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Inversion Formulas and Range

Let (M,g) be a simple two-dimensional manifold, and let f ∈ C∞(M). We
already know that f is determined by its geodesic X-ray transform uniquely
and stably. In this chapter we will discuss the issues of reconstruction and range
characterization, i.e. how to determine f from I0f in a constructive way and
how to decide which functions in ∂+SM are of the form I0f for some f .

In fact we will prove reconstruction formulas that allow one to exactly
recover f from I0f when (M,g) has constant curvature, and lead to approx-
imate recovery with error terms given by Fredholm operators when (M,g)

is a general simple surface. For the unit disk in the plane, the reconstruction
formula is equivalent to the filtered backprojection formula (Theorem 1.3.3)
after a suitable transformation is applied.

9.1 Motivation

This section motivates the derivation of the reconstruction formulas and
introduces the operator W that will appear. Let (M,g) be a simple surface
and let f ∈ C∞(M) be real valued. We would like to reconstruct the function
f in M from the knowledge of its geodesic X-ray transform I0f on ∂+SM .
Recall from Lemma 4.2.2 that the X-ray transform is characterized as I0f =
uf |∂+SM , where uf solves the transport equation

Xuf = −f in SM, uf |∂−SM = 0.

The function uf has the minor problem of not being smooth near ∂0SM , but
this can be rectified by considering its odd part uf

−. Since f is even, uf
− is in

C∞(SM) by Theorem 5.1.2, and it satisfies

Xu
f
− = −f in SM, u

f
−|∂SM = (I0f )−,
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9.1 Motivation 209

where (I0f )− is the odd part of the zero extension of I0f to ∂SM , i.e.

(I0f )−(x,v) :=
{

1
2I0f (x,v), (x,v) ∈ ∂+SM,

− 1
2I0f (x, − v), (x,v) ∈ ∂−SM .

(9.1)

Now, if we could determine the solution u
f
− in SM from the knowledge of

its boundary value (I0f )− on ∂SM , then we could reconstruct f just by using
the equation f = −Xu

f
−. Of course an arbitrary solution of Xu = −f is not

determined uniquely by its boundary values (the solution u is only unique up
to adding solutions of Xr = 0, i.e. invariant functions). However, uniqueness
may follow if we impose additional conditions on u. One useful condition is
that u is holomorphic in the angular variable.

We consider the following scheme:{
Produce a holomorphic odd function u∗ ∈ C∞(SM) so that

Xu∗ = −f in SM and u∗|∂SM is determined by I0f .
(9.2)

If such a function u∗ could be found, we could reconstruct a real f from
u∗|∂SM as follows: since X(Im(u∗)) = 0, the function Im(u∗) is determined in
SM by the boundary values u∗|∂SM . By holomorphicity u∗ is determined by
Im(u∗) (in principle, up to a real additive constant, but the fact that u∗ is odd
implies that u∗

0 = 0 so this constant does not appear). We could then recover
f from the equation f = −Xu∗.

Recall that u
f
− is a smooth odd solution of Xu = −f and that u

f
−|∂SM is

determined by I0f . The first naive attempt to implement (9.2) would be to
choose u∗ to be (twice) the holomorphic projection of uf

−, i.e.

u∗ := (Id + iH)u
f
− = 2(uf

1 + u
f

3 + u
f

5 + · · · ). (9.3)

It turns out that this attempt already works if (M,g) has constant curvature.
We formulate a related lemma.

Lemma 9.1.1 (Holomorphic projection of u
f
−) Let (M,g) be a compact non-

trapping surface with strictly convex boundary. If f ∈ C∞(M), then u∗ :=
(Id + iH)u

f
− ∈ C∞(SM) satisfies

Xu∗ = −f − iWf,

where W is the operator

W : C∞(M) → C∞(M), Wf = (X⊥uf )0.

Proof To see this, recall from Definition 6.1.4 the Guillemin–Kazhdan opera-
tors η± = 1

2 (X ± iX⊥) that satisfy η± : �k → �k±1. Using the decomposi-
tions
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210 Inversion Formulas and Range

X = η+ + η−, iX⊥ = η+ − η−

together with the equation Xu
f
− = −f , we see that

Xu∗ = 2η−u
f

1 = (
η−u

f

1 + η+u
f

−1

) + (
η−u

f

1 − η+u
f

−1

)
= −f − iWf .

The operator W will be important for the reconstruction formulas. We will
prove that it has the following three properties:

(1) If (M,g) has constant curvature, then W ≡ 0.
(2) If g is C3-close to a metric of constant curvature, then W has small norm

(Krishnan, 2010).
(3) If (M,g) is a general simple surface, then W is a smoothing operator

(Pestov and Uhlmann, 2004).

By (1) we see that if (M,g) has constant curvature, then Wf = 0 and Xu∗ =
−f . Therefore the scheme (9.2) with the choice of u∗ given in (9.3) allows us
to reconstruct f from I0f . In the general case Wf is an error term. We may
iterate the construction once more using the anti-holomorphic function

u∗∗ := (Id − iH)u
f+iWf
− = 2

(
u
f+iWf

−1 + u
f+iWf

−3 + · · · ).
Note that X(u∗ − uf+iWf ) = 0, and u∗ − uf+iWf |∂−SM = u∗|∂−SM is deter-
mined by I0f . Thus I0f determines uf+iWf |∂SM and hence also u∗∗|∂SM .
Now a computation as above yields that

Xu∗∗ = −f − W 2f .

It follows that the function f + W 2f can be reconstructed from I0f .
In the following sections we will prove the properties (1)–(3) of the operator

W in detail. We will give a slightly different argument for reconstructing f +
W 2f from I0f , based on using the fibrewise Hilbert transform H and the
commutator formula [H,X]u = X⊥u0 + (X⊥u)0. To conclude this section, it
is instructive to see why W ≡ 0 in the Euclidean case.

Example 9.1.2 (W in the Euclidean case) Let (M,g) be the Euclidean unit
disk and let f ∈ C∞

c (M int). Then we may write

uf (x,θ) =
∫ ∞

0
f (x + tvθ ) dt,

where vθ = (cos θ, sin θ). Since X⊥ = (vθ )⊥ · ∇x , we have

X⊥uf (x,θ) =
∫ ∞

0
(vθ )⊥ · ∇xf (x + tvθ ) dt .

https://doi.org/10.1017/9781009039901.012 Published online by Cambridge University Press

https://doi.org/10.1017/9781009039901.012


9.2 Properties of Solutions of the Jacobi Equation 211

We may then compute

Wf (x) = (X⊥uf )0(x) = 1

2π

∫ 2π

0

∫ ∞

0
(vθ )⊥ · ∇xf (x + tvθ ) dt dθ

= − 1

2π
lim
ε→0

∫ ∞

ε

∫ 2π

0

∂θ (f (x + tvθ ))

t
dθ dt .

One has Wf (x) ≡ 0 since
∫ 2π

0 ∂θ (f (x + tvθ )) dθ = 0.

9.2 Properties of Solutions of the Jacobi Equation

Let (N,g) be a closed oriented two-dimensional manifold. We have seen in
Section 3.7.2 that Jacobi fields on N are completely described by the smooth
functions a,b : SN ×R → R that satisfy the Jacobi equation in the t-variable,

ä + K(γx,v(t))a = 0, b̈ + K(γx,v(t))b = 0,

with initial conditions a(x,v,0) = 1, ȧ(x,v,0) = 0, and b(x,v,0) = 0,
ḃ(x,v,0) = 1.

The functions a and b have the following properties.

Proposition 9.2.1 There exist smooth functions R,P ∈ C∞(T N) such that

a(x,v,t) = 1 + t2R(x,tv), (9.4)

b(x,v,t) = t + t3P(x,tv). (9.5)

Moreover, we have

b(x,v,t) = t det(d expx |tv).
Proof We first consider a(x,v,t). The initial conditions a(x,v,0) = 1 and
ȧ(x,v,0) = 0 together with Taylor’s formula imply that

a(x,v,t) = 1 + t2c(x,v,t), (9.6)

where c ∈ C∞(SN × R). By differentiating the equation ä + Ka = 0
repeatedly we obtain

∂k+2
t a(x,v,0) = −

k∑
j=0

(
k

j

)
(XjK)(x,v)∂

k−j
t a(x,v,0),

where Xj is the geodesic vector field applied j times. Using induction and the
fact that 1 = gjkv

j vk , we see that ∂k+2
t a(x,v,0) is a homogeneous polynomial

of degree k in v. Thus by (9.6), ∂k
t c(x,v,0) is a homogeneous polynomial of

degree k in v.
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212 Inversion Formulas and Range

We use Borel summation and define

c1(x,v,t) :=
∞∑
k=0

∂k
t c(x,v,0)

k!
tkχ(t/εk), (9.7)

where χ ∈ C∞
c (R) satisfies 0 ≤ χ ≤ 1, χ = 1 for |t | ≤ 1/2, and χ = 0 for

|t | ≥ 1, and εk are chosen so that c1 ∈ C∞(SN ×R). Then c = c1 + c2 where
c2 ∈ C∞(SN × R) satisfies

∂k
t c2(x,v,0) = 0, k ≥ 0. (9.8)

The formula (9.7) together with the fact that ∂k
t c(x,v,0) is a homogeneous

polynomial of order k in v shows that c1(x,v,t) = R1(x,tv) where R1 ∈
C∞(T N). Moreover, using (9.8) one can directly check that R2(x,w) :=
c2(x,w/|w|,|w|) is smooth in TN with vanishing Taylor series when w = 0.
Thus we have

a(x,v,t) = 1 + t2R(x,tv),

where R := R1 + R2 ∈ C∞(T N).
The proof for b(x,v,t) is analogous. First we observe that b(x,v,t) = t +

t3d(x,v,t) where d is smooth. By induction ∂k+3
t b(x,v,0), and hence also

∂k
t d(x,v,0), is a homogeneous polynomial of degree k in v. Thus d(x,v,t) =

P(x,tv) where P is smooth in TN . The formula b(x,v,t) = t det(d expx |tv)
follows from Remark 8.1.11 and Lemma 3.7.7.

Remark 9.2.2 By differentiating the equations ä + Ka = 0 and b̈ + Kb = 0,
it is easy to obtain the expansions

a = 1 − 1

2
Kt2 − 1

6
dK|x(v)t3 + O(t4),

b = t − 1

6
Kt3 + O(t4).

We also recall from Section 3.7.2 that the Jacobi equation ÿ + K(t)y = 0
determines the differential of the geodesic flow ϕt : if we fix (x,v) ∈ SM and
T(x,v)(SM) # ξ = −ξ1X⊥ + ξ2V then

dϕt (ξ) = −y(t)X⊥(ϕt (x,v)) + ẏ(t)V (ϕt (x,v)), (9.9)

where y(t) is the unique solution to the Jacobi equation with initial conditions
y(0) = ξ1 and ẏ(0) = ξ2 and K(t) = K(π ◦ ϕt (x,v)) (cf. Section 3.7.2). The
differential of the geodesic flow thus determines an SL(2,R)-cocyle � over ϕt

with infinitesimal generator

A :=
(

0 −1
K 0

)
.
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9.3 The Smoothing Operator W 213

This means that � is the solution of the matrix ODE

d

dt
�(x,v,t) + A(ϕt (x,v))�(x,v,t) = 0, �(x,v,0) = Id,

and satisfies the cocycle property

�(x,v,t + s) = �(ϕt (x,v),s)�(x,v,t)

for all (x,v) ∈ SN and s,t ∈ R. We may write � using the functions a,b

above as

�(x,v,t) =
(
a b

ȧ ḃ

)
.

Clearly the cocycle � can be identified with dϕt acting on the kernel of the
contact 1-form of the geodesic flow (i.e. the 2-plane spanned by X⊥ and V ).

9.3 The Smoothing Operator W

Let (M,g) be a non-trapping surface with strictly convex boundary. We
consider as usual (M,g) sitting inside a closed oriented surface (N,g). We
shall define an operator W : C∞(M) → C∞(M) following our discussion at
the begining of the chapter. This operator will have the property that it extends
as a smoothing operator W : L2(M) → C∞(M) when M is free of conjugate
points, and it will play an important role in the Fredholm inversion formulas in
the next section.

Given f ∈ C∞(M), define for any x ∈ M ,

(Wf )(x) := (
X⊥uf

)
0(x) = 1

2π
#∗

0

(
X⊥uf

)
(x).

In the definition above we may replace uf by u
f
− and we have seen that the

latter is smooth (cf. Theorem 5.1.2). Hence we have

Wf = (
X⊥u

f
−
)

0 ∈ C∞(M).

Exercise 9.3.1 Show that Wf = i(η−u
f

1 − η+u
f

−1).

We now give an integral representation for W when (M,g) is a simple
surface. We will use the functions a and b introduced in the previous section.
Note that (M,g) has no conjugate points if and only if b(x,v,t) �= 0 for
t ∈ [−τ(x, − v),τ (x,v)], t �= 0 and (x,v) ∈ SM .

Proposition 9.3.2 Let (M,g) be a simple surface. The function

w(x,v,t) := V

(
a(x,v,t)

b(x,v,t)

)
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214 Inversion Formulas and Range

is smooth for (x,v) ∈ SM and t ∈ [−τ(x, − v),τ (x,v)], and has the form

w(x,v,t) = tQ(x,tv),

where Q is smooth. The operator W has the expression

(Wf )(x) = 1

2π

∫
SxM

∫ τ(x,v)

0
w(x,v,t)f (γx,v(t)) dt dSx(v).

The function w = w(x,v,t) also has the formula

w = − 1

b(t)2

∫ t

0
g(t,s)b(s) [a(s)b(t) − b(s)a(t)] dK|γx,v(s)(γ̇x,v(s)⊥) ds,

with a(t) = a(x,v,t), b(t) = b(x,v,t), g(t,s) = b(γx,v(s),γ̇x,v(s),t − s). In
particular, W ≡ 0 if (M,g) has constant curvature.

Proof By simplicity b(x,v,t) �= 0 for t ∈ [−τ(x, − v),τ (x,v)] and t �= 0.
Thus w is smooth for t �= 0. Using the definition of w we have that

w(x,v,t) = V (a)

b
− aV (b)

b2
.

Proposition 9.2.1 gives that

a(x,v,t) = 1 + t2R(x,tv),

b(x,v,t) = t + t3P(x,tv),

where R and P are smooth. Since V = (0,v⊥) in the splitting (3.12), we have
in the notation of Section 3.6 and in terms of the Sasaki metric on TM that

V (R(x,tv)) = 〈∇R|(x,tv),(0,tv⊥)
〉 = 〈

K(∇R|(x,tv)),tv⊥〉
= 〈K(∇R|(x,tv))⊥,tv〉.

Performing a similar computation for V (P (x,tv)), it follows that

V (a) = t2R̂(x,tv),

V (b) = t3P̂ (x,tv),

where R̂ and P̂ are smooth (and R̂(x,0) = P̂ (x,0) = 0). Since b =
t det(d expx |tv), we have that V (a)/b and aV (b)/b2 are of the form tS(x,tv)

for some smooth S (for the latter we also use t2 = gjktv
j tvk). It follows that

w(x,v,t) = tQ(x,tv)

for some smooth Q.
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9.3 The Smoothing Operator W 215

To derive the integral formula for W we use its definition and write

(Wf )(x) = 1

2π

∫
SxM

X⊥

[∫ τ(x,v)

0
f (γx,v(t)) dt

]
dSx(v). (9.10)

Let us assume first that f has compact support contained in the interior of M .
Then,

X⊥
∫ τ(x,v)

0
f (γx,v(t)) dt =

∫ τ(x,v)

0
X⊥(f (γx,v(t))) dt .

Now observe that

X⊥(f (γx,v(t))) = df ◦ dπ ◦ dϕt (X⊥(x,v)),

and similarly

V (f (γx,v(t))) = df ◦ dπ ◦ dϕt (V (x,v)).

But by (9.9),

dπ ◦ dϕt (X⊥(x,v)) = −aγ̇x,v(t)
⊥

and

dπ ◦ dϕt (V (x,v)) = bγ̇x,v(t)
⊥,

therefore for t �= 0,

X⊥(f (γx,v(t)) = df (−aγ̇x,v(t)
⊥) = −a

b
V (f (γx,v(t)).

Inserting the last expression into (9.10) we derive

(Wf )(x) = 1

2π
lim
ε→0

∫
SxM

∫ τ(x,v)

ε

−a

b
V (f (γx,v(t))) dt dSx(v).

Since ∫
SxM

V

(∫ τ(x,v)

ε

a

b
f (γx,v(t)) dt

)
dSx(v) = 0,

and since V (a/b) is smooth, we finally obtain

(Wf )(x) = 1

2π

∫
SxM

∫ τ(x,v)

0
V

(a

b

)
f (γx,v(t)) dt dSx(v)

as desired.
Next, differentiating the ODEs for a(t) = a(x,v,t) and b(t) = b(x,v,t)

yields

(V a)′′(t) + K(γx,v(t))V a(t) = −dK|γx,v(t)(dπ ◦ dϕt (V (x,v)))a(t),

(V b)′′(t) + K(γx,v(t))V b(t) = −dK|γx,v(t)(dπ ◦ dϕt (V (x,v)))b(t).
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216 Inversion Formulas and Range

But we saw that dπ ◦ dϕt (V (x,v)) = b(t)γ̇x,v(t)
⊥. Duhamel’s principle gives

V a(t) = −
∫ t

0
b(γx,v(s),γ̇x,v(s),t − s)a(s)b(s)dK|γx,v(s)

(
γ̇x,v(s)

⊥) ds,
V b(t) = −

∫ t

0
b(γx,v(s),γ̇x,v(s),t − s)b(s)b(s)dK|γx,v(s)

(
γ̇x,v(s)

⊥) ds.

Now

w(x,v,t) = V

(
a(x,v,t)

b(x,v,t)

)
= (V a)b − a(V b)

b2
,

and the required formula for w(x,v,t) follows.
The proof above was done assuming that f ∈ C∞

c (M int) but we could have
carried out the same proof with f ∈ C∞(M), i.e. smooth and supported all
the way to the boundary. This would have produced two additional boundary
terms:

X⊥(τ )f (γx,v(τ (x,v))) and V (τ)
a(x,v,τ (x,v))

b(x,v,τ (x,v))
f (γx,v(τ (x,v))).

However these two terms cancel out due to the following fact, which is easily
checked:

a(x,v,τ (x,v))V (τ) + b(x,v,τ (x,v))X⊥(τ ) = 0. (9.11)

Hence we get the same integral formula for f ∈ C∞(M).

Exercise 9.3.3 Prove identity (9.11).

Exercise 9.3.4 Use Proposition 9.3.2 to show that if g is sufficiently C3-close
to a metric of constant curvature, then ‖W‖L2 < 1 (cf. Krishnan (2010)).

Exercise 9.3.5 Let F := b2w. Show that F satisfies the ODE (in time)
...
F + 4K(γx,v(t))Ḟ + 2dK(γ̇x,v(t))F = −2V (K(γx,v(t)).

Show that W = 0 if and only if K is constant.

We now prove that W is smoothing on simple surfaces.

Proposition 9.3.6 Let (M,g) be a simple surface. The operator W extends to
a smoothing operator W : L2(M) → C∞(M).

Proof We will make a change of variables that transforms the integral
expression for W into something of the form

(Wf )(x) =
∫
M

k(x,y)f (y) dV 2(y),
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9.3 The Smoothing Operator W 217

with k smooth. The change of variables is exactly the same we used in the
proof of Theorem 8.1.1. We set ψx(v,t) := y = expx(tv) and we see that

(Wf )(x) =
∫
M

k(x,y)f (y) dV 2(y),

where

k(x,y) := w(x,ψ−1
x (y))

b(x,ψ−1
x (y))

.

Using Proposition 9.3.2 we can rewrite this as

k(x,y) = Q(x, exp−1
x (y))

det(d expx |exp−1
x (y)

)
,

which clearly exhibits k as a smooth function.

9.3.1 The Adjoint W ∗

The adjoint of W with respect to the L2-inner product of M can be easily
computed:

Lemma 9.3.7 Given h ∈ C∞
c (M int) we have

W ∗h =
(
uX⊥h

)
0

.

Before proving the lemma we establish an auxiliary result that holds in any
dimensions.

Lemma 9.3.8 If f ∈ L2(SM) is even and g ∈ L2(SM) is odd, then

(If ,Ig)L2
μ

= 0.

Proof It suffices to check the claim when f and g are smooth and with
compact support in M int. We have

(If ,Ig)L2
μ

=
∫
∂+SM

μ If Ig d!2n−2 = 2
∫
∂SM

μu
f
+u

g
− d!2n−2.

Since Xu
f
+ = Xu

g
− = 0 we have X(u

f
+u

g
−) = 0, and using Proposition 3.5.12

we obtain ∫
∂SM

μu
f
+u

g
− d!2n−2 = 0.
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218 Inversion Formulas and Range

Proof of Lemma 9.3.7 Given f,h ∈ C∞
c (M int) we compute

2π(Wf,h)L2(M) = 2π
((
X⊥uf

)
0,h

)
L2(M)

= (X⊥uf ,h)L2(SM)

= −(uf ,X⊥h)L2(SM)

= (uf ,X(uX⊥h))L2(SM)

= −(Xuf ,uX⊥h)L2(SM) − (If ,I (X⊥h))L2
μ

= (f ,uX⊥h)L2(SM)

= 2π
(
f,

(
uX⊥h

)
0

)
L2(M)

,

where in the penultimate line we used Lemma 9.3.8.

9.4 Fredholm Inversion Formulas

In this section we establish an inversion formula for I0 up to a Fredholm
error using the smoothing operator W . This formula was proved in Pestov and
Uhlmann (2004), and we partly follow the presentation in Monard (2016b).
We begin by proving the following result.

Theorem 9.4.1 Let (M,g) be a compact non-trapping surface with strictly
convex boundary. Then given f ∈ C∞(M) we have

f + W 2f = −(X⊥w�)0,

where

w := [H (I0f )−]|∂−SM ◦ α,

and (I0f )− denotes the odd part of the zero extension of I0f to ∂SM as in
(9.1).

Proof The proof essentially consists in applying the Hilbert transform H twice
to the equation Xu

f
− = −f and using Proposition 6.2.2.

Applying H once we derive (since Hf = 0):

XHu
f
− = −Wf, (9.12)

since (u
f
−)0 = 0. Applying H again we obtain

XH 2u
f
− + (

X⊥Hu
f
−
)

0 = 0,

and using that H 2u
f
− = −u

f
− we derive

− f = Xu
f
− = (

X⊥Hu
f
−
)

0. (9.13)
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Using (9.12) we see that

Hu
f
− = uWf + w�,

where w := [Hu
f
−]|∂−SM ◦ α ∈ C∞(∂+SM). Inserting this expression into

(9.13) yields

−f − W 2f = (X⊥w�)0,

and the proof is completed by observing that

u
f
−|∂SM = (I0f )−.

Exercise 9.4.2 Using (9.12) show that I0(Wf ) = 0 if I0f = 0.

The term (X⊥w�)0 appearing in the formula in Theorem 9.4.1 can be
interpreted as the adjoint of a suitable X-ray transform.

Definition 9.4.3 Let (M,g) be a non-trapping surface with strictly convex
boundary. We set I⊥ : C∞(M) → C∞(∂+SM) as

I⊥(f ) := I (X⊥#0f ).

Exercise 9.4.4 Let (M,g) be a simple surface. Show that I⊥(f ) = 0 if and
only if f is constant.

By Proposition 3.5.12 we know that X∗
⊥ = −X⊥ if we let X⊥ act on C1-

functions that are zero on ∂SM . Hence the formal adjoint I ∗
⊥ is given by

I ∗
⊥(w) = −#∗

0X⊥I ∗(w) = −2π(X⊥w�)0. (9.14)

Next we shall reinterpret the term

w = [H (I0f )−]|∂−SM ◦ α

using suitable boundary operators. For this we need to have a preliminary
discussion on objects at the boundary.

9.4.1 Boundary Operators

Let (M,g) be a non-trapping manifold with strictly convex boundary. We
introduce the operators of even and odd continuation with respect to α:

A±w(x,v) :=
{
w(x,v) if (x,v) ∈ ∂+SM,

±w(α(x,v)) if (x,v) ∈ ∂−SM .

Recall that the operator A+ already appeared in Section 5.1. Clearly
A± : C(∂+SM) → C(∂SM). We will examine next the boundedness prop-
erties of A±.
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Lemma 9.4.5 A± : L2
μ(∂+SM) → L2

|μ|(∂SM) are bounded.

Proof We compute

‖A±w‖2
L2

|μ|(∂SM)
=

∫
∂+SM

|w|2μd!2n−2 +
∫
∂−SM

|α∗w|2( − μd!2n−2)
=

∫
∂+SM

|w|2μd!2n−2 +
∫
∂+SM

|w|2α∗(μd!2n−2).
In the second term we used that α reverses orientation. By Proposition 3.6.8
we know that

α∗(μd!2n−2) = μd!2n−2,

and the lemma follows.

The adjoint A∗± : L2
|μ|(∂SM) → L2

μ(∂+SM) satisfies

(A±w,u)L2
|μ|(∂SM) =

∫
∂+SM

wūμ d!2n−2 ±
∫
∂−SM

(w ◦ α)ū
( − μd!2n−2)

=
∫
∂+SM

w(ū ± ū ◦ α)μ d!2n−2,

so

A∗
±u = (u ± u ◦ α)|∂+SM . (9.15)

The boundary operator A∗− can be used to give a very simple description of
the range of I .

Proposition 9.4.6 Let (M,g) be a non-trapping surface with strictly convex
boundary. A function q ∈ C∞(∂+SM) belongs to the range of

I : C∞(SM) → C∞(∂+SM)

if and only if there is w ∈ C∞(∂SM) such that q = A∗−w.

Proof If q ∈ C∞(∂+SM) is in the the range of I , there is a smooth
f ∈ C∞(SM) such that If = q. Using Proposition 3.3.1 we know there is
u ∈ C∞(SM) such that Xu = f and integrating this equation between
boundary points we obtain u ◦ α − u = If . Thus if we set w = −u|∂SM ,
then q = If = A∗−w.

Conversely, if q = A∗−w for w ∈ C∞(∂SM), we extend w to a smooth
function on SM , still denoted by w. Now set f := −Xw and once again,
integrating between boundary points we see that If = A∗−w = q as desired.
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Remark 9.4.7 Note that the previous proposition holds in any dimension with
the operator A∗− defined by (9.15).

9.4.2 Symmetries in Data Space

Let a : SM → SM denote the antipodal map on each fibre, a(x,v) := (x,−v).
Clearly a : ∂SM → ∂SM . Define a new involution combining the scattering
relation with a as

αa := α ◦ a = a ◦ α.

From the definitions we see that

αa : ∂±SM → ∂±SM .

Lemma 9.4.8 Let (M,g) be a non-trapping manifold with strictly convex
boundary and let f ∈ C∞(SM). Then

I (f ) ◦ αa = I (f ◦ a).
Proof Using that a◦ϕt = ϕ−t ◦a and τ ◦αa = τ , we write for (x,v) ∈ ∂+SM ,

I (f ) ◦ αa(x,v) =
∫ τ(αa(x,v))

0
f (ϕt (αa(x,v)) dt

=
∫ τ(x,v)

0
f ◦ a(ϕ−t ◦ α(x,v)) dt

=
∫ τ(x,v)

0
f ◦ a(ϕτ(x,v)−t (x,v)) dt = I (f ◦ a)(x,v)

as desired.

This lemma motivates the following decomposition in data space:

C∞(∂+SM) = V+ ⊕ V−, (9.16)

where

V± = {f ∈ C∞(∂+SM) : f ◦ αa = ±f }.
Lemma 9.4.9 Given h ∈ C∞(∂+SM) we have

h� ◦ a = (h ◦ αa)
�.

In particular, if h ∈ V+ (V−), then the function h� is even (odd) in SM .
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Proof Using the definition of h� and α we write

(h ◦ αa)
� = h(α(a(ϕ−τ(x,−v)(x,v))))

= h(α(ϕτ(x,−v)(x, − v)))

= h(ϕ−τ(x,v)(x, − v))

= h� ◦ a
as claimed.

Exercise 9.4.10 Show that the decomposition (9.16) is orthogonal with respect
to the L2

μ-inner product on ∂+SM .

We are now ready to prove the following inversion formula up to the
Fredholm error W 2.

Theorem 9.4.11 Let (M,g) be a compact non-trapping surface with strictly
convex boundary. Then given f ∈ C∞(M) we have

f + W 2f = 1

8π
I ∗
⊥A∗

+HA−I0(f ).

Proof As in Theorem 9.4.1 we let

w := α∗H(I0f )−|∂+SM .

Using Lemma 9.4.8 we see that

A−(I0(f )) = 2(I0f )− (9.17)

and hence by (9.15) we may write

w = α∗H(I0f )−|∂+SM = 1

4
(A∗

+ − A∗
−)HA−I0(f ).

A simple inspection using (9.17) reveals that

A∗
−HA−I0(f ) ∈ V+

and hence by Lemma 9.4.9 and (9.14) this function is annihilated by I∗
⊥ (note

that X⊥ maps even functions to odd functions). This yields

I ∗
⊥(w) = 1

4
I ∗
⊥A∗

+HA−I0(f ).

The claimed formula now follows from Theorem 9.4.1 and (9.14).

Exercise 9.4.12 Let (M,g) be a non-trapping surface with strictly convex
boundary. Show that given f ∈ C∞(M) such that f |∂M = 0, we have

f + (W ∗)2f = − 1

8π
I ∗

0 A
∗
+HA−I⊥(f ).
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Does the equation hold if we do not require f |∂M = 0? (Hint: consider the
case of the Euclidean disk.)

Remark 9.4.13 The equations in Theorem 9.4.11 and Exercise 9.4.12 provide
approximate inversion formulas for I0 and I⊥. The formulas become exact only
in constant curvature. The boundary operator A∗+HA− could be interpreted as
a filter that is applied to the data I0(f ), before the backprojection operation of
applying I ∗

⊥. In this sense the analogy with the filtered backprojection formula
in Theorem 1.3.3 for the Euclidean case is evident. Note that the formulas are
valid on any non-trapping surface with strictly convex boundary. The absence
of conjugate points (i.e. simplicity) is only used when claiming that W is a
smoothing operator.

The fact that the formulas become exact in constant curvature, and in
particular in the case of the unit disk in the plane, raises the question (with
stentorian voice) as to how the inversion formula given by Theorem 9.4.1
relates to the filtered backprojection formula (FBP) in Theorem 1.3.3. In the
next section we shall see how to derive Theorem 1.3.3 from Theorem 9.4.1
when f is supported in the interior of the unit disk in R

2. This will be achieved
by introducing a suitable transformation between fan-beam geometry and
parallel-beam geometry. But first we give some general remarks concerning
the Hilbert transform.

9.4.3 Alternative Expressions for the Hilbert Transform

We let (M,g) be a non-trapping surface with strictly convex boundary. The
fibrewise Hilbert transform was introduced in Definition 6.2.1. There is an
alternative way of writing the transform in terms of the principal value of an
integral over each SxM . More precisely we may write:

Hu(x,w) = 1

2π
p.v.

∫
SxM

1 + 〈v,w〉
〈v,w⊥〉 u(x,v) dSx(v). (9.18)

Exercise 9.4.14 Prove that (9.18) is equivalent to Definition 6.2.1.

The next lemma provides an integral expression for the function Hu
f
−,

where f ∈ C∞(M). Recall that uf
−|∂SM = (I0f )−.

Lemma 9.4.15 We have for (x,w) ∈ SM ,

Hu
f
−(x,w) = 1

2π
p.v.

∫
SxM

1

〈v,w⊥〉

(∫ τ(x,v)

0
f (γx,v(t)) dt

)
dSx(v).
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Remark 9.4.16 If we use the special coordinates in Lemma 3.5.6 and think
of v as an angle θ ∈ [0,2π ] and w also as an angle η ∈ [0,2π ], we may
alternatively write

Hu
f
−(x,η) = 1

2π
p.v.

∫ 2π

0

1

sin(η − θ)

(∫ τ(x,θ)

0
f (γx,θ (t)) dt

)
dθ .

Proof of Lemma 9.4.15 The following is true for any u:

H−u(x,w) = 1

2π
p.v.

∫
SxM

u(x,v)

〈v,w⊥〉 dSx(v),

where H−u := H(u−). This follows from (9.18) by observing that the kernel
of the Hilbert transform splits into odd and even (in v) as

1 + 〈v,w〉
〈v,w⊥〉 = 1

〈v,w⊥〉 + 〈v,w〉
〈v,w⊥〉 .

The proof of the lemma is completed by recalling that

uf (x,v) =
∫ τ(x,v)

0
f (γx,v(t)) dt .

9.5 Revisiting the Euclidean Case

In this section we let M = D be the closure of the unit disk in R
2. Suppose f

is a smooth function supported inside the disk. We use the notation Rf (s,w) to
indicate the Radon transform of f in parallel-beam coordinates as in Section
1.1. In other words,

Rf (s,w) :=
∫ ∞

−∞
f (sw + tw⊥) dt,

where (s,w) ∈ R × S1. Note that Rf (s,w) = 0 for s outside [−1,1]. We let
Hs denote the standard Hilbert transform in the variable s:

(H sg)(s,w) = 1

π
p.v.

∫ ∞

−∞
g(t,w)

s − t
dt .

Our first task is to introduce a suitable transformation mapping from SM (and
∂SM in particular) to the parallel-beam coordinates (s,w) ∈ [−1,1] × S1.

Define h : SM → [−1,1] × S1 by

h(x,w) := (〈x,w⊥〉,w⊥).

We also define

h := h|∂SM .
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Since the geodesic flow is ϕt (x,v) = (x + tv,v) we see that h ◦ ϕt = h. In
terms of (x,w) ∈ ∂SM , we may express the scattering relation quite nicely as

α(x,w) = (x − 2〈x,w〉w,w).

We may check directly that h ◦ α = h (obviously it also follows from the fact
that h remains constant along geodesics).

The next lemma is an important observation to relate the Pestov–Uhlmann
formula with the FBP formula in Theorem 1.3.3 (compare with Boman and
Strömberg (2004, equation (2.12))).

Lemma 9.5.1 We have

Hu
f
− = −1

2
h∗HsRf .

Proof Using Lemma 9.4.15 we may write

Hu
f
−(x,w) = 1

2π
p.v.

∫
SxM

1

〈v,w⊥〉
(∫ ∞

0
f (x + tv) dt

)
dSx(v). (9.19)

The key change of variables is given as follows. Given y ∈ R
2 we write it as

y = x + tv = r1w + r2w
⊥, (9.20)

taking advantage of the fact that {w,w⊥} is an oriented orthonormal basis of
R

2. The change of variables (t,v) 
→ (r1,r2) relates the area elements as

t dt dSx(v) = dr1 dr2.

From (9.20) we see that 〈
x,w⊥〉 + t

〈
v,w⊥〉 = r2,

and thus we may transform the integral in (9.19) to

Hu
f
−(x,w) = 1

2π
p.v.

∫ ∞

−∞
dr2

〈x,w⊥〉 − r2

(∫ ∞

−∞
f
(
r1w + r2w

⊥) dr1

)
= 1

2π
p.v.

∫ ∞

−∞
Rf (−r2,w⊥)

〈x,w⊥〉 − r2
dr2

= −1

2
HsRf (〈x,w⊥〉,w⊥).

Remark 9.5.2 Since h ◦ α = h, the formula above implies that H(I0f )− is
invariant under α. This is a peculiarity of constant curvature since, in general,
XHu

f
− = −Wf and Wf = 0 in constant curvature. (Recall that u

f
−|∂SM =

(I0f )−.)
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9.5.1 X⊥ and d
ds

Given p ∈ C∞([−1,1] × S1) we can pull it back via h to obtain h∗p ∈
C∞(∂SM). Moreover, (h∗p) ◦ α = h∗p and thus by Theorem 5.1.1 this
function gives rise to a smooth first integral on SM that we denote by (h∗p)�.
Clearly (h∗p)� = h∗p, which is very convenient.

Lemma 9.5.3 We have

X⊥(h∗p)� =
(
h∗ ∂p

∂s

)�

.

Equivalently

X⊥(h∗p) = h∗ ∂p
∂s

.

Proof The flow of X⊥ is simply ψt(x,v) = (x + tv⊥,v). Thus

h∗p(ψt (x,v)) = p(h(x + tv⊥,v)) = p(〈x,v⊥〉 + t,v⊥).

Differentiating at t = 0 we obtain:

X⊥(h∗p)(x,v) = ∂p

∂s
(h(x,v)) =

(
h∗ ∂p

∂s

)
(x,v)

as desired.

9.5.2 Deriving the FBP from Theorem 9.4.1

To finish off, we define w := H(I0f )−|∂SM and note that by Lemma 9.5.1
one has w = − 1

2h
∗HsRf . Defining p := − 1

2H
sRf we have w = h∗p, so

w� = h∗p. Now Lemma 9.5.3 gives that

X⊥w� = −1

2
h∗

(
d

ds
HsRf

)
.

Theorem 9.4.1 in the constant curvature case (so that W = 0) together with
Remark 9.5.2 will tell us that

f = −(X⊥w�)0.

Let g := d
ds

H sRf . Then performing the fibrewise average and using the
definition of h, we derive

f (x) = 1

4π

∫
SxM

g(h(x,v)) dSx(v)

= 1

4π

∫
SxM

g(〈x,v⊥〉,v⊥) dSx(v)

= 1

4π

∫
SxM

g(〈x,v〉,v) dSx(v).
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Therefore using the definition of the backprojection operator R∗ given in
Section 1.3, we obtain

f = 1

4π
R∗

(
d

ds
HsRf

)
, (9.21)

which is a well-known form of the FBP formula.

Exercise 9.5.4 Show that (9.21) is equivalent to the FBP formula from
Theorem 1.3.3. (Hint: use that |σ | = (iσ )(sgn(σ )/i) and identify the operators
associated with each factor as a Fourier multiplier.)

9.5.3 Holomorphic Integrating Factors

Continuing with the Euclidean unit disk M , we know from Remark 9.5.2
that in the flat case Hu

f
− is a first integral, thus w := (I + iH)u

f
− has the

property that Xw = −f and moreover it is holomorphic and odd. Similarly,
w̃ = (I − iH)u

f
− is odd, anti-holomorphic and solves Xw̃ = −f . Such

functions are called holomorphic integrating factors. Proving their existence
in the simple case will be very important and the subject of discussion in
subsequent chapters. Here we simply wish to point out that their existence
in the Euclidean case is quite straightforward.

For completeness we note:

Lemma 9.5.5 u
f
+ = 1

2 h∗Rf .

Exercise 9.5.6 Prove the lemma.

Remark 9.5.7 The function g := 1
2 (I + iH s)Rf appears prominently in the

classical literature on the attenuated Radon transform. Lemmas 9.5.1 and 9.5.5
tell us that uf − w = h∗g and the holomorphicity of w in the angular variable
is extensively used, see, for instance, Finch (2003, Lemma 2.1).

9.6 Range

We will describe the range of I0 and I⊥ following Pestov and Uhlmann (2004).
To do this we shall introduce a boundary operator that will naturally appear in
the discussion below.

Let (M,g) be a non-trapping surface with strictly convex boundary. We
define

P : C∞
α (∂+SM) → C∞(∂+SM)

as

P := A∗
−HA+.
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We have:

Proposition 9.6.1 Let (M,g) be a non-trapping surface with strictly convex
boundary. Then

P = 1

2π

(
I⊥I ∗

0 − I0I
∗
⊥
)
.

Proof Let w ∈ C∞
α (∂+SM) so that w� ∈ C∞(SM). The proof is essentially a

rewriting of the commutator formula between X and the Hilbert transform H

given in Proposition 6.2.2. Indeed, apply H to Xw� = 0 to obtain

−XHw� = X⊥
((
w�

)
0

) + (
X⊥w�

)
0.

Since I ∗
⊥w = −2π(X⊥w�)0 (cf. (9.14)) and I ∗

0 w = 2π(w�)0, we deduce

−XHw� = 1

2π

(
X⊥I ∗

0 w − I ∗
⊥w

)
.

Integrating this equation along geodesic connecting boundary points (i.e.
applying the X-ray transform I ), we obtain( − Hw� ◦ α + Hw�

)|∂+SM = 1

2π

(
I⊥I ∗

0 w − I0I
∗
⊥w

)
.

But the left-hand side is A∗−H(w�|∂SM) = Pw and the proposition is proved.

It turns out that the symmetries that we have already discussed produce a
further splitting of the formula above. Indeed observe that

I ∗
0 |V− = 0; I ∗

⊥|V+ = 0.

These are naturally dual to

range I0 ⊂ V+; range I⊥ ⊂ V−

thanks to Exercise 9.4.10. Also note that A∗−u is in V+ (respectively V−) if u

is odd (respectively even) on ∂SM . Hence if we split the Hilbert transform as
H = H+ + H− where H±u = Hu± (as usual, u± denote the even and odd
parts of u with respect to a), then the formula in Proposition 9.6.1 splits as
P = P+ + P− where

P− := A∗
−H−A+ = − 1

2π
I0I

∗
⊥ (9.22)

and

P+ := A∗
−H+A+ = 1

2π
I⊥I ∗

0 . (9.23)
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These formulas imply right away the following range properties for I0 and
I⊥. Recall that I ∗

0 ,I
∗
⊥ : C∞

α (∂+SM) → C∞(M).

Theorem 9.6.2 Let (M,g) be a non-trapping surface with strictly convex
boundary. Then

(i) A function h ∈ C∞(∂+SM) is in the range of I0 : range I ∗
⊥ →

C∞(∂+SM) if and only if there is w ∈ C∞
α (∂+SM) such that h = P−w.

(ii) A function h ∈ C∞(∂+SM) is in the range of I⊥ : range I ∗
0 →

C∞(∂+SM) if and only if there is w ∈ C∞
α (∂+SM) such that h = P+w.

If, in addition, M is simple (i.e. there are no conjugate points), then I ∗
0 and

I ∗
⊥ are surjective and the items above give full characterization of the range of
I0 and I⊥ exclusively in terms of the boundary operators P±.

Proof Items (i) and (ii) are direct consequences of (9.22) and (9.23). In the
simple case, surjectivity of I ∗

0 is proved in Theorem 8.2.1 and surjectivity of
I ∗
⊥ will be proved in Theorem 12.3.1.

Remark 9.6.3 It is natural to ask whether the range conditions in Theorem
9.6.2 are related to the Helgason–Ludwig range conditions as described in
Chapter 1, when one is considering compactly supported functions in the
unit disk in R

2. In Monard (2016a, Theorem 3) it is proved that these range
conditions are equivalent once the transformation between fan-beam geometry
and parallel-beam geometry is implemented.

9.7 Numerical Implementation

The Fredholm inversion formulas in Theorem 9.4.11 and Exercise 9.4.12 have
been implemented in Monard (2014). In what follows we focus exclusively
on the formula in Theorem 9.4.11 and for simplicity, we let F be the filter
F := 1

8π A∗+HA−, so the formula becomes

f + W 2f = I ∗
⊥FI0(f ).

From Proposition 9.3.2 we easily derive the observation that W becomes a
contraction in L2 whenever the metric g is C3-close to a metric of constant
curvature. Hence Id + W 2 may be inverted by a Neumann series to obtain

f =
∞∑
k=0

( − W 2)k[I ∗
⊥FI0(f )

]
.
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Figure 9.1 Geodesics of g.

It turns out that implementing this Neumann series does not require imple-
menting the operator W 2 and this is a major advantage. Indeed writing −W 2 =
Id − I ∗

⊥FI0, we may rewrite the Neumann series as

f =
∞∑
k=0

(
Id − I ∗

⊥FI0
)k[

I ∗
⊥FI0(f )

]
.

This suggests that a good approximation for the inversion of f in terms of I0f

is given in terms of the truncated series

f ≈
N∑

k=0

(
Id − I ∗

⊥FI0
)k[

I ∗
⊥FI0(f )

]
. (9.24)

Note that the computation of (9.24) only involves solving the forward problem
iteratively and the approximate inversion given by I ∗

⊥F . Several numerical
experiments illustrating this inversion may be found in Monard (2014). Here
we include one as follows, kindly provided to us by François Monard. The
metric g on the unit disk has the form e2λ(dx2

1 + dx2
2) where

5λ = exp
( − ((

x1 − 0.3
)2 + x2

2

)
/2σ 2) − exp

( − ((
x1 + 0.3

)2 + x2
2

)
/2σ 2),
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9.7 Numerical Implementation 231

Figure 9.2 The function f .

Figure 9.3 The left figure depicts I0f and the right one depicts FI0f .

Figure 9.4 Reconstruction and error after no iterations.
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Figure 9.5 Reconstruction and error after five iterations.

with σ = 0.25. The metric is simple and has low sound speed and high
sound speed regions; geodesics emanating from different boundary points are
depicted in Figure 9.1.

The function f to be reconstructed is given in Figure 9.2 and it is a mix of
Gaussians of various widths and weights.

Figure 9.3 shows I0f and its filtered version FI0f . Figure 9.4 shows
I ∗
⊥FI0f and the error and finally, Figure 9.5 shows (9.24) implemented after

five iterations and the corresponding error. For more details on the algorithm
and a thorough discussion we refer to Monard (2014).
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