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Summary

Genomic selection describes a selection strategy based on genomic breeding values predicted from
dense single nucleotide polymorphism (SNP) data. Multiple methods have been proposed but the
critical issue is how to decide whether an SNP should be included in the predictive set to estimate
breeding values. One major disadvantage of the traditional Bayes B approach is its high
computational demands caused by the changing dimensionality of the models. The use of stochastic
search variable selection (SSVS) retains the same assumptions about the distribution of SNP effects
as Bayes B, while maintaining constant dimensionality. When Bayesian SSVS was used to predict
genomic breeding values for real dairy data over a range of traits it produced accuracies higher or
equivalent to other genomic selection methods with significantly decreased computational and time

demands than Bayes B.

1. Introduction

Traditionally selection to improve profitability of
livestock production has been based on phenotypic
and pedigree information. However, the availability
of dense single nucleotide polymorphisms (SNPs) and
dramatic reduction in the cost of acquiring this in-
formation has allowed the inclusion of genome wide
marker information in the prediction of animals’
breeding values.

Meuwissen et al. (2001) introduced genomic selec-
tion as a selection strategy based on genomic breeding
values predicted from dense marker data. The method
implicitly recognized the fact that quantitative traits
such as those affecting profit of livestock production
are controlled by the segregation of large numbers of
multiple quantitative trait loci (QTLs), and therefore
predicts an animal’s breeding value by simultaneously
evaluating and summing large numbers of marker
effects across the entire genome. The method makes
the assumption that the markers are in linkage
disequilibrium (LD) with the QTL. The higher the
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density of the markers is, the greater the level of LD
between the markers and the QTL and thus the
greater proportion of genetic variance that can be
explained by the markers.

In the reference population, where the SNP effects
are predicted, the number of marker effects (p) to
simultaneously estimate will typically be substantially
larger than the number of animals genotyped (n),
which leads to the difficulty of an over-saturated
model (i.e. p>n). Thus, a model for genomic selection
must be able to overcome this problem. The other
necessity is a sparse model because of the large number
of SNP effects that are zero or close to zero. Subse-
quently, a crucial question is how to decide whether
an SNP is in, or out of the set of SNPs chosen to give
the most accurate prediction of breeding values in
independent data sets. One potential approach is to
use shrinkage methods such as the least absolute
shrinkage and selection operator (LASSO), where all
SNPs are included in the predictive set but the smaller
effects are shrunk back towards zero (Tibshirani,
1996). Another approach is to use the reversible jump
Markov chain Monte Carlo (MCMC) algorithm
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(Green, 1995), which uses a variable dimension model
space approach that allows the SNPs in the predictive
set to change. Stochastic search variable selection
(SSVS) (George & McCulloch, 1993) provides a
method to maintain a constant dimensionality across
all models but allows the SNPs in the predictive set
to change. It allows this by instead of removing all
non-significant parameters (those that would be ex-
cluded from the predictive set using the reversible
jump algorithm) from the model, their effects are
limited to values very close to zero.

The major advantage of this method is that the pos-
terior distribution of all parameters can be sampled
directly using the Gibbs sampler, instead of using more
computationally demanding algorithms such as the
reversible jump algorithm. SSVS has been previously
used for identifying multiple QTLs (Yi et al., 2003),
multivariate regression models (Brown et al., 1998),
gene mapping (Swartz et al., 2006) and generalized
linear models (George & McCulloch, 1997). It has
also been utilized for analysing multi-trait QTL map-
ping data (Meuwissen & Goddard, 2004), and subse-
quently to investigate the effect that different methods
for defining haplotypes and the effect of the inclusion
of the polygenic effect had on the accuracy of genomic
selection in simulated data (Calus et al., 2008 ; Calus
& Veerkamp, 2007).

In this paper, we demonstrate that a Bayesian SSVS
can be used effectively when compared with other
methods for genomic selection using real SNP data.
It also provides an viable alternative to more com-
putationally demanding approaches such as Bayes B
(Meuwissen et al., 2001).

2. Materials and methods
(1) SNP data

The data set contained 1498 Australian Holstein-
Friesian bulls genotyped for the Illumina Bovine50K
array. After quality control, 39 048 SNPs remained in
the predictive set. The quality control applied to the
SNP data is described by Hayes et al. (2009). The
reference data set where the SNP effects were pre-
dicted contained 1098 bulls born between 1940 and
2000. The phenotypes for these bulls were Australian
breeding values (ABV) for protein kg, fat kg, protein
percentage, fat percentage and daughter fertility, all
deregressed to remove any contribution from relatives
(Hayes et al., 2009). Daughter fertility here is defined
as the difference between bulls for the percentage of
their daughters pregnant 6 weeks after mating start
date or 100 days after calving in year-round herds.
The validation set contained 400 genotyped bulls
proven from the years 2005, 2006 and 2007 with ABV
which included information from at least 100 milking
daughters to enable comparison with predicted mar-
ker estimated breeding value (MEBV5s).
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(ii) Model

At each locus (total number of loci, p) there are three
possible combinations of two alleles (e.g. A or B), the
homozygote of one allele (AA), the heterozygote (AB)
and the homozygote of the other allele (BB). These
are then quantitatively represented by 0, 1 and 2, re-
spectively. The model fitted to the above data was
then

q
y=ul,+ ZX}/?,-#—Zu—}-e,

Jj=1

where y is the vector of phenotypes of the trait being
analysed for all »n individuals, u is the mean, 1, is a
vector of ones of length n, Xj is a vector of indicator
variables representing the genotypes of the jth marker
for all individuals (x;=0, 1, 2), 3, is the size of the
QTL effect associated with marker j, u is the vector of
random polygenic effects of length n (Z is the as-
sociated design matrix) and is assumed to be normally
distributed, u~ N(0, 024) and e is the residual error
also assumed to be normally distributed, e ~ N(0, 162).
The polygenic effect was included to remove the effect
of population structure to enable more accurate esti-
mation of the SNP effects. Its inclusion has been
shown to produce slightly better accuracies of pre-
diction while reducing the bias of the variance com-
ponents (Calus & Veerkamp, 2007).

(iii) SSVS

The key feature of SSVS compared with Bayes A or B
(Meuwissen et al., 2001) is the introduction of a latent
or indicator variable, v, into the hierarchical model.
This enables the extraction of information relevant to
variable selection. The latent variable can take either
1 or 0, representing whether the SNP is included as a
significant effect in the model or not. As such, the
prior distribution for each SNP effect is a normal
mixture conditional on the corresponding y and the
variance that is sampled from an inverse scaled chi-
square distribution:

Bily»o? ~ (1—y)NO, 0?7 /100)+7,NO, 0?),
oF ~ 1 (r, S).

At the SNP effect level, this hierarchical prior distri-
bution specification means the SNP effects are
sampled from a mixture of two-student # distributions.
The values of r and S were calculated as in Meuwissen
et al. (2001). The prior distribution of the indicator
variable is chosen to reflect the belief of whether
an SNP is linked to a QTL. The probability of an
SNP being sampled from the smaller or larger dis-
tribution is

1—=p(y;=0)=p(y;,=1)=p;.


https://doi.org/10.1017/S0016672309990243

Genomic selection using SSV'S

Subsequently, the prior distribution for the indicator
variable is a Bernoulli distribution:

y; ~ bernoulli (p;).

The prior probability p; is chosen to reflect the infor-
mation available on how many QTLs affect the trait
of interest. It can be quantified as the number of SNPs
expected to be linked to a QTL divided by the total
number of SNPs. In genome-wide association studies
or genomic selection applications, the expected pro-
portion of QTLs can be reasonably estimated based
on knowledge about the trait of interest and previous
QTL studies results.

The posterior distribution of the indicator variable
can be sampled directly using

py;=11;, 0%y _;.u.y) ~ bernoulli

PBily_ivi=Dp;
P(ﬂjh’—;e Vi= 1)Pi+l’(ﬁj|3/—is 7i=0(1—p) )’

where y _; is all terms of y except y;.

The frequency that each SNP appears in the model
is shown by the posterior distribution of the indicator
variable. SNPs that are included in the model fre-
quently have a high posterior probability and will
most likely be linked to a QTL.

(iv) Additional methods

Bayes A, Bayes B and BLUP were also run on
the data. Bayes A and Bayes B were as specified in
Meuwissen et al. (2001) with the addition of a poly-
genic effect. A Bayesian BLUP method was also im-
plemented. It is identical to the specification of Bayes
A with the exception that all SNPs had a constant
equal variance that was sampled once each iteration
from an inverse-scaled chi-square distribution.

In order to have Bayes B results for comparison
with Bayes SSVS, we also used a modified version of
Bayes B approach. The modified version consisted of
running Bayes B cycles with the Metropolis Hastings
(MH) algorithm every 100 iterations of Bayes A.
(Note the Jacobian in the acceptance ratio of the re-
versible jump algorithm was equal to one thus ident-
ical to the MH algorithm). If an SNP effect was found
to be zero during these MH iterations then it was set
to zero during the subsequent Bayes A cycles. This
effectively maintained the same assumptions as Bayes
B, while significantly reducing the time required to
reach convergence.

(V) Breeding values

MEBYVs for bulls in the validation data set were cal-
culated as the sum of the mean, the effects of the
SNP genotypes it carried and the polygenic effect,
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Table 1. Computational time for genomic selection
methods

Computational
Method time“
Bayes BLUP 6
Bayes A 6
Bayes B ~2440°
Bayes B Modified 240
Bayes SSVS 6

¢ Processor clock hours.
> Estimated time to convergence.

MEBV =i+ XB+4. The accuracy of the methods
were evaluated on the correlation, the mean square
error (MSE) and the regression coefficient of the ABV
(assumed to be the true breeding value) on the pre-
dicted MEBV. Genomic selection aims to produce
breeding values as close as possible to the true breed-
ing value. The ABV was used for comparison as it is a
most accurate predictor of the true breeding value and
it is regressed according to the amount of information
available.

3. Results and discussion
(1) Time to convergence

All methods were run for 10000 iterations to ensure
convergence. This number of iterations was shown to
be sufficient for convergence with formal diagnostic
methods provided in the package R, coda (Plummer
et al.,2007). The use of the SSVS method is analogous
to Bayes B in the assumption that the majority of the
SNP effects are thought to be very small and insig-
nificant. However, as illustrated in Table 1, the fixed
dimensions of the model used in SSVS allow the use of
the Gibbs Sampler that is significantly computation-
ally less demanding and consequently quicker than
the reversible jump MCMC algorithm or the MH al-
gorithm used in traditional Bayes B. Given the very
high computational demand of Bayes B, it was not
possible to run this algorithm to convergence. The
time to convergence was extrapolated from running
Bayes B for 1000 iterations. The Bayes A and Bayes
BLUP methods reached convergence in comparable
times to Bayes SSVS.

(i) Comparison of Bayes B and Bayes SSV'S results

The correlations between the ABVs and the MEBV
predicted for the animals in the validation set by the
modified Bayes B and Bayes SSVS for fertility and
protein kg traits are shown in Table 2. This shows that
the two methods produce almost identical corre-
lations with the ABVs as expected. The MEBYV for the
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Table 2. Correlation between predicted MEBV and
ABYV for proven bulls (years 2005, 2006, 2007 and
overall) for the modified Bayes B and Bayes SSV'S
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Table 3. MSE, correlation and regression coefficient
between predicted MEBV and ABYV in the validation
data set

Bayes B Bayes Bayes Bayes
(modified) SSVS Method Measure SSVS« Bayes A“ BLUP“
Protein kg Protein kg TEBV,ABV 0-583 0-567 0:602
2005 0-620 0-627 log(MSE) 4-03 4-06 3-96
2006 0-638 0-646 bEBV.ABV 0-987 0-997 1-055
2007 0-502 0-490 Fat kg TEBV.ABY 0-563 0-532 0-563
Protein kg log(MSE) 5-18 5:22 5-23
Overall 0-575 0-583 bEBV,ABV 09 0-856 0-988
Fertility Protein % TEBV,ABV 0-668 0-641 0-655
2005 0-576 0-577 log(MSE) —4-94 —4-88 —4-34
2007 0-628 0-628 Fat % Tegvapy 0740 0716 0646
Fertility log(MSE) —3:07 —324 —332
Overall 0-540 0:540 bEBV,ABV 0-874 0-864 0-925
Fertlhty TEBV,ABV 0-540 0-539 0-538
log(MSE) 1-51 1-51 1-52
two methods are 99-9 and 98-0% correlated for pro- Peny ABY 0933 0-942 0905

tein and fertility, respectively. This equivalence in
results demonstrates that the Bayes SSVS method
does maintain the SNP effect assumptions of the
original Bayes B and produce near to identical results.
The slightly lower result for fertility is probably due to
the non-normality of the trait making it harder to
estimate and by the modification of the original Bayes
B. The modified Bayes B produced not significantly
different but slightly larger MSEs and regression
coefficients (results not shown). This is most likely due
to the modification to reduce the computational time
to convergence. The time taken for the modified ver-
sion of Bayes B was still 40-fold larger than for the
Bayes SSVS that produced identical accuracies (see
Table 1).

(iii)) Comparison of BLUP, Bayes A,
Bayes SSV'S results

The logarithm of the MSE, regression and correlation
coefficients for the predicted MEBV and ABV for the
traits fertility protein kg, fat kg, protein percentage
and fat percentage are shown in Table 3. The values
shown are the average values for the proven bulls in
the years 2005, 2006 and 2007 from the validation
data set. BLUP has the highest overall correlation
and the lowest MSE between the three methods for
protein kg. For the traits, fat kg and protein percent-
age, Bayes SSVS produces the highest correlations
and has the lowest bias; however, there are no sig-
nificant differences between methods. However, there
are significant differences between the methods for fat
percentage. These difference in the method accuracies
across traits or the apparent ‘trait by method’ inter-
actions can be explained by the distribution of QTLs
for the different traits. For example, protein kg has no
known genes of large effect and thus BLUP, which
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“ Average accuracies reported over validation sets from
years 2005, 2006 and 2007.

TEpv.ABV, correlation coefficient between the ABV and the
predicted MEBV.

log(MSE) is the logarithm of the MSE between the ABV
and the predicted MEBV.

bepv.aBv, regression coefficient of the ABV on predicted
MEBV.
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Fig. 1. SNP effects (%) for fat percentage from Bayes A,
Bayes BLUP and Bayes C found on the centromeric end of
chromosome 14.

uses equal variances across all SNPs, can be used
successfully to accurately predict breeding values. In
contrast, fat percentage has a known mutation,
DGAT]I, that is common and acts additively and is
known to be responsible for explaining a large per-
centage of genetic variation for the trait (Grisart et al.,
2002). The individual SNP variances that Bayes A
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and Bayes SSVS uses, allows effects of a large size not
to be penalized (shrunk) as severely as in BLUP. This
is clearly shown in Fig. 1, where the percentage each
SNP contributes to the total SNP effects are plotted
for the three methods for the centromeric end of the
bovine chromosome 14. Bayes A and Bayes C have
an SNP with an effect significantly greater than zero,
while the Bayes BLUP effects for SNP near DGATI1
and surrounding the mutation are close to zero. Bayes
SSVS does perform slightly better than Bayes A for
fat percentage. The advantage of the Bayes SSVS over
Bayes A may be the prior structure consisting of two
distributions: a distribution of larger significant ef-
fects and a smaller distribution close to zero. This
allows the SNP with larger effects to have values in
their posterior sampled from the larger distribution,
while those SNPs without significance have their ef-
fects sampled from the smaller posterior distribution
of values very close to zero. Traits with large effects
will be more accurately predicted using SSVS than
Bayes A as the prior structure allows more variance to
be attributed to the larger effects.

4. Conclusion

Bayesian SSVS produced more accurate MEBV for
most of the dairy traits in our data set than other
methods. The comparison with a modified version of
Bayes B showed that it is equivalent and produces the
same results with dramatically less computational
time required. For traits with a mutation of known
large effect such as fat percentage, Bayes SSVS gave
significantly higher accuracy of MEBV than the
BLUP method as expected given that its prior is closer
to the real distribution of effects than that of BLUP.
The use of an indicator variable in Bayes SSVS would
also allow the premeditated inclusion of SNPs in a
model that are known to be linked to QTL of bio-
logical importance. Instead of using a single value to
set the prior probability for all SNPs a vector of
probabilities could be used as prior probabilities to
allow more prior information to be included should
it be available. Overall, this study has shown that
the Bayes SSVS method provides reduced compu-
tational time and accurate results when using real dairy
data to predict genomic breeding values and provides
a viable alternative to other Bayesian methods for
genomic selection.
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