).

very long CQ times. The increasing temperature in the central part of the plasma occurs
because the injected material does not cause sufficient radiative losses to counteract the
Ohmic heating there. Furthermore, due to the local temperature drop in the edge plasma,
a strong electric field is induced (see figure 3d), and that will diffuse inward and lead to
additional Ohmic heating. The effect of this increased heating is strongest close to the
boundary between the hot and cold regions, where the electric field is induced, resulting
in a radial peak also in the temperature. The resulting current evolution is shown as the
solid curve in figure 4(a). After a rather fast drop initially while the current in the cold
region decays, the CQ time for the remaining Ohmic current in the hot region is very slow.
Notably, the runaway current remains negligibly small throughout the entire process.

In Case 3 (high injected deuterium density), on the other hand, the radiative losses are
strong, resulting in very low temperatures, which leads to a large runaway current, and a
full current conversion. The temperature evolution for this case is presented in figure 3(b).
The plasma is divided in two regions: an inner, continuously shrinking region with a
temperature of ∼5 eV, and an outer region with a temperature as low as ∼1 eV. The
boundary between these two regions moves radially inward as the electric field decays
away, and the heating decreases (compare figure 3(b) and 3(e)). In this case, however,
radiative losses are strong enough to maintain a low temperature in the outer region, even
when the electric field is sufficiently high to cause a significant runaway avalanche in part
of the cold region.

At 1 eV, the ionization degree of deuterium is significantly affected, so that a sizable
fraction of the deuterium becomes neutral in the outer region of the plasma, as shown in
figure 5. This strongly enhances the avalanche, due to the reduction in the free electron
density. This enhancement makes the avalanche generation stronger in the outer part of
the plasma, even if the electric field is lower there compared to the inner part. The result is
a large runaway current of ∼7.3 MA, with an off-axis maximum, the evolution of which
is shown in figure 3(h), and the final current density profile is shown by the dashed line
in figure 4(b). There is, however, a significant current dissipation due to the large effective
critical electric field, such that by the end of the 150 ms long simulation the remaining
runaway current is only 3.2 MA.

Finally, Case 4, representing an intermediate case between Case 1 and Case 3, has the
lowest conversion, while also an acceptable CQ time. As can be seen in figure 3(c), the
deuterium density is not high enough to result in sufficiently low temperatures to make the
deuterium recombine, except close to the edge where the heating and the electric field are
very low, but it is sufficiently high to dampen the avalanche, at least partially. The resulting
runaway current evolution is shown in figure 3(i) and the total current evolution is shown
by the dash-dotted line in figure 4(a). The final runaway current is ∼3.7 MA with a radial
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FIGURE 3. Time slices from the temperature (a–c), the electric field (d–f ) and the runaway
current density (g–i) evolution. Left column (Case 2): nNe = 3 × 1018 m−3, nD = 3 × 1020 m−3

(very long CQ time). Middle column (Case 3): nNe = 8 × 1018 m−3, nD = 4 × 1021 m−3 (low
temperature and high runaway conversion). Right column (Case 4): nNe = 8 × 1018 m−3, nD =
7 × 1020 m−3 (moderate runaway conversion).

profile centred near the magnetic axis (see figure 4(b)). The dissipation rate is relatively
small with ∼13 % dissipation within the simulation time of 150 ms.

A limitation of the model used in this paper is that transport of neutral particles is not
taken into account. Since the neutral particles are not confined by the magnetic field, they
might be lost before giving rise to a significant enhancement of the avalanche. However,
if a large fraction of the injected deuterium would recombine and leave the plasma, its
contribution to the increase in the critical electric field would also be lost. Therefore the
resulting runaway current turns out to be similar to a case with a lower amount of injected
deuterium. Simulations, where neutral particles are instantaneously removed from the
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FIGURE 4. (a) Current evolution. Thin black: Ip; thick blue: IRE. Solid: Case 2, nNe = 3 ×
1018 m−3, nD = 3 × 1020 m−3 (too long CQ time); dashed: Case 3, nNe = 8 × 1018 m−3,
nD = 4 × 1021 m−3 (low temperature and high runaway conversion); dash-dotted: Case 4,
nNe = 8 × 1018 m−3, nD = 7 × 1020 m−3 (lowest runaway fraction). (b) Current density profiles.
Thin black line is j‖(t = 0); thick blue lines represent jRE at the time of highest IRE. Dashed: Case
3; dash-dotted: Case 4.
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FIGURE 5. Average ion charge as a function of radius for (a) neon and (b) deuterium for
Case 3 (nNe = 8 × 1018 m−3, nD = 4 × 1021 m−3).

system, show that the runaway current for injected densities in the region around Case 3
is still as large as 3–4 MA, only a few percent of which is dissipated within the simulation
time of 150 ms.

3.3. Qualitative analysis
The dynamics described in the four cases can be qualitatively understood by considering
the behaviour of the avalanche growth rate, together with the balance between radiative
losses and Ohmic heating, while assuming an equilibrium distribution over charge
states. In figure 6, the radiative losses, the sum of radiative and ionization losses
and the Ohmic heating are shown as functions of temperature, for the neon and
deuterium densities of the four cases presented above. The Ohmic heating is shown
for johm = 1.69 MA m−2, corresponding to the initial on-axis current density, and for
johm = 0.2 MA m−2, representing a case where the Ohmic current has partially, but not
completely, decayed.

In Case 1, shown in figure 6(a), the equilibrium temperatures for both current densities
are of the order of a few eV. The avalanche growth rate is enhanced by the presence of a
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FIGURE 6. Radiative losses (solid), radiative and ionization losses (dash-dotted) and Ohmic
heating (dashed and dotted) as functions of temperature for Case 1 (a), Case 2 (b), Case 3 (c)
and Case 4 (d), assuming the equilibrium distribution over charge states. The Ohmic heating is
shown for johm = 1.69 MA m−2 (dashed) and johm = 0.2 MA m−2 (dotted); the corresponding
stable equilibrium points are marked with circles.

relatively large density of partially ionized neon. Therefore, this case results in a large RE
conversion.

In Case 2, on the other hand, there is an equilibrium temperature at ∼200 eV when
johm = 1.69 MA m−2, as shown in figure 6(b). There is also an equilibrium at a lower
temperature for this current density. However, since the Ohmic heating is stronger than the
radiation losses at the central temperature of ∼100 eV in the beginning of the simulation,
where the losses are dominated by radiation, the temperature will increase towards the
higher equilibrium. This mechanism causes the inner part of the plasma to remain hot,
as observed in figure 3(a), and is responsible for the very long CQ time. Due to the
high temperature, and thus high conductivity, the induced electric field is weak, and
the corresponding avalanche growth rate is practically zero; thus RE conversion remains
negligible.

With johm = 0.2 MA m−2, the (unique) equilibrium temperature shown in figure 6(b) is
still of the order of a few eV, corresponding to the cold, outer part of the plasma shown
in figure 3(a). However, the induced electric field remains modest and the low amount of
partially ionized material makes the avalanche growth rate – for a given electric field –
small, which results in a small runaway generation rate even in this region.

In Case 3, figure 6(c) shows that the large amount of deuterium leads to an overall
enhancement of the radiative losses. For johm = 0.2 MA m−2, this shifts the equilibrium
temperature from a few eV down to only ∼1 eV, which corresponds to the cold outer part
of the plasma in figure 3(c). This large reduction in the temperature makes a significant
difference, as at this temperature the equilibrium degree of ionization of deuterium is only
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a few per cent. The presence of neutral deuterium enhances the avalanche growth rate, and
the low temperature also favours an increased induced electric field. These circumstances
result in a large avalanche generation in the outer part of the plasma in Case 3, even
if the avalanche is partly constrained by a short CQ time and saturation effects. Note,
however, that although the Ohmic current density is modest in this region, the Ohmic
current remaining in the more central part of the plasma will have to pass through the cold
region as it diffuses outwards. Therefore, a significant induced electric field is sustained
in the cold region, and thus the local conversion is not limited by the local current density.
The result is a large runaway current with an off-axis radial profile, as shown by the dashed
line in figure 4(b).

Finally, Case 4 can be regarded as a compromise between the various features in the
other three cases. The injected densities are sufficiently large to avoid an equilibrium at
high temperatures (over 100 eV), but not too large, such that equilibrium temperature does
not drop too close to 1 eV (unless the Ohmic current density is very low). This ensures
an acceptably short CQ time, while still not leading to a large induced electric field. The
ratio of the fully ionized deuterium and the partially ionized neon is large enough to limit
partial screening effects on the avalanche growth rate, which contributes to the resulting
runaway current remaining modest.

4. Discussion

When partially ionized impurities are introduced into the plasma, there are two
competing effects which affect the avalanche growth rate: (1) additional target electrons
become available for avalanche multiplication (represented by the prefactor ntot

e in the
growth rate formula (2.8)), which leads to an increasing growth rate; and (2) the critical
runaway momentum p� increases due to the enhancement of the collisional slowing-down
and pitch-angle scattering processes (i.e. through increasing νs and νD, respectively),
which leads to a decreasing growth rate. For the scenarios considered here, we generally
find that the additional-target effect prevails, leading to a net increased growth rate in the
presence of impurity injection.

Our results predict a higher runaway conversion in the presence of MMI than previous
estimates by Martín-Solís et al. (2017). One of the reasons for the difference is that
the avalanche growth rate is different in the two cases, mainly because the corrections
to the slowing-down and deflection frequencies, νs and νD, due to partial screening are
different; namely, Martín-Solís et al. (2017) employs a fully classical model (Mosher
1975), whereas we take a quantum mechanical approach to determine the collision rates.
Also, the expressions for the avalanche growth rates are slightly different. The growth
rate used here, given in (2.8), is based on the calculation by Hesslow et al. (2019a),
where analytical solutions of the kinetic equation were derived in the same parameter
regimes as the Rosenbluth–Putvinski calculation, and benchmarked to kinetic simulations.
In contrast, Martín-Solís, Loarte & Lehnen (2015) consider an expression for the growth
rate which is obtained in the momentum-diffusion-free limit, given in (21) of Martín-Solís
et al. (2015) as

Γ ≡ 1
nRE

(
∂nRE

∂t

)MS

aval
= 2πr2

0ntot
e c√

1 + ( pMS
� /mec)2 − 1

, (4.1)

where r0 is the classical electron radius, which would agree with our expression in the
non-relativistic limit p� � mec, if pMS

� had been defined in the same way. Although it is
not presented in this form, (16) of Martín-Solís et al. (2015) defines the effective critical
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nD nAr Iseed [A] Iseed [A] IRE [MA] IRE [MA] IRE [MA] IRE [MA]
p� from (4.2) p� from (2.3) Γ from (4.1) Γ from (2.8) Γ from (2.8) Γ from (2.8)

T const. T const. T const. T const. T from (2.13) T from (2.11)

0 1019 0.85 1.0 3.6 4.8 6.1 4.2
2 × 1021 1018 8.50 × 10−5 0.047 1.4 2.3 3.9 6.5
4 × 1021 1018 2.14 × 10−6 5.28 × 10−5 0 0.3 4.2 6.8

TABLE 2. Seed currents (Iseed) and final runaway currents (IRE) for combined argon and
deuterium injection. Iseed: comparison between results using (4.2) and (2.3) with constant
temperature. IRE: comparison between results using avalanche growth rate expressions from
(2.8) and (4.1) and different assumptions for temperature evolution (constant, time-dependent
(2.11) or equilibrium (2.13)). IRE calculated using the assumptions used in Martín-Solís et al.
(2017) (avalanche growth rate from (4.1), p� from (4.2) and constant temperature) agrees with
the runaway currents obtained there. Seed runaways are assumed to originate only from tritium
decay in all cases, and p� from (2.3) is used in the last three columns.

momentum as

eE‖ =
√

p2
�ν

MS
s ( p�)[νMS

D ( p�) + νMS
s ( p�)], (4.2)

which is similar to our result (2.3), but differs by the appearance of an additional νs term
and by the use of different collision frequencies. The choice of critical momentum leads to
minor differences in the tritium seed current (see table 2). Our simulations show that the
main difference between the results is not due to the difference between (4.1) and (2.8),
but rather due to the choice of model for νs and νD.

The other major difference is that here, the spatio-temporal evolution of the temperature
is taken into account, while it was assumed to be constant in Martín-Solís et al. (2017).
As we have seen in the previous section, the evolution of the temperature has a crucial
impact on the runaway dynamics. To quantify the differences, we have performed
simulations for three different combinations of argon and deuterium injection, and
compared the maximum runaway current values for various levels of sophistication of
the modelling; the results are presented in table 2.

When we use the same avalanche growth rate as Martín-Solís et al. (2017), and a
constant temperature, we find agreement with their results. In particular, at sufficiently
high deuterium injection the generation of runaways is completely suppressed. However, if
the temperature evolution is included, we find a significant runaway conversion. At a fixed
value of nAr, the runaway conversion even increases upon an increasing amount of injected
deuterium, when using (2.8). Furthermore, at high deuterium densities, determining the
temperature evolution from the more accurate (2.11), rather than (2.13), leads to a further
increase in the predicted runaway currents. Note that the radiation peak resulting from
deuterium between 1 and 2 eV, that can be seen in figure 6(c), has not been taken into
account in previous work.

The most interesting aspect of the cooling in connection with major quantities of
deuterium is the partial recombination of the deuterium due to the low temperatures.
In this case, ntot

e /ne increases, and the screened avalanche model predicts a significantly
higher avalanche growth rate for a given electric field than in the fully ionized case.
The reduced ionization degree of deuterium also impacts the conductivity, as discussed
in appendix B: at 1 eV the conductivity is reduced by 30 % compared to the Spitzer
conductivity. However, simulations with this effect included show only a slightly higher
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FIGURE 7. Maximum runaway current as a function of seed current for Cases 1, 3 and 4,
assuming a flat seed runaway profile. Initial plasma current is (a) 15 MA and (b) 10 MA.

runaway current, since the decrease in conductivity is counterbalanced by an increase in
the induced electric field. This balance is further adjusted as the temperature also slightly
increases due to a more efficient Ohmic heating for a given Ohmic current density.

So far all density profiles have been assumed to be flat. To test the sensitivity of the final
runaway current to a radial variation of the density, we performed a series of simulations
(not shown here) with density profiles varying from hollow to peaked. Through the four
cases considered in the paper, we have divided the parameter space into four characteristic
regions in terms of the runaway dynamics. We find that, as long as the radial density
variation is not so strong that different parts of the plasma would correspond to different
regions in this taxonomy, both the total runaway current and the CQ time are fairly
insensitive to the radial density variation. While the radial density profile does affect the
runaway current profile, as long as the total number of injected atoms are held constant,
the total runaway current remains largely unaffected. A similar statement can be made
regarding CQ time: the current decay rate may increase in some region and decrease in
another, but total CQ time is only weakly affected. If, however, the radial density variation
would become so strong that different parts of the plasma would correspond to different
regions in our classification, effects characteristic of those regions could come into play
simultaneously.

To assess the importance of a remnant hot-tail seed, we calculate the maximum runaway
current as a function of seed current, assuming a flat seed profile for simplicity. Figure 7
shows the maximum runaway current as a function of seed current, for three of the
cases we considered (Cases 1, 3 and 4). The final runaway current is approximately
logarithmically sensitive to the seed. The reason for this weak dependence is that when the
runaway current becomes comparable to the Ohmic current, the electric field is reduced,
which reduces the avalanche growth rate. In the 15 MA case, shown in figure 7(a), as long
as the seed current is above 1 μA (corresponding to a seed RE density of less than 2000
m−3) it results in more than 1 MA final runaway current even in the most optimistic Case
4. For a seed current of 1 μA, Cases 1 and 3 lead to 4.7 and 5.2 MA, respectively.

In the absence of tritium decay and Compton sources, hot-tail generation is the only
source that can give a significant runaway in the initial, non-nuclear operational phase
of ITER. Simulations with only Dreicer source for a 10 MA ITER scenario show that,
apart from rare cases when a filamentation of the temperature profile occurs where a
substantial Dreicer seed can be generated, the seed current is extremely small (of the
order of 10−10 A). As a result, the total runaway current is much less than 1 MA except
for deuterium densities high enough to cause a substantial recombination. However, as
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figure 7(b) shows, if there is a remnant hot-tail seed of the order of 0.5 A, it will result in
large runaway currents also in the 10 MA scenario (3.7 MA for Case 1, 4.3 MA for Case 3
and 1.7 MA for Case 4). Note that hot-tail electrons are produced under a short period
during the TQ, and if they are eliminated, they will not be reconstituted. In contrast,
the tritium-decay and Compton-scattering seeds that are important in the DT phase are
produced over a longer period of time and radial losses that occur only during the TQ are
not sufficient for their deconfinement.

In this paper, the plasma was assumed to be transparent to radiative losses. However,
plasmas at low temperature and high density (such as Case 3) are partly opaque to the
Lyman lines of hydrogen isotopes. Not only is the energy balance changed due to the
radiation being trapped in the plasma, but also the ionization and recombination rates
(Pshenov et al. 2019). The importance of opacity effects for runaway generation in the
presence of low-Z impurities such as beryllium and carbon has also been pointed out by
Lukash, Mineev & Morozov (2007). A proper treatment of the problem requires solution
of radiation transport equations, which is outside the scope of the present paper. However,
we can estimate an upper bound for the effect of opacity by considering the extreme
case, when all the deuterium radiation is trapped in the plasma. The temperature is then
determined from the energy balance equation (2.11), in which the deuterium line radiation
is removed, along with the radiation corresponding to the ionization (Pion). The latter
term is important in Case 3, as shown in figure 6 (note the difference between solid and
dash-dotted lines close to the left radiation peak). Simulation results show that if only the
deuterium line radiation is trapped (i.e. removed from (2.11)), the final runaway current is
reduced from 7.3 MA (in the case of a fully transparent plasma) to 6 MA. If we also remove
all the ionization radiation in (2.11), the final runaway current is reduced to 2.73 MA.

If we furthermore take into account the effect of opacity on the charge states, i.e.
we use the ionization rates from the AMJUEL database4 for the case when all Lyman
radiation is blocked in (2.12), we find that recombination takes place at lower temperatures
compared to the fully transparent case. The deuterium radiation losses are then lower
and the corresponding radiation peak is moved to lower temperatures. If line radiation
losses from neutral deuterium are removed from (2.11), the final runaway current becomes
2.78 MA, which is only slightly larger than the 2.73 MA obtained when both deuterium
line radiation and ionization losses are removed.

In conclusion, our estimates suggest that opacity effects can lead to significantly lower
(but still substantial) final runaway currents in the case of massive deuterium injection,
and should therefore be subject to further investigation.

5. Conclusions

Simulations of plasma shutdown scenarios indicate that impurity injection can lead
to high runaway currents in ITER. The dependence of the avalanche generation on the
density of partially ionized species makes the runaway dynamics sensitive to the evolution
of the temperature and the distribution of ionization states. Injection of large quantities
of impurity and deuterium results also in a large runaway current due to the increased
avalanche generation when deuterium recombines. On the other hand, a scenario with
reduced runaway generation was identified numerically (Case 4), for moderate amounts of
impurity and deuterium injection.

Potentially important effects that are not included in this study are hot-tail generation
and loss processes due to magnetic perturbations, kinetic or MHD instabilities. The
amount of runaway current deposited on plasma-facing components will depend on how

4http://www.eirene.de
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large a fraction of the runaway current can be dissipated before eventually losing the
runaway beam to the wall, which, in turn, depends on the effect of magnetic perturbations
and on how long the runaway beam can be kept stable. Thus, the effects of transport
phenomena, including the transport of neutral particles and radiation, are outstanding
issues, requiring further investigation.

Appendix A. Critical momentum for runaway acceleration

The critical momentum for runaway generation is sometimes determined by setting the
force balance to zero. However, this requires either that pitch-angle scattering is negligible,
or that the pitch-angle distribution can be calculated analytically such as in Aleynikov &
Breizman (2015), which is valid for electric fields near the threshold. In the case of strong
electric fields and high plasma charge, the calculation of the avalanche growth rate by
Rosenbluth & Putvinski (1997) can be extended to provide a threshold momentum for
runaway acceleration that is valid for an arbitrary source function, following the same
method as used in Hesslow et al. (2019a). In this approach, which we outline below, a
solution of the kinetic equation provides an energy-dependent runaway probability, which
sharply transitions from zero to unity near a momentum p� that we define as the critical
momentum.

The kinetic equation in the superthermal limit can be written as

∂f
∂t

+ eE‖

(
ξ

∂f
∂p

+ 1 − ξ 2

p
∂f
∂ξ

)
= 1

p2

∂

∂p
( p3νsf ) + νD

2
∂

∂ξ

[
(1 − ξ 2)

∂f
∂ξ

]
+ S( p, ξ),

(A 1)

where ξ = p‖/p, with the momentum component parallel to the magnetic field p‖, and S
denotes an arbitrary particle source. We solve (A 1) perturbatively in the limit of strong
pitch angle scattering and strong electric fields by ordering νD ∼ δ0, eE ∼ δ, νs ∼ S ∼ δ2

and ∂/∂t ∼ δ3. Then, writing f = f0 + δf1 + δ2f2 + · · · , we obtain the system of equations

∂

∂ξ

[
(1 − ξ 2)

∂f0

∂ξ

]
= 0, (A 2)

eE‖

(
ξ
∂f0

∂p
+ 1 − ξ 2

p
∂f0

∂ξ

)
= νD

2
∂

∂ξ

[
(1 − ξ 2)

∂f1

∂ξ

]
, (A 3)

eE‖

(
ξ
∂f1

∂p
+ 1 − ξ 2

p
∂f1

∂ξ

)
= 1

p2

∂

∂p

(
p3νsf0

)
+ νD

2
∂

∂ξ

[
(1 − ξ 2)

∂f2

∂ξ

]
+ S( p, ξ). (A 4)

The first equation yields the general solution

f0 = f0(t, p), (A 5)

i.e. the leading-order distribution is isotropic, upon which the second equation takes the
form

2eE‖
νD

ξ
∂f0

∂p
= ∂

∂ξ

[
(1 − ξ 2)

∂f1

∂ξ

]
,

⇒ f1 = −ξ
eE‖
νD

∂f0

∂p
.

⎫⎪⎪⎬
⎪⎪⎭ (A 6)

Integrating the third equation over ξ from −1 to 1 and inserting this solution for f1 yields

− 1
p2

∂

∂p

[
p2

(
e2E2

‖
3νD

∂f0

∂p
+ pνsf0

)]
= 1

2

∫ 1

−1
S dξ, (A 7)
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from which we can derive the critical momentum, p�, as follows. The runaway generation
rate ∂nRE/∂t can be defined as the particle flux to infinity, which, if we compare (A 7) with
the initial kinetic equation, can be written

∂nRE

∂t
= −4πp2

(
e2E2

‖
3νs

∂f0

∂p
+ pνsf0

)
p=∞

. (A 8)

Therefore, if we multiply (A 7) by p2 and integrate over all momenta, we obtain

p2 e2E2
‖

3νD

∂f0

∂p
+ p3νsf0 = − 1

4π

∂nRE

∂t
+ 1

2

∫ ∞

p
dp′p′2

∫ 1

−1
dξS( p′, ξ). (A 9)

This first-order linear ordinary differential equation can be solved by introducing an
integrating factor G

G( p) = −
∫ ∞

p

3p′νsνD

e2E2
‖

dp′, (A 10)

upon which the equation takes the form

∂

∂p
(eG( p)f0( p)) = 3νDeG( p)

p2e2E2
‖

(
− 1

4π

∂nRE

∂t
+ 1

2

∫ ∞

p
dp′p′2

∫ 1

−1
dξS( p′, ξ)

)
. (A 11)

Since pνsνD ∝ 1/p5 for small momenta, G ∝ −1/p4 for p → 0. Then, if we integrate this
equation over p from 0 to ∞ and assume that f0 is well-behaved (i.e. is finite at the origin
and vanishes at infinity), we obtain

∂nRE

∂t

∫ ∞

0

3νD eG

p2e2E2
‖

dp =
∫ ∞

0
dp

3νD eG

p2e2E2
‖

2π

∫ ∞

p
dp′p′2

∫ 1

−1
dξS( p′, ξ)

= 2π

∫ ∞

0
dpp2

∫ 1

−1
dξS( p, ξ)

∫ p

0
dp′ 3νD( p′) eG( p′)

p′2e2E2
‖

, (A 12)

where in the second line we exchanged integration orders of p′ and p. From this, it follows
that the runaway generation rate due to an arbitrary source function takes the form

∂nRE

∂t
=
∫

S(p)h( p) dp,

h( p) =

∫ p

0
dp′ 3νD( p′) eG( p′)

p′2e2E2
‖∫ ∞

0
dp′ 3νD( p′) eG( p′)

p′2e2E2
‖

.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A 13)

Note that this equation is valid for a source term with an arbitrary pitch angle dependence
and is valid for non-relativistic as well as relativistic energies. Since νs and νD are
monotonically decreasing functions, the function h( p) will be monotonically increasing
from h(0) = 0 to h(∞) = 1, and can therefore be interpreted as the runaway probability
function for an electron born at p to reach arbitrarily large momenta.

Since the function G( p) varies very rapidly with p – approximately as −1/p4 –
the function h will make a sharp transition from essentially 0 to 1 in the momentum
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FIGURE 8. Electrical conductivity relative to its Spitzer value at collisional–radiative
equilibrium as a function of temperature for various plasma compositions. Solid: nD =
1020 m−3; dashed: nD = 1022 m−3; dotted: nD = 4 × 1021 m−3 and nNe = 8 × 1018 m−3

(Case 3). Note that the curves corresponding to the three cases overlap.

region where G crosses −1. This can be readily confirmed for an ideal non-relativistic
plasma with νs, νD ∝ 1/p3, for which we can obtain the exact result h( p) = exp[G( p)] =
exp{−3(1 + Z)/[4(E/Ec)

2p4]}.
Therefore, we may approximate h( p) as a step function h = Θ( p − p�), where we define

p� via
G( p�) = −1,

p2
� ≈

√
3
4

E‖/Ec√
ν̄s( p�)ν̄D( p�)

(non-relativistic).

⎫⎪⎬
⎪⎭ (A 14)

The factor
√

3/4 is not significant and has been neglected in this paper. Interestingly, the
expression for p� is the same as the one appearing in the avalanche formula, which was
interpreted as an effective momentum for runaway acceleration.

Appendix B. Spitzer conductivity in weakly ionized plasmas

When the temperature in a plasma consisting mainly of deuterium becomes as low as
1 eV, the ionization fraction falls to a few per cent, as shown in figure 5. Then the effect
of electron–neutral collisions on the conductivity has to be taken into account.

The conductivity in a very weakly ionized plasma, where electron–neutral collisions
dominate, is given by Nighan (1969) as

σ = −4π

3
e2

me

∫ ∞

0

1
νen(v)

∂f0

∂v
v3 dv, (B 1)

where f0 denotes the Maxwell distribution of electrons and νen(v) = nnQen(v)v
is the electron–neutral collision frequency, with the density of neutral atoms
nn, the electron–neutral momentum exchange cross-section Qen = 2π

∫ π

0 I(θ, v)[1 −
cos (θ)] sin (θ) dθ and the electron–neutral differential scattering cross-section I(θ, v).

If electron–electron collisions were negligible in a fully ionized plasma, the conductivity
would take the same form as (B 1), but with νen(v) replaced by the electron–ion collision
frequency, νei(v) = Zeff(e4ne ln Λc)/(4πε2

0m2
ev

3). Furthermore, as shown by Spitzer &
Härm (1953), when electron–electron collisions are accounted for, the conductivity in a
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fully ionized plasma with an effective ion charge Zeff = 1 differs from the result with
electron–ion collisions only by a factor γE = 0.58.

With these considerations, Nighan (1969) constructed an approximate expression for the
conductivity, which reproduces the fully ionized and the very weakly ionized limits, and
provides a reasonably good approximation between:

σ = −4π

3
e2

me

∫ ∞

0

1
γ −1

E νei(v) + νen(v)

∂f0

∂v
v3 dv. (B 2)

By writing νen = ν̄enxQ(x)/Q̄ and νei = ν̄ei/x3, where a bar denotes a value at the
thermal velocity, and x = v/vth, we can write (B 2) as

σ = σSp

3

∫ ∞

0

x4 e−x2

γE
ν̄en

ν̄ei

Q(x)
Q̄

x + 1
x3

dx. (B 3)

In our calculations we use (B 3) to compute the plasma conductivity, for which we
obtain the momentum exchange electron–neutral collisional cross-section Qen for neon
and deuterium from Itikawa (1978). Furthermore, we use the value of γE corresponding
to Zeff = 1, since whenever the ionization degree becomes as low as to modify the
conductivity significantly, the densities of the ionization states greater than 1 are low.

Figure 8 illustrates the reduction of the conductivity compared to the Spitzer value.
The ionization degree for a given temperature is calculated assuming collisional–radiative
equilibrium, i.e. by solving (2.14). This temperature is then used to calculate the collision
frequencies ν̄en and ν̄ei, used in (B 3) to calculate σ/σSp. While at a temperature as low as
1 eV the deviation from the Spitzer conductivity is only ∼30 %, even if the ionization
degree is as low as ≈ 5 %, if the temperature is decreased further, σ/σSp drops quite
rapidly. That the three different plasma compositions considered in figure 8 result in
essentially identical results reflects that the ionization degree is only a weak function of
deuterium density, and that a comparatively small fraction of neon has a negligible effect.

Acknowledgements

The authors are grateful to S. Newton, G. Papp, M. Hoppe, E. Nardon, S.
Krasheninnikov and A. Kukushkin for fruitful discussions. This work was supported
by the Swedish Research Council (Dnr. 2018-03911), the European Research Council
(ERC-2014-CoG grant 647121) and the EUROfusion – Theory and Advanced Simulation
Coordination (E-TASC). The work has been carried out within the framework of the
EUROfusion Consortium and has received funding from the Euratom research and training
programme 2014–2018 and 2019–2020 under grant agreement no. 633053. The views and
opinions expressed herein do not necessarily reflect those of the European Commission.

Editor Alex Robinson thanks the referees for their advice in evaluating this article.

Declaration of interests

The authors report no conflict of interest.

REFERENCES

ALEYNIKOV, P. & BREIZMAN, B. N. 2015 Theory of two threshold fields for relativistic runaway electrons.
Phys. Rev. Lett. 114, 155001.

https://doi.org/10.1017/S0022377820000859 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377820000859


Runaway dynamics in the DT phase of ITER operations 23

ALEYNIKOV, P. & BREIZMAN, B. N. 2017 Generation of runaway electrons during the thermal quench in
tokamaks. Nucl. Fusion 57 (4), 046009.

BOOZER, A. H. 2015 Theory of runaway electrons in ITER: equations, important parameters, and
implications for mitigation. Phys. Plasmas 22 (3), 032504.

BREIZMAN, B. N., ALEYNIKOV, P., HOLLMANN, E. M. & LEHNEN, M. 2019 Physics of runaway
electrons in tokamaks. Nucl. Fusion 59 (8), 083001.

FEHÉR, T., SMITH, H. M., FÜLÖP, T. & GÁL, K. 2011 Simulation of runaway electron generation during
plasma shutdown by impurity injection in ITER. Plasma Phys. Control. Fusion 53 (3), 035014.

FÜLÖP, T., HELANDER, P., VALLHAGEN, O., EMBREUS, O., HESSLOW, L., SVENSSON, P., CREELY, A.
J., HOWARD, N. T. & RODRIGUEZ-FERNANDEZ, P. 2020 Effect of plasma elongation on current
dynamics during tokamak disruptions. J. Plasma Phys. 86 (1), 474860101.

GÁL, K., FEHÉR, T., SMITH, H. M., FÜLÖP, T. & HELANDER, P. 2008 Runaway electron generation
during plasma shutdown by killer pellet injection. Plasma Phys. Control. Fusion 50, 055006.

HELANDER, P., SMITH, H. M., FÜLÖP, T. & ERIKSSON, L. G. 2004 Electron kinetics in a cooling
plasma. Phys. Plasmas 11, 5704.

HESSLOW, L., EMBRÉUS, O., HOPPE, M., DUBOIS, T. C., PAPP, G., RAHM, M. & FÜLÖP, T.
2018a Generalized collision operator for fast electrons interacting with partially ionized impurities.
J. Plasma Phys. 84 (6), 905840605.

HESSLOW, L., EMBRÉUS, O., VALLHAGEN, O. & FÜLÖP, T. 2019a Influence of massive material
injection on avalanche runaway generation during tokamak disruptions. Nucl. Fusion 59 (8),
084004.

HESSLOW, L., EMBRÉUS, O., WILKIE, G. J., PAPP, G. & FÜLÖP, T. 2018b Effect of partially ionized
impurities and radiation on the effective critical electric field for runaway generation. Plasma Phys.
Control. Fusion 60 (7), 074010.

HESSLOW, L., UNNERFELT, L., VALLHAGEN, O., EMBREUS, O., HOPPE, M., PAPP, G. & FÜLÖP, T.
2019b Evaluation of the Dreicer runaway generation rate in the presence of high- z impurities using
a neural network. J. Plasma Phys. 85 (6), 475850601.

HOLLMANN, E. M., ALEYNIKOV, P. B., FÜLÖP, T., HUMPHREYS, D. A., IZZO, V. A., LEHNEN, M.,
LUKASH, V. E., PAPP, G., PAUTASSO, G., SAINT-LAURENT, F., et al. 2015 Status of research
toward the ITER disruption mitigation system. Phys. Plasmas 22 (2), 021802.

HOPPE, M., HESSLOW, L., EMBREUS, O., UNNERFELT, L., PAPP, G., PUSZTAI, I., FÜLÖP, T., LEXELL,
O., LUNT, T., MACUSOVA, E., et al. 2020 Spatiotemporal analysis of the runaway electron
distribution function from synchrotron images in the ASDEX Upgrade tokamak. arXiv:2005.14593.

ITIKAWA, Y. 1978 Momentum-transfer cross sections for electron collisions with atoms and molecules:
revision and supplement, 1977. At. Data Nucl. Data Tables 21 (1), 69–75.

LANDREMAN, M., STAHL, A. & FÜLÖP, T. 2014 Numerical calculation of the runaway electron
distribution function and associated synchrotron emission. Comput. Phys. Commun. 185 (3), 847.

LEHNEN, M., ALEYNIKOVA, K., ALEYNIKOV, P., CAMPBELL, D., DREWELOW, P., EIDIETIS, N.,
GASPARYAN, Y., GRANETZ, R., GRIBOV, Y., HARTMANN, N., et al. 2015 Disruptions in ITER
and strategies for their control and mitigation. J. Nucl. Mater. 463, 39–48.

LUKASH, V., MINEEV, A. & MOROZOV, D. 2007 Influence of plasma opacity on current decay after
disruptions in tokamaks. Nucl. Fusion 47 (11), 1476–1484.

MARTÍN-SOLÍS, J. R., LOARTE, A. & LEHNEN, M. 2015 Runaway electron dynamics in tokamak plasmas
with high impurity content. Phys. Plasmas 22 (9), 092512.

MARTÍN-SOLÍS, J. R., LOARTE, A. & LEHNEN, M. 2017 Formation and termination of runaway beams
in ITER disruptions. Nucl. Fusion 57 (6), 066025.

MCDEVITT, C. J. & TANG, X. -Z. 2019 Runaway electron generation in axisymmetric tokamak geometry.
Europhys. Lett. 127 (4), 45001.

MOSHER, D. 1975 Interactions of relativistic electron beams with high atomic number plasmas. Phys.
Fluids 18 (7), 846–857.

NIGHAN, W. L. 1969 Electrical conductivity of partially ionized noble gases. Phys. Fluids 12 (6).
PAPP, G., FÜLÖP, T., FEHÉR, T., DE VRIES, P., RICCARDO, V., REUX, C., LEHNEN, M., KIPTILY,

V., PLYUSNIN, V. V., ALPER, B., et al. 2013 The effect of ITER-like wall on runaway electron
generation in JET. Nucl. Fusion 53 (12), 123017.

https://doi.org/10.1017/S0022377820000859 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377820000859


24 O. Vallhagen and others

PSHENOV, A., KUKUSHKIN, A., MARENKOV, E. & KRASHENINNIKOV, S. 2019 On the role of hydrogen
radiation absorption in divertor plasma detachment. Nucl. Fusion 59 (10), 106025.

ROSENBLUTH, M. & PUTVINSKI, S. 1997 Theory for avalanche of runaway electrons in tokamaks. Nucl.
Fusion 37, 1355–1362.

SMITH, H., HELANDER, P., ERIKSSON, L.-G. & FÜLÖP, T. 2005 Runaway electron generation in a
cooling plasma. Phys. Plasmas 12 (12), 122505.

SPITZER, L. & HÄRM, R. 1953 Transport phenomena in a completely ionized gas. Phys. Rev. 89, 977–981.
WARD, D. & WESSON, J. 1992 Impurity influx model of fast tokamak disruptions. Nucl. Fusion 32 (7),

1117–1123.

https://doi.org/10.1017/S0022377820000859 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377820000859

	1 Introduction
	2 Current dynamics and temperature evolution during material injection
	2.1 Runaway generation rates
	2.2 Temperature evolution

	3 Effect of massive material injection
	3.1 Pure neon injection
	3.2 Mixed deuterium and neon injection
	3.3 Qualitative analysis

	4 Discussion
	5 Conclusions
	A Appendix A. Critical momentum for runaway acceleration
	B Appendix B. Spitzer conductivity in weakly ionized plasmas
	References

