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This paper studies numerically the convection of water vapour in snowpacks using an
Eulerian–Eulerian two-phase approach. The convective water vapour transport in snow
and its effects on snow density are often invoked to explain observed density profiles, e.g.
of thin Arctic snow covers, but this process has never been numerically simulated and
analysed in a systematic manner. Here, the impact of convection on the thermal and phase
change regimes as a function of different snowpack depths, thermal boundary conditions
and Rayleigh numbers is analysed. We find considerable impact of natural convection on
the snow density distribution with a layer of significantly lower density at the bottom of the
snowpack and a layer of higher density located higher in the snowpack or at the surface.
We find that emergent heterogeneity in the snow porosity results in a feedback effect on
the spatial organization of convection cells causing their horizontal displacement. Regions
where the snowpack is most impacted by phase changes are found to be horizontally
extended and vertically thin, ‘pancake’-like layers at the top and bottom of the snowpack.
We further demonstrate that among the parameters important for natural convection, the
snowpack depth has the strongest influence on the heat and mass transfer. Despite our
simplifying assumptions, our study represents a significant improvement over the state of
the art and a first step to accurately simulate snowpack dynamics in diverse regions of the
cryosphere.
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1. Introduction

Snow covers drastically modify the energy and water fluxes at or near the land surface
(Groisman, Karl & Knight 1994) even at long distances from the snow cover, and as
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a consequence, create significant feedback on the climate. They act as temporary water
storage and control ground water recharge, making snow crucial to one-sixth of the world’s
population living in areas where solid precipitation dominates annual precipitation and
runoff. The soil thermal properties and permafrost dynamics are dominated by the snow
cover (Haberkorn et al. 2017; Bender, Lehning & Fiddes 2020). Precise modelling of
the snow cover properties, especially snow density and depth, is therefore vital in many
applications, e.g. as input and validation data for climate models, hydrological models
for irrigation and hydroelectricity, etc. Water vapour transport is a significant process
in the snowpack in different respects such as snow metamorphism (Sturm & Benson
1997; Pfeffer & Mrugala 2002), snowpack stability and avalanches (Pfeffer & Mrugala
2002; Woo 2012) and the thermal implications for climate applications (Slater et al. 2001;
Callaghan et al. 2011). It has been demonstrated that current versions of one-dimensional
snow models cannot simulate Arctic snowpacks because they omit an accurate description
of water vapour transport (Domine et al. 2019). For example, in the Arctic, observations by
Trabant & Benson (1972), Sturm & Benson (1997) and Domine, Barrere & Sarrazin (2016)
suggest that the density of layers close to the ground in thin snow covers can decrease by
more than 100 kg m−3 due to water vapour flux.

It has been previously discussed in the literature that depending on the snowpack, soil
and meteorological conditions, water vapour transport may occur through both diffusion
and convection (Trabant & Benson 1972; Johnson et al. 1987; Alley et al. 1990; Sturm
& Johnson 1991; Domine et al. 2016, 2018). Jafari et al. (2020) discussed that diffusive
water transport constitutes the lower limit for total water vapour transport and showed
that diffusive vapour transport alone already reproduces lower densities at the base of the
snowpack in some cases. However, in snowpacks under strong temperature gradients such
as Arctic and sub-Arctic ones, in which weak snow layers composed of depth hoar crystals
are rapidly formed (Sturm & Benson 1997; Taillandier et al. 2006; Derksen et al. 2009;
Domine et al. 2015), water vapour transport is hypothesized to mainly be driven by natural
convection. It has been concluded that significant convection must occur in snowpacks
to explain the observations, namely: (1) the measured rates of densification and density
changes for snow in Fairbanks by Trabant & Benson (1972), (2) significant horizontal
thermal gradients and incoherent temporal variations of horizontal temperature patterns at
their study site by Sturm & Johnson (1991) and (3) the near-total disappearance of basal
depth hoar at Bylot Island by Domine et al. (2016).

Snow–atmosphere coupling with high uncertainty in the magnitude of perturbation
within the snow is another mechanism which may influence the heat and mass regime
of the snowpack surface and if strong enough in deeper snow layers. Colbeck (1989)
introduced three different such wind pumping or ventilation mechanisms, namely
barometric pressure variations, wind turbulence and steady wind flow over topography,
and concluded the last one could be strong enough to induce significant air moving through
snow. Waddington, Cunningham & Harder (1996) concluded that the dry deposition flux
due to turbulent ventilation should be very small and that the air velocity through the
snow surface by wind turbulence is of the order of 0.01 cm s−1. Sokratov & Sato (2000)
estimated the wind-induced horizontal air flux to be of the order of 10−2 m s−1 while
Albert & McGilvary (1992) and Albert (1993) reported much larger values for air flux by
wind pumping ranging from 10−7 to 0.1 m s−1. Bartlett & Lehning (2011) in agreement
with Colbeck (1989) and Waddington et al. (1996) concluded that ventilation should have
a minimal impact on heat transfer under typical conditions. These studies suggest that
measurable effects only occur to a small penetration depth (Colbeck 1989; Waddington
et al. 1996; Bartlett & Lehning 2011).
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Observations cannot distinguish between different types of vapour transport and
represent a mixture of effects such as snow settling, vapour transport and wind compaction
(Sommer, Lehning & Fierz 2018). Therefore, a sound modelling of water vapour transport
needs to take into account natural convection as a possible mechanism of density change
and observations need to be explained by modelling. As reviewed by Jafari et al. (2020),
previous attempts to numerically study water vapour transport in snow and its effects
on snow properties consider diffusion only. It is furthermore not possible to explicitly
model convection with phase change in a one-dimensional snow model. Thus, in this
work, the convective water vapour transport is numerically investigated in snowpacks,
using a volume-averaged two-phase model in which each phase is treated separately and
interactions between the phases are modelled. The numerical implementation is in a
two-dimensional domain. Performance of the present model for natural convection without
mass transfer was validated by comparison with available numerical benchmarks. When
including phase change and the associated local density changes, a considerable impact
of natural convection on the snow density distribution with a layer of significantly lower
density at the bottom of the snowpack and a layer of higher density located at the top is
observed. This is consistent with measurements of Domine et al. (2016), who find that the
density increase for the wind slabs overlying depth hoar may be attributed to upward water
vapour transfer and its deposition.

2. Mathematical models

Whilst acknowledging but neglecting the effects of ventilation and snow compaction, to
start with a tractable model and focus on the effect of convection, water vapour transport
due to natural convection in idealized snowpacks is investigated numerically using an
Eulerian–Eulerian two-phase approach. To do so, the volume-averaging method is applied
to the conservation of mass, momentum and energy which are valid within each phase up
to the interface between phases. In this paper, the snowpack is considered as a two-phase
(humid air, ice) porous medium for which the phase change between the water vapour
component in the gas mixture and ice is simulated. The detailed explanation, derivations
and operations constituting the volume-averaging method can be found in (Whitaker 1999;
Faghri & Zhang 2006). Note that, in this paper, all the phase properties presented as 〈−〉g

and 〈−〉i are the intrinsic phase averages for the gas and ice phases, respectively, while the
extrinsic averages are shown as the operator 〈−〉.

2.1. Mass conservation
The volume-averaged mass conservation equations for the gas mixture (humid air), water
vapour component and ice phase are given respectively as

∂

∂t

(
εg

〈
ρg

〉g) + ∇ · (〈
ρg

〉g 〈
Ug

〉) = ṁiv, (2.1)

∂

∂t

(
εg 〈ρv〉g) + ∇ · (〈ρv〉g 〈

Ug
〉) = ∇ · (Deff ,s∇ 〈ρv〉g) + ṁiv, (2.2)

ρi
∂εi

∂t
= −ṁiv, (2.3)

where εg and εi are the volume fractions for the gas and ice phases respectively,
〈
Ug

〉
is

the bulk gas-phase velocity vector (also known as superficial, extrinsic, filtration, Darcy
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or seepage velocity),
〈
ρg

〉g is the gas mixture density, 〈ρv〉g is the water vapour density, ρi
is the ice density, ṁiv represents mass source (or sink) per unit volume due to the phase
change (subscript iv refers to the mass transfer from ice to vapour while vi from vapour to
ice) and Deff ,s is the effective water vapour diffusivity in snow. A brief review of effective
diffusivity and its enhancement in snow has been made in Jafari et al. (2020). Based on an
analytical model developed first by Foslien (1994) and then extended by Hansen & Foslien
(2015), the following parameterization for Deff ,s is used:

Deff ,s = εiεgDv,a + εg
kiDv,a

εi

(
ka + LivDv,a

dρvs

dT

)
+ εgki

, (2.4)

where ki and ka are the thermal conductivities for the air and ice components of snow
respectively, Dv,a is the water vapour diffusion coefficient in air, ρvs is the saturation water
vapour density calculated at the interface temperature between two phases and Liv is the
latent heat of sublimation. Following Albert & McGilvary (1992), ṁiv may be evaluated
as

ṁiv = hmas(ρvs − 〈ρv〉g). (2.5)

In (2.5), hm is the mass transfer coefficient and as = 6εi/dp is the specific surface area of
snow with optical grain diameter of dp (Calonne et al. 2012). Jafari et al. (2020) discussed
that the entire specific surface area may be not active for mass transfer, and hence justified
the choice of the formulation as hm = ρi/(Bρv,s) proposed respectively by Calonne,
Geindreau & Flin (2014) and Ebner et al. (2015). Here, the interface kinetic growth
coefficient was found to be B = 9.7 × 109 s m−1 from the experiments of sublimation and
deposition on the ice structure with and without advective flows in snow. The degree of
over- or under-saturation, σ = (〈ρv〉g − ρv,s

)
/ρv,s, is directly related to the phase change

rate ṁiv (the divergence of the vapour flux) (Jafari et al. 2020) and can be used as a
diagnostic variable to quantify the intensity of the phase change rate. Hence, the phase
change rate ṁiv can be written as

ṁiv = −6εiρi

Bdp
σ. (2.6)

2.2. Momentum
With the pore Reynolds number Rep = ρg|

〈
Ug

〉 |dp/μ (based on particle size, dp) less
than 10, the advective and inertial terms are negligible (Gray & O’Neill 1976; Ganesan &
Poirier 1990; Faghri & Zhang 2006; Nield & Bejan 2017) and thus the volume-averaged
momentum equation for gas flow through the snowpack as a porous medium with variable
porosity can be simplified to the Darcy–Forchheimer equation (Ward 1964; Faghri &
Zhang 2006; Nield & Bejan 2017) as

−μ

K

〈
Ug

〉 −
〈
ρg

〉g cF√
K

∣∣〈Ug
〉∣∣ 〈Ug

〉 − ∇ 〈
Pg

〉g + 〈
ρg

〉g g = 0, (2.7)

where μ is the dynamic viscosity of the air, K is the intrinsic permeability of the porous
medium, cF is a dimensionless form-drag constant and

〈
Pg

〉g is the gas mixture pressure.
In (2.7), the first and second terms refer to the Darcian relationship due to the viscous
surface friction and the quadratic drag (or the nonlinear form drag) due to solid obstacles,
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respectively (Faghri & Zhang 2006; Nield & Bejan 2017). The quadratic drag is significant
when 1 < Rep < 10, otherwise it is negligible compared with the Darcian term (Faghri &
Zhang 2006; Nield & Bejan 2017). To extract the driving force associated with the gas
density gradient in the momentum equation (2.7), the hydrostatic pressure contribution
is separated from total gas pressure as

〈
Pg

〉g = 〈
Pgd

〉g − 〈
ρg

〉g gz. Hence, the momentum
equation may be read equivalently as

−μ

K

〈
Ug

〉 −
〈
ρg

〉g cF√
K

∣∣〈Ug
〉∣∣ 〈Ug

〉 − ∇ 〈
Pgd

〉g + ∇ 〈
ρg

〉g |gz| = 0. (2.8)

Using three-dimensional images of snow microstructure, Calonne et al. (2012) proposed
the following regression for the snow permeability:

K = 3
4

d2
p exp(−0.013ρiεi). (2.9)

Assuming Ergun’s equation for momentum, the dimensionless form-drag constant can
be evaluated by cF = αγ −1/2ε

−3/2
g as an ad hoc procedure with α = 1.75 and γ = 150

(Nield & Bejan 2017).

2.3. Energy
Neglecting the effect of viscous dissipation on natural convection in a porous medium
(Nield & Bejan 2017), the intrinsic volume-averaged energy equations in terms of enthalpy〈
hg

〉g for the gas phase and 〈hi〉i for the ice phase with local thermal non-equilibrium are
derived respectively as (Faghri & Zhang 2006; Nield & Bejan 2017)

∂

∂t

(
εg

〈
ρg

〉g 〈
hg

〉g) + ∇ · (〈
ρg

〉g 〈
hg

〉g 〈
Ug

〉) = −∇ ·
〈
q′′

g

〉g

−∇ · [〈hv〉g 〈Jv〉 + 〈ha〉g 〈Ja〉
] + εg

∂

∂t

〈
Pg

〉g + 〈
Ug

〉 · ∇ 〈
Pg

〉g
+ṁiv

〈
hv,I

〉g + 〈
qI,g

〉
, (2.10a)

ρi
∂

∂t

(
εi 〈hi〉i

)
= −∇ · 〈

q′′
i
〉i + ṁvi

〈
hi,I

〉i + 〈
qI,i

〉
. (2.10b)

The subscripts a and v correspond to the dry air and water vapour components
respectively. The first two terms on the right-hand side of (2.10a) represent the divergence
of the conductive heat flux and the interdiffusional convection (the transfer of enthalpy
with vapour and air diffusive fluxes as 〈Jv〉 and 〈Ja〉), respectively. The fourth term on
the right-hand side of (2.10a) is the reversible rate of energy change per unit volume
associated with compression. In (2.10),

〈
q′′

g

〉g
and

〈
q′′

i
〉i are the conductive heat fluxes in

the gas and ice phases respectively,
〈
qI,g

〉
and

〈
qI,i

〉
are the conductive heat transfer per unit

volume from the interface to the related phases and the terms ṁiv
〈
hv,I

〉g and ṁvi
〈
hi,I

〉g are

the interphase enthalpy exchange due to phase change, in which
〈
hv,I

〉g and
〈
hi,I

〉i are the
intrinsic volume-averaged enthalpies of the water vapour and ice, respectively, calculated
at the interface temperature TI . Assuming humid air as being an ideal gas mixture and
using the ideal gas equation of state for the water vapour and dry air components, the
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enthalpy
〈
hg

〉g, the specific heat capacity
〈
cpg

〉g, the molecular mass
〈
Mg

〉g and the density
of the gas mixture are evaluated as

〈
hg

〉g = 〈ρv〉g 〈hv〉g + 〈ρa〉g 〈ha〉g〈
ρg

〉g , (2.11a)

〈
cpg

〉g = 〈ρv〉g cpv + 〈ρa〉g cpa〈
ρg

〉g , (2.11b)

〈
ρg

〉g = 〈ρv〉g + 〈ρa〉g =
〈
Pg

〉g 〈
Mg

〉g
Ru

〈
Tg

〉g , (2.11c)

〈ρa〉g = 〈Pa〉g Ma

Ru
〈
Tg

〉g , (2.11d)

〈ρv〉g = 〈Pv〉g Mv

Ru
〈
Tg

〉g , (2.11e)

〈
Mg

〉g =
〈
ρg

〉g
〈ρa〉g /Ma + 〈ρv〉g /Mv

. (2.11f )

In (2.11), Ru is the universal gas constant, Mv and Ma are the molecular mass, cpv and cpa
are the specific heat capacity and finally 〈Pv〉g and 〈Pa〉g are the partial pressure for the
water vapour and dry air components respectively. The zero point of the enthalpy for dry
air and liquid water is chosen at the reference temperature Tref = 273.15 K. Therefore, the
enthalpies of dry air, water vapour and ice are given as (Russo et al. 2014)

〈hv〉g = 〈hv〉g (T = Tref ) + cpv

(〈
Tg

〉g − Tref
) = Lwv + cpv

(〈
Tg

〉g − Tref
)
, (2.12a)

〈hi〉i = 〈hi〉i (T = Tref ) + cpi

(
〈Ti〉i − Tref

)
= −Liw + cpi

(
〈Ti〉i − Tref

)
, (2.12b)

〈ha〉g = cpa
(〈

Tg
〉g − Tref

)
, (2.12c)

where Liw and Lwv are the latent heat of fusion and evaporation respectively. Given that
the interfacial energy terms associated with surface tension, work done by pressure and
interfacial shear stress work (the conversion of mechanical to thermal energy) are usually
negligible with respect to the large energy exchange due to phase change, the energy
balance at the interface can be written as (Faghri & Zhang 2006; Ishii & Hibiki 2010;
Hugelius et al. 2014)

ṁiv
〈
hv,I

〉g + 〈
qI,g

〉 + ṁvi
〈
hi,I

〉i + 〈
qI,i

〉 = 0. (2.13)

To obtain the heat transfer from the interface to the gas phase
〈
qI,g

〉
, Newton’s law of

cooling is used as follows: 〈
qI,g

〉 = hcas(TI − 〈
Tg

〉g
), (2.14)

where hc is the heat transfer coefficient and as is the specific surface area of the porous
medium. Substituting (2.14) into (2.13) with ṁvi = −ṁiv , the heat transfer from the
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interface to the ice phase
〈
qI,i

〉
may be calculated as

〈
qI,i

〉 = −hcas
(〈

Tg
〉g − TI

) + ṁiv

(〈
hi,I

〉i − 〈
hv,I

〉g)
. (2.15)

Based on the temporal term in the bulk heat transfer equation including both phases
(homogeneous mixture model), the interface temperature TI may be evaluated as

TI = wg
〈
Tg

〉g + wi 〈Ti〉i , (2.16a)

wg = εg
〈
ρg

〉g cpg

εg
〈
ρg

〉g cpg + εiρicpi
, (2.16b)

wi = εiρicpi

εg
〈
ρg

〉g cpg + εiρicpi
. (2.16c)

Based on analogies between heat and mass transfer (Bird, Stewart & Lightfoot 1961;
Faghri & Zhang 2006; Bergman et al. 2011), it follows that the dimensionless temperature
gradient expressed by the Nusselt number Nu = hcdp/ka = f (Rep, Pr) and concentration
gradient expressed by Sherwood number Sh = hmdp/Dv,a = f (Rep, Sc) are similar and
we assume Nu = Sh. Here Sc is the Schmidt number, the ratio of kinematic viscosity and
mass diffusivity, and Pr is the heat transfer equivalent of the Schmidt number. For gases,
Sc and Pr have similar values (≈0.7) and this is used as the basis for simple heat and mass
transfer analogies. Therefore, the heat transfer coefficient hc may be related to the mass
transfer coefficient hm as

hc = hmka

Dv,a
. (2.17)

Combining (2.11), (2.12), (2.14), (2.15) and (2.16) with (2.10), the energy equations in
term of temperature for the gas and ice phases are derived as

∂

∂t

(
εg

〈
ρg

〉g cpg
〈
Tg

〉g) + ∇ · (〈
ρg

〉g cpg
〈
Tg

〉g 〈
Ug

〉) = ∇ · (
εgkeff ,g∇

〈
Tg

〉g)
+ εg

∂

∂t

〈
Pg

〉g + 〈
Ug

〉 · ∇ 〈
Pg

〉g − ∇ · [〈
Tg

〉g
(cpv − cpa) 〈Jv〉

]
+ hcas

[(〈
Tg

〉g (
wg − 1

) − 〈Ti〉i wi

)]
+ ṁivcpv

〈
Tg

〉g
, (2.18)

ρicpi
∂

∂t

(
εi 〈Ti〉i

)
= ∇ ·

(
εikeff ,i∇ 〈Ti〉i

)
− hcas

[(〈
Tg

〉g (
wg − 1

) − 〈Ti〉i wi

)]
− ṁivcpv

(〈
Tg

〉g wg + 〈Ti〉i wi

)
− ṁiv(cpi − cpv)Tref − ṁivLiv, (2.19)

where keff ,g and keff ,i are, respectively, the effective thermal conductivity of the humid
air and ice in snow. Using the definition of the effective thermal conductivity for snow
keff ,s = εgkeff ,g + εikeff ,i (Calonne et al. 2012; Hansen & Foslien 2015), one can extract
keff ,g and keff ,i from the analytical parameterization derived for keff ,s by Hansen &
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Foslien (2015) as

keff ,g = εika + kaki

εi

(
ka + LivDv,a

dρvs

dT

)
+ εgki

, (2.20a)

keff ,i = εiki. (2.20b)

In (2.20), ki is the thermal conductivity of the ice.
The final set of equations to be solved are (2.1), (2.2) and (2.3) for the mass conservation,

(2.7) for the momentum and (2.18) and (2.19) for the temperature-based energy equations.
Natural convection in a porous medium is triggered when buoyancy forces, driven by

unstable fluid density gradients, are large enough to overcome viscous drag. Therefore,
the ratio of buoyancy to viscous forces in a porous medium, expressed by the Rayleigh
number, is used as an important non-dimensional parameter to analyse the convective heat
and mass transfer in a porous medium:

Ra = ρaref βg	THK

μkeff ,s/(ρaref cpa)
, (2.21)

where H is the depth of the porous layer, and the air density ρaref , specific heat capacity
cpa, dynamic viscosity μ and thermal expansion coefficient β all are used at the reference
temperature Tref = 273.15 K. The Rayleigh number can alternatively be interpreted as the
ratio of convective to conductive velocity scales as Ra = Uconv/Ucond (Hewitt, Neufeld
& Lister 2013a,b), in which the convective velocity scale is Uconv = ρβ	TgK/μ and the
conductive velocity scale is Ucond = keff ,s/(ρaref cpaH).

3. Numerical scheme, solution procedure and simulation set-ups

A direct numerical solver is developed to model the convection of water vapour with phase
change in snowpacks. This new solver, named as snowpackBuoyantPimpleFoam, is based
on the standard solver of buoyantPimpleFoam in the open-source fluid dynamics software
OpenFOAM 5.0 (www.openfoam.org). Using a finite volume approach, the governing
equations are discretized on a collocated grid. PIMPLE as a combined PISO-SIMPLE
algorithm (Moukalled et al. 2016) is used for the pressure–velocity coupling to solve the
final set of equations described in § 2. For the solution procedure, the gas-phase velocity
obtained by the momentum equation is used to solve the water vapour density and the
temperature for the gas and ice phases. Then, the gas mixture continuity equation including
the mass source (or sink) term along with the semi-discretized momentum equation
are used to solve the resulting pressure Poisson equation to obtain continuity-satisfying
velocity and pressure fields (Moukalled et al. 2016). For the next time step, the heat and
mass transfer coefficients are updated to repeat the solution procedure. To discretize the
equations, the Gauss linear and Gauss linear corrected schemes, respectively, are used for
the terms with gradient and divergence operations and the Euler scheme is chosen for
the discretization of the transient terms (Moukalled et al. 2016). The adjustable time step
scheme with a limit on the Courant number was deployed to reduce the computational cost.
The Courant number as the stability criterion is defined as Co = | 〈Ug

〉 |	t/	r, where 	t
is the time step and 	r is the distance between the computational cell centres.

The numerical simulation is performed for a natural convection flow in a
two-dimensional snowpack of depth H and the length L. Figure 1 shows a sketch of
the domain with the cyclic boundary conditions on lateral sides. The top and bottom
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Impermeable wall with Tc = Th – �T
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Figure 1. A sketch of the two-dimensional domain with non-uniform mesh and prescribed boundary
conditions.

boundaries are considered as impermeable walls with zero flux for the gas phase. For
the heat transfer equations of both phases, the reference temperature is used as the bottom
boundary condition, Th = Tref , whereas Tc = Tref − 	T is applied for the top boundary.
The initial conditions are the reference temperature for both ice and gas phases and the
saturation water vapour density as σ = 0. A sensitivity analysis has shown that the results
are not sensitive to the choice of initial temperature and vapour distribution (figure 23
in Appendix A). A non-uniform mesh in the vertical direction is used to ensure that
the grid size is small enough of the order of Ra−1 to resolve the thin boundary layers
(Hewitt, Neufeld & Lister 2014). Note that in reality snow settling will counteract the
density decrease caused by convection to a certain extent and prevent very low densities
at the bottom. Since snow settling is not simulated in our model, we artificially limited
the density decrease by a threshold of 95 % for the porosity above which the phase change
is stopped. In general, the convective–diffusive heat and mass transfer with phase change
in snowpacks are very slow processes and changes are small enough at each time step to
consider a quasi-steady-state process especially when the convection cells are completely
formed and only show small lateral movement (see below). This is due to the fact that
convection cells form and reach a quasi-steady state in the order of a few hours (shown
later in figure 3), that the thermal boundary conditions are fixed and that the order of
magnitude for the porosity change is small at each time step. Scaling analysis of the ice
mass conservation shows that for the minimum Rayleigh number studied, and assuming
maximum mass transfer potential of σ = 1, the porosity change rate is small and of
the order of ∂εi/∂t ≈ 10−9 s−1. Hence, the convection–diffusion terms (the net vapour
divergence for sublimation and convergence for deposition) are almost equal to the mass
source/sink term. Thus, the maximum Courant number of 200 with the outer PIMPLE loop
of 50 and residual control of 10−4 are used. Note that the sensitivity analysis performed
shows that the results for the semi-steady-state process are not changing for the maximum
Courant number less than 200 as shown in figures 24 and 25 in Appendix C. In addition,
changing the domain length L from 5 to 100 m did not change the results, as is shown in
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Symbol Description Value Unit

Tref Reference temperature 273.15 K
ρaref Reference air density 1.293 kg m−3

ρvsref Reference saturation water vapour density 0.005 kg m−3

β Thermal expansion coefficient of air 0.00366 K−1

g Gravitational acceleration 9.81 m s−2

μ Dynamic viscosity of air 17.29 × 10−6 kg m−1 s−1

ρi Ice density 273.15 kg m−3

cpa Specific heat capacity of air 1005 J kg−1 s−1

cpv Specific heat capacity of water vapour 1853 J kg−1 s−1

cpi Specific heat capacity of ice 2027 J kg−1 s−1

ka Thermal conductivity of air 0.02434 W m−1 K−1

ki Thermal conductivity of ice 2.25 W m−1 K−1

Lwv Latent heat of evaporation 2.5008 × 106 J kg−1

Liw Latent heat of fusion 3.335 × 105 J kg−1

Liv Latent heat of sublimation 2.838 × 105 J kg−1

dp Snow grain diameter 0.001 m

Table 1. The thermal and physical properties of the gas and ice phases evaluated at the reference temperature.

figure 26 in Appendix C. Hence, a domain length of 10 m was chosen for the simulations.
The numerical set-up also was validated comparing with available numerical benchmarks
in § 4. The thermal and physical properties of the gas and ice phases used in the present
numerical simulations are listed in table 1.

4. Numerical validation

The numerical benchmarks for natural convection in a square porous medium with hot and
cold impermeable boundaries on the sides and adiabatic and impermeable boundaries on
the top and bottom are used to examine the performance of the solver developed. First,
the results obtained by the present model are compared against the cases of thermal
equilibrium. To that end, the local and total Nusselt numbers adapted for the thermal
equilibrium should be used (Saeid 2004):

Nu(z) = H
	T

(
εgkeff ,g + εikeff ,i

)
[
εgkeff ,g

d
〈
Tg

〉g
dz

+ εikeff ,i
d 〈Ti〉i

dz

]
, (4.1a)

Nu = 1
H

∫ H

0
Nu(z) dz. (4.1b)

Figure 2 shows the transient variation of the local Nusselt number with scaled time
τ = keff ,st/

((
εgρaref cpa + εiρicpi

)
H2) for Ra = 100. The grid dependency analysis shows

that the temporal variation of Nu for the heights in the middle and upper parts of the
domain does not change with increasing grid size and mostly the error is less than 5 %
while increasing the spatial resolution helps to decrease the error for the bottom region
of the domain. However, in general, a good agreement between the present model and
the numerical benchmark by Saeid & Pop (2004) can be seen for the transient behaviour
of the local heat transfer. In table 2, the resulting total Nusselt numbers for different
Rayleigh numbers are compared with some available numerical benchmarks to verify the
performance of the present solver. The larger variations of Nu between different studies
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Figure 2. Comparison of the present results with the numerical benchmark by Saeid & Pop (2004) (a) for
the transient variation of the local Nusselt number with scaled time τ at three non-dimensional heights for
Ra = 100 and (b) the relative error for different grid sizes.

Author Nu

Ra = 100 Ra = 200 Ra = 500 Ra = 1000

Saeid & Pop (2004) 3.002 — — 13.726
Horne (1975) — 4.89 8.78 —
Walker & Homsy (1978) 3.097 4.89 8.66 12.96
Present results 3.062 4.81 8.52 13.20

Table 2. Comparison of the total Nusselt number Nu defined in (4.1b) at steady state with some previous
numerical benchmarks.

for higher Ra are due to unstable and chaotic behaviour of the flow which requires fine
resolution dependent on Ra as discussed in § 3.

Finally, a comparison was done with the results of local thermal non-equilibrium model
by Baytas & Pop (2002) using the total Nusselt number defined separately for the gas and
ice phases at cold and hot surfaces of the cavity as

Nug = 1
	T

∫ H

0

d
〈
Tg

〉g
dz

dz, (4.2a)
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hcH2

εgkeff ,g
Baytas & Pop (2002) Present results

Nug Nui Nug Nui

1 14.61 1.077 14.89 1.061
5 14.36 1.260 14.66 1.265
10 14.14 1.476 14.46 1.487
50 13.43 2.505 13.82 2.549
100 13.10 3.182 13.51 3.252

Table 3. Comparison of the total Nusselt numbers Nug and Nui for the case of local thermal non-equilibrium
model with fixed Rayleigh number Ra = 500 and keff ,g = keff ,i but different heat transfer coefficients hc.

Nui = 1
	T

∫ H

0

d 〈Ti〉i

dz
dz. (4.2b)

Note that we have used the same term for the heat transfer between two phases as
presented in Baytas & Pop (2002). From comparing the results in table 3, we found that the
present results for Nui are very close to the numerical benchmark and that the maximum
error for Nug compared with the benchmark is less than 3 %.

5. Results and discussion

To the best of our knowledge, we explore for the first time the convection of water vapour
in a phase-changing snowpack and its effects on snow density change by looking at the
thermal and phase change regimes for different snowpack conditions (vertical size, thermal
boundary conditions, Rayleigh number). The conductive and convective velocity scales
introduced in § 2.3 are the key measures to analyse the thermal and mass transfer in a
snowpack and they are needed to show the differences in the phase change regime for
different snowpack conditions. As the effective thermal conductivity and the intrinsic
permeability of snow given respectively by (2.20) and (2.9) both are a function of porosity,
for a specified Rayleigh number, the two parameters of interest are the snow height and the
temperature difference (as the thermal boundary conditions) which define the conductive
and convective velocity scales and are discussed separately later.

In order to provide a context for our results, we summarize the main observations first.
In § 5.1, the general thermal and phase change behaviour in the snowpack is discussed and
we find that (1) the thermal and phase change pattern in a convection cell is qualitatively
the same in all different snowpacks, (2) there is considerable impact of natural convection
on the snow density distribution with a layer of significantly lower density at the bottom
of the snowpack and a layer of higher density located at the top and (3) as discussed in
§ 5.2, the horizontal displacement of the convection cells leads to a wider area of the top
and bottom region to experience phase change processes, resulting in an almost uniformly
increased snow density on the top mirroring the reduced density in the bottom region.
Quantitatively, different phase change rates in snowpacks with various conditions (vertical
size, thermal boundary conditions, Rayleigh number) are caused by the difference in the
thermal and the flow regimes between their respective deposition and sublimation zones.
In this respect, the heat and mass transfer are compared between different snow heights H
in § 5.3 while the effect of the temperature difference 	T is investigated in § 5.4.
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5.1. General thermal and phase change behaviour
When the Rayleigh number is large enough such that convection cells form, the regime
generally develops through three stages: (1) the pure conduction mode, (2) the transition
mode when convection cells start to form and (3) the predominant convection mode when
the convection cells are completely formed. As an example, figure 3 shows the evolution
of the thermal regime through different stages, indicating also the flow directions. Both
conduction heat transfer rate and the Rayleigh number determine how long stages 1 and
2 last. In figure 3(a) conduction is still the dominant mode. As the initial temperature
is uniform and equal to the bottom warm boundary, at the start of simulation, there is
considerable conduction heat transfer in the region close to the top boundary, cooling
down that region (stage 1 of the thermal regime). While the conduction leads to cooling
of the bottom region, the convection starts to be active on the top region. This is shown
in figure 3(b) as stage 2 of the thermal regime. Figure 3(c) shows the transition between
stages 2 and 3 when the convection cells fill almost the whole domain but they are not
yet completely formed and stable. Finally, the convection mode with completely formed
convection cells is shown in figure 3(d) as the last stage of the regime development.
Figure 4 indicates the completely formed convection cells by streamlines. As shown in
this figure, each convection cell is formed by neighbouring upward and downward flows.
Also, these cells can be split by the saturation line σ = 0 into the deposition zone (above
the saturation line) and sublimation zone (below the saturation line).

It should be noted that the general thermal and phase change behaviours in the upward
and downward flows of a convection cell are qualitatively the same for snowpacks with
different conditions (e.g. snow height, thermal boundary conditions, Rayleigh number).
Hence, we analyse the heat and mass transfer regimes in different parts of a chosen
convection cell after one week of the simulation for a sample case with snow height
H = 25 cm, temperature difference 	T = 50 K and Ra = 50. Figure 5 shows profiles
for the saturation degree, snow density change, saturation vapour density gradient, snow
temperature gradient and the air flow velocity in the upward and downward flows of a
convection cell for two scenarios, i.e different snow heights and different temperature
boundary conditions. Also, two-dimensional plots of the chosen convection cell for the
sample case (snow height H = 25 cm, temperature difference 	T = 50 K and Ra = 50)
are shown in figure 6. In these two-dimensional plots, to highlight downward flows, the
marker points p7, p1, p2 and p3 are used, while for the upward flows the markers p4,
p5 and p6 are used. In general, when convection is active, the downward convective
flow stretches the top cold temperature towards the bottom hot boundary. As shown in
figure 5(a,n), this causes a smaller temperature gradient on top and larger temperature
gradient in the bottom region. Oppositely, the upward convective flow stretches the bottom
warm temperature towards the top resulting in a smaller temperature gradient at the bottom
region and a larger gradient on the top because of the fixed top boundary temperature
(figure 5i,s). Thus, compared with the pure conduction temperature profile, the region is
colder in downward flow and warmer in upward flow. Also, in both upward and downward
flows, the maximum stretching (the smallest temperature gradient) occurs where the gas
flow velocity reaches maximum (compare figure 5n,o). For both regions close to and far
enough from the boundaries, it is discussed later that the effect of the convective stretching
on the temperature profile in different snowpacks is determined by the Rayleigh number.

For the phase change regime in different parts of a chosen convection cell, we first
analyse the downward flow from the saturation line. While the downward convective
flow transports the water vapour towards the bottom (leading to less vapour content and
smaller vapour gradient in the upper part), the sublimation phase change simultaneously
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Figure 3. Evolution of the thermal regime through different stages. (a) The pure conduction mode at
time = 1 h, (b) transition mode when the convection starts to form on top at time = 6 h, (c) transition mode
when the convection cells fill almost the whole domain but not completely formed and stable at time = 12 h and
(d) the predominant convection mode with completely formed convection cells at time = 22 h with maximum
gas velocity of 3.1 × 10−3 m s−1. The white arrows show the flow direction scaled by velocity magnitude. The
black line refers to the saturation line where σ = 0. The isotherm lines for the snow temperature are in blue
which are equally spaced by 5 K.

counteracts the convection effect by adding vapour to the upper part. As discussed in
Appendix D, the phase change rate is dependent on both the convective flow rate and the
gradient of the saturation vapour density. With almost a constant convective flow velocity,
the phase change rate mainly reacts on the saturation vapour density gradient, which itself
is related to the temperature and temperature gradient, dρv,s/dz ∝ ρv,s × dT/dz. In this
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Figure 4. Streamlines for the completely formed convection cells. The black line refers to the saturation line
σ = 0, above and below which are the deposition and sublimation zones respectively.

respect, the sublimation zone is not vertically uniform in downward flow and may be split
into three parts:

(i) For the cold region between p1 and p2, both temperature and its gradient are much
smaller compared with the bottom region, resulting in much smaller phase change
rate and thus a smaller value for oversaturation σ just around −0.05 as shown in
figure 6(a).

(ii) The warmer region between p2 and p3, with a much larger temperature and
temperature gradient than the first region (figure 5d), has a much larger sublimation
rate as shown for the oversaturation σ in figure 5(a) and for the snow density change
	ρs in figure 5(b). Also, it should be noted that the downward convective flow
towards the bottom zero-flux boundary and also the large sublimation rate in the
bottom region both cause a local concentration of the water vapour to increase the
vapour density gradient. This is the reason for the larger upward diffusive flux in the
bottom region as shown in figure 6(d).

(iii) In the horizontal flow of the bottom region, from p2 and p3 to p4 and p5, the
sublimation rate (represented by the saturation degree σ and also the snow density
change 	ρs in figure 6) decreases as the saturation vapour density gradient decreases
along with the temperature gradient. This can be seen by comparing the panels of
figure 5 at the bottom region between the downward and upward flows. It should be
noted that the bottom region between p4 and p5 has the highest water vapour content
shown in figure 6(c). This is a result of flow advection and local sublimation.

Similarly, the phase change regime for the upward flow of the chosen convection cell is
analysed as follows:

(i) In the bottom region between p4 and p5, the convective flow transports and
concentrates the vapour content upward, trying to reduce the vapour content and
magnitude of its gradient in upstream flow, while the sublimation counteracts the
convection effect by adding vapour content to upstream flow, causing a more linear
vapour profile.

(ii) In the deposition zone between p5 and p6, the effect of the upward flow is to
transport all the vapour towards the top, making the upstream flow devoid of vapour.
But, this time, the deposition process counteracts the convection effect by removing
water vapour from the upstream flow as can be seen from comparing the water
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Figure 5. One-dimensional profiles of the saturation degree σ , the snow density change 	ρs, the gradient of
saturation vapour density dρvs/dz, the snow temperature gradient dTm/dz and the gas flow velocity Ug at the
location of downward and upward flows of a convection cell for different snow heights H and temperature
difference 	T .
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Figure 6. Simulated two-dimensional plots for the sample case with snow height H = 25 cm, temperature
difference 	T = 50 K and Ra = 50. (a) The saturation degree σ , (b) the snow density change 	ρs/ρso, (c) the
water vapour density ρ∗

v = 〈ρv〉g /ρvsref and (d) the diffusive water vapour flux J∗
v = 〈Jv〉 /(Dvaρvsref /H). The

black line refers to the saturation line where σ = 0. The isotherm lines for the snow temperature are in blue
which are equally spaced by 5 K.

vapour content shown in figure 6(c). Finally, the opposite effects of the upward
convection and deposition processes form an almost linear vapour profile with a
negative slope. It should be noted that for the region close to the top boundary,
because of the zero-flux boundary conditions, there is still a slight vapour density
gradient and this causes an upward diffusive flux slightly larger in that region
compared with the upstream flow in the middle of the domain (shown in figure 6d).

(iii) In the horizontal flow on the top region, as the flow goes from p6 to p7 and
p1, the saturation vapour density gradient decreases because both temperature and
temperature gradient decrease, along with the fact that the magnitude of saturation
degree decreases. This can be seen by comparing the panels of figure 5. The
deposition region of the downward flow has the minimum phase change rate
(looking at figure 5(a) for the saturation degree σ and also figure 5(b) for the
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snow density change 	ρs) due to the minimum saturation vapour density gradient
in the convection cell shown in figure 5(c). As the water vapour of the neighbouring
upward flows is constantly consumed to reach the deposition zone in the downward
flow, this region has the lowest vapour content as shown in figure 6(c).

We compare the deposition zone between p5 and p6 with the sublimation zone at the
same non-dimensional heights. While both regions have more or less the same temperature
gradient except for the regions close to the boundaries (comparing figure 5d with 5i), the
deposition zone has a larger saturation vapour density gradient (comparing figure 5c with
5h) because of its higher temperature. This results in a larger magnitude for the phase
change rate (comparing figure 5b with 5g), the saturation degree (comparing figure 5a
with 5f ) and the saturation degree gradient in the deposition zone. However, compared to
the bottom sublimation zone between p2 and p3, both the temperature and its gradient in
the deposition zone between p5 and p6 are much smaller. Thus, the phase change rate is
higher in the sublimation zone. As shown in figure 6(a) for the saturation degree and also
in figure 6(b) for the snow density change, this is the reason why there is a vertical effective
deposition zone with a smaller saturation degree less than around 0.2 while the effective
sublimation zone is horizontal in the bottom region with saturation degree ranging from
−0.05 to −0.9.

5.2. Horizontal displacement of convection cells
In natural convection without phase change in the porous medium, and with moderate
Rayleigh number, the convection cells are fixed and are not moving horizontally in the
domain. This is not the case when there is phase change and therefore density and porosity
changes in the snowpack. This is because the convection cells induce heterogeneity in the
snow porosity due to spatially varying phase change, which causes the momentum to be
horizontally imbalanced. This temporary imbalance in momentum causes a displacement
of the convection cells until the momentum again reaches a stable and balanced condition.
The local phase change rate determines how fast the induced heterogeneity of the porosity
grows in the domain and also how many times the horizontal displacement of the
convection cell occurs during the snowpack life time. From what we observed numerically
in different snowpacks, the displacement of the convection cells is large enough (of the
order of a convection cell and snowpack height) to change locally the sign of both the
phase change rate and the flow direction. For instance, a region which was already under
the deposition process of an upward flow transforms into a region undergoing sublimation
with a downward flow. For different snow heights, the convection cell displacements at
four different time snapshots are shown in figure 7. At the first time snapshot, i.e. after a
week of the simulation (figure 7a,e,i), a grey column is used between two neighbour cells
as a fixed reference position to compare the cell displacement between time snapshots.
Considering the phase change pattern analysed for a convection cell in § 5.1, the effects of
the convection cell displacement are discussed as follows.

The region which was already under an upward flow: (i) the top region of the increased
snow density, after the convection cell displacement, becomes the sublimation zone of a
downward flow. As already discussed, the sublimation rate in this region is very small
so that it barely reduces the snow density. (ii) The bottom region of the decreased snow
density switches to sublimation in a downward flow which has the strongest phase change
rate in a convection cell. This reduces the snow density of this region more than before.
The region which was already in a downward flow: (i) the bottom region of the decreased

934 A38-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

11
46

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.1146


Convection of water vapour in snowpacks

�
ρ

s/
ρ

s0

�
ρ

s/
ρ

s0

�
ρ

s/
ρ

s0

p7 p7p6

p4

p5

p6

p4
p5

p4
p5

p1 p1

p7p6 p1

p2

p2

p2
p3 p3 p3

σ = 0 σ = 0

p7 p7p6

p4

p5

p6

p4
p5

p4
p5

p1 p1

p7p6 p1

p2

p2

p2
p3 p3 p3

σ = 0 σ = 0

p7 p7p6

p4

p5

p6

p4
p5

p4
p5

p1 p1

p7p6 p1

p2

p2

p2
p3 p3 p3

σ = 0 σ = 0

p7 p7p6

p4

p5

p6

p4
p5

p4
p5

p1 p1

p7p6 p1

p2

p2

p2
p3 p3 p3

σ = 0 σ = 0

ρ
∗ v

ρ
∗ v

ρ
∗ v

J∗ vJ∗ vJ∗ v

(a) (e) (i)

(b) ( f ) (j)

(c) (g) (k)

(d) (h) (l)

0

0.2

0.4

z∗
0.6

0.8

1.0

0

0.2

0.4

z∗
0.6

0.8

1.0

0

0.2

0.4

z∗
0.6

0.8

1.0

0.25 0.50

0

0.2

0.4

z∗
0.6

0.8

1.0

0

0.2

0.4

z∗
0.6

0.8

1.0

0

0.2

0.4

z∗
0.6

0.8

1.0

0

0.2

0.4

z∗
0.6

0.8

1.0

0

0.2

0.4

z∗
0.6

0.8

1.0

0

0.2

0.4

z∗
0.6

0.8

1.0

0

0.2

0.4

z∗
0.6

0.8

1.0

0.25 0.50

0.25 0.50

0.2 0.4

0

0.2

0.4

z∗
0.6

0.8

1.0

0.2 0.4
0

0.2

0.4

z∗
0.6

0.8

1.0

0.15 0.3

0.2 0.4 0.15 0.3

0.25 0.50
x∗ 0.2 0.4

x∗ 0.15 0.30
x∗

0.15 0.30
–0.67

–0.18

–0.14

–0.08

–0.02

0.04

0.09

–0.14

–0.1

–0.06

–0.02

0.02

0.05

–0.11

–0.08

–0.05

–0.02

0.01

0.05

–0.5

–0.3

–0.1

0.1

0.25

σ

–0.57

–0.45

–0.3

–0.15

0

0.17

–0.50

–0.37

–0.24

–0.11

0.02

0.14

σ σ

0.01

0.1

0.2

0.3

0.4

0.5

0.58

0.01

0.14

0.28

0.42

0.56

0.68

0.01

0.15

0.3

0.45

0.6

0.77

0

1.4

2.8

4.2

5.6

6.68

0

0.65

1.3

1.95

2.6

3.08

0

0.3

0.6

0.9

1.2

1.49

H = 25 cm; Ra = 50 H = 50 cm; Ra = 100 H = 100 cm; Ra = 200

Figure 7. Simulated two-dimensional plots after a week of simulation for (a,e,i) the saturation degree σ , (b, f ,j)
the snow density change 	ρs/ρso, (c,g,k) the water vapour density ρ∗

v = 〈ρv〉g /ρvsref and (d,h,l) the diffusive
water vapour flux J∗

v = 〈Jv〉 /(Dvaρvsref /H) for three snow heights H = 25 cm (Ra = 50), H = 50 cm (Ra =
100) and H = 100 cm (Ra = 200). The black line refers to the saturation line where σ = 0. The isotherm lines
for the snow temperature are in blue which are equally spaced by 5 K.
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snow density now becomes the sublimation zone of an upward flow. Still, the snow density
in this region decreases but at a smaller rate than before. (ii) The top region of the almost
constant snow density goes under the deposition zone of an upward flow. Obviously, the
snow density increases in this region.

The conclusion of these four points is that the lateral displacement of the convection
cells leads overall to an almost uniform higher snow density close to the surface and lower
snow density at the bottom for the assumed temperature gradient of warmer temperatures
at the bottom, which is the usual case in seasonal snow and on sea ice.

5.3. Effect of snow height, H
The three snowpack heights investigated in this section are of small (H = 25 cm and
Ra = 50), medium (H = 50 cm and Ra = 100) and large (H = 100 cm and Ra = 200)
sizes. With the same initial porosity εg = 0.8335, bottom thermal boundary condition
of T = 273.15 K and temperature difference 	T = 50 K, the convective velocity scale
Uconv = ρβ	TgK/μ is the same for all snow heights while the conductive velocity scale
Ucond = keff ,s/(ρaref cpaH) is different and smaller for the larger snowpack. To analyse
the snow height effects on the convective vapour transport, we want to compare the
temperature and its gradient, representing directly the saturation vapour density gradient as
the main reason for the different phase change rates in snowpacks with the same convective
flow velocity scales. The difference in the temperature and temperature gradient profiles
between different snow heights is qualitatively discussed as follows.

(i) For the regions close to the boundaries, represented by the marker points p4, p6, p7
and p3 in figure 7: the small snowpack has the largest conductive velocity scale
resulting in a more linear temperature profile and smaller temperature gradient
with respect to the non-dimensional snow height z∗ = z/H (comparing the blue
isothermal lines in all panels of figure 7). However, in these regions, the smaller
snowpack has a larger temperature gradient with respect to the dimensional height
(dT/dz = 1/H × dT/dz∗) and thus, as shown in figure 5(d), dT/dz|H=25 cm >

dT/dz|H=50 cm > dT/dz|H=100 cm.
(ii) The sublimation zone in the downward flow between markers p1 and p2 in figure 7:

for the larger snowpack, the conductive velocity scale is smaller and it has, therefore,
a smaller effect against the convective heat transfer. Hence, the convective stretching
effect on the temperature profile is stronger, resulting in a smaller – and overall
less linear – temperature gradient with respect to both non-dimensional (comparing
the blue isothermal lines in all panels of figure 7) and dimensional (comparing
three plots in figure 5d) heights. This is the reason for a larger region with
smaller saturation vapour density gradient (figure 5c) and thus phase change rate
(represented by snow density change in figure 5b). Note that this also refers to a
smaller area between markers p2 and p3 (p3 is located where |σ = 5 %|) where the
phase change rate is significant. In other words, the larger the snowpack, the smaller
the area in which the saturation degree magnitude is greater than 5 %, meaning
that it has a smaller significant sublimation area in percentage compared with the
smaller snowpacks (comparing the area size between p2 and p3 shown in all panels
of figure 7).

(iii) The deposition zone in the upward flow between markers p5 and p6 in figure 7:
first, it should be noted that even though the larger snowpack has a smaller and less
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significant sublimation area, due to its larger size, it has cumulatively more water
vapour accumulated in the region between p4 and p5 (comparing the maximum
value for the water vapour density in figure 7c,g,k). This moves the saturation line
(black line where σ = 0) closer to the bottom boundary for the larger snowpack,
causing the sublimation zone between markers p4 and p5 to be smaller in a relative
sense. For the deposition region above the marker p5 and far from the top boundary,
the small snowpack has both a more linear temperature profile and thus a more
uniform temperature gradient because of its reduced stretching (comparing the blue
isothermal lines in all panels of figure 7). This causes a more uniform saturation
degree and phase change rate than for the larger snowpacks. On the contrary, the
large snowpack has two peaks in saturation degree with an almost saturated area in
between (figure 7i). Its first peak is located in the lower half of the domain while the
second one is located close to the top boundary. For the medium snowpack shown in
figure 7(e), the distance between these peaks is smaller, meaning that it has a smaller
area of almost zero saturation degree compared with the large snowpack.

As introduced in § 5.2, convection cells move laterally due to changes in porosity
distribution (induced heterogeneity) and its feedback on the flow. The process of breaking
the symmetry in the system is first a continuous process responding to higher local phase
change rate and then it relaxes to a steady state with a decreasing lateral movement of
convection cells. A plausible explanation for these two stages is given as follows.

To support our hypothesis, the magnitude of different terms in the momentum equation
as well as the flow velocity are shown in figure 8 for 18 days before the onset of lateral
movement of convection cells. We follow a path between the marker points p1 and p7
(figure 3) first up, then right, then down and finally left within the cell. For the top region in
the upward flow, comparing the case with phase change with the same case without phase
change, the intrinsic permeability decreases exponentially with an increase in snow density
(2.9) leading to a higher viscous resistance factor, i.e. μ/K, while the viscous resistance
force itself is almost unaltered (figure 8b for upward flow). This increased resistance
factor causes a reduced flow velocity of approximately 25 % before lateral movement of
convection cells begins (figure 8d for upward flow). The reduced flow velocity has a direct
feedback on the temperature gradient and thus both gas density gradient and dynamic
pressure gradient forces are decreased also by 25 % (figure 8a,c for upward and top-right
flow). At the bottom, reduced density causes almost 100 % velocity increase (figure 8d for
bottom-left flow). The flow-blocking effect in upward flow (deposition zone) counteracts
the significantly increased flow velocity at the bottom. The former tends to counteract the
convection, while the latter tries to keep the convection cell at its location. However, for
the lateral displacement of convection cells, this partially stable system needs a disturbance
in the momentum (spatiotemporal chaos (Egolf et al. 2000)). The flow changes the path
towards the lower-density section on the top next to the initial deposition zone. This finally
leads to the intuitive result that cells move laterally to avoid regions of higher density.
The displacement decreases over time and a new symmetry in density distribution is
established.

To indicate temporal variations in lateral displacement of convection cells through
the two stages explained above, the time series of temperature for some fixed points
are used as T(t, rfp). These fixed points with position rfp are located on the peak of
temperature (Tc + Th)/2 (in the upward flow) for all convection cells formed in the
system (the initial temperature is (Tc + Th)/2). As the convection cells move laterally,
the temperatures probed by these fixed points decrease, indicating how fast and large the
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Figure 8. The magnitude of each term in momentum equation (2.8) as well as the flow velocity for 18 days
before lateral movement of convection cells along the path of a convection cell. Using the marker points
introduced in § 5.1: upward flow between markers p4 and p6, top-right flow between markers p6 and p7,
downward flow between markers p7 and p3 and bottom-left flow between markers p3 and p4.

cells are moving through phases 1 and 2. The average of these temperatures over all fixed
points, T̄ = ∑

T(t, rfp)/Nfp, is shown in figure 9. As shown in these plots, the smaller the
snowpack, the faster the transition from stage 1 to stage 2 (from a continuous and persistent
drift to a steady state with negligible convection cell movement) because of its larger snow
density change. One more interesting point that we found only for the small snowpack
is that the convection cell size increases in accordance with stage 1 of convection cell
movement (figure 10). From what we observed, during stage 1 of the cell displacement,
the neighbouring convection cells are merging leading to larger averaged cell sizes. This
is because the convection cells are not moving laterally with the same rate direction. Each
step change in the cell size for the small snowpack (figure 10) corresponds to merging a
pair of neighbouring cells. For a medium snowpack, after a period of slow displacement
of convection cells, we observe a sudden change in T̄ , meaning a fast transition from stage
1 to stage 2. For the larger snowpack, it has only a much longer stage 1 and its transition
to stage 2 such that the convection cell keeps slowly moving without reaching a complete
new steady state and symmetry in porosity distribution.

For the range of moderate Rayleigh numbers when we have stable convection cells
(Caltagirone 1975), the number of convection cells and the average cell size are directly
related to the Rayleigh number such that the higher the Rayleigh number, the more
slender are the cells formed in the domain (Holzbecher 2019) as shown in figure 27 in
Appendix C. The sensitivity analysis shows the domain width has a small effect on the
averaged cell size for the case without phase change. For the case with phase change,
the convection cell size has more variation on changing the domain width (figure 28 in
Appendix C). However, the laterally averaged snow density change is statistically the same
and independent of the domain width as shown in figure 26 in Appendix C. It should
be noted that the cell size is calculated as the distance between the maximum of the
temperature level in upward flow and its minimum in the downward flow of a convection
cell. Accordingly, the initial cell size after a week of simulation for the small, medium
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Figure 9. Temporal variations in lateral displacement of convection cells using the averaged probed
temperature T̄ as discussed in § 5.2 for different snow heights.

and large snowpacks is around 0.7H, 0.4H and 0.3H as shown in figure 11(a,e,i). Given
the fact discussed earlier that the small snowpack has a larger relative size (or extent) for
the sublimation and deposition zones which are stronger than for the larger snowpacks, the
induced heterogeneity occurs faster and earlier such that the initial convection cell (formed
after a week shown in figure 11a) moves laterally around 0.8H during the first month of the
simulation (comparing figures 11b and 11a). The horizontal displacement is approximately
14 % greater than the initial cell size. For the medium snowpack during the first month,
the convection cell moves laterally only around 0.15H (37.5 % of its initial convection cell
from comparing figures 11e and 11f ). During the second month of the simulation, the
small snowpack reaches an almost stable horizontal porosity distribution to have a small
convection cell displacement around 0.1H (figure 11c compared to figure 11b) and also
the convection cells are almost fixed until the end of the simulation (figure 11d compared
to figure 11c). This is different for the medium snowpack as the induced heterogeneity
gets large enough during the second month to trigger a significant displacement of around
0.6H (comparing figures 11g and 11f ). Note that the convection cells are almost stable
and fixed for the rest of the simulation (figure 11h compared with figure 11g). The
large snowpack has the smallest and slowest convection cell displacement because of
its smaller and less significant phase change area (non-dimensional size) compared to
the small and medium snowpacks. It has almost the same displacement around 0.05H
during both the first and second month of the simulation (comparing figures 11i, 11j, 11k
and 11l).

For a general comparison of convective water vapour transport between different snow
heights, the time series of snow density change, standard deviation of snow density change,
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Figure 10. Comparison of the normalized convection cell size for different domain width for the case with
phase change.

snow temperature and saturation degree are shown in figure 12 based on a lateral average
for each level of z. The non-dimensional thickness of the low-density ‘weak layer’ at the
bottom of the snowpack, which has the minimum possible density (based on the threshold
of 95 % set for the porosity above which the phase change is stopped) is around 0.2H,
0.1H and 0.05H for small, medium and large snowpacks respectively. It takes 5, 7 and 11
weeks to reach for the first time the minimum snow density at the bottom for the small,
medium and large snowpacks respectively. The small snowpack has a pronounced density
change on top for which 46 % of its top region experienced a density increase of more
than 25 %. However, only approximately 30 % and 10 % of the top region experienced a
density increase of more than 25 % for the medium and large snowpacks, respectively.
The maximum increase in density on top is 57 % (87 kg m−3), 47 % (72 kg m−3) and
29 % (45 kg m−3) for small, medium and large snowpacks respectively. It is shown in
figure 11(d) that through the upward flow within convection cells, a patch with minimum
possible density (MPD patch) is formed in the weak layer. Such MPD patches are larger
for the small snowpacks such that their vertical size may reach 0.5H. As discussed
earlier, this is due to the larger sublimation rate for the small snowpack such that the
weak layer at the bottom forms faster and it gets thicker at the end of the simulation
compared with the larger snowpacks. For the same reason, the small snowpack has
the largest standard deviation of snow density change, which amounts to approximately
70 kg m−3, while it is around 50 and 40 kg m−3 for the medium and large snowpacks
respectively.
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Figure 11. Simulated two-dimensional plots for snow density change 	ρs, showing the the horizontal
displacement of the convection cells at four time snapshots for different snow heights. The grey column is
used as the reference to measure the horizontal displacement between the different time snapshots. The black
line refers to saturation line where σ = 0. The isotherm lines for the snow temperature are in blue which are
equally spaced by 5 K.

5.4. Effect of the temperature difference, 	T
Setting the same initial porosity εg = 0.8335, bottom thermal boundary condition of T =
273.15 K and snow height of H = 50 cm, three cases with different temperature differences
are investigated in this section: the case of high Ra (	T = 50, Ra = 100), medium Ra
(	T = 37.15, Ra = 75) and the low Ra (	T = 25, Ra = 50). In contrast to the previous
section, here, the conductive velocity scale is almost the same in all cases while a larger
	T (higher Ra) leads to a larger convective velocity scale. Thus, both the saturation vapour
density gradient and the convective flow velocity should be considered simultaneously
when analysing the difference in the snow density change:
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Figure 12. The time series of (a–c) snow density change 	ρs and (d–f ) the standard deviation of snow
density change ρs,std for different snow heights.

(i) In the downward flow, the region from the top boundary to the non-dimensional
height level of z∗ = 0.25: even though the larger 	T and Ra favours more convective
stretching and a smaller temperature gradient, the larger 	T over the same snow
height dominates to cause a larger temperature gradient (comparing three plots in
figure 5n). Also, it is colder than the other cases with a smaller saturation vapour
density gradient (figure 5m). Comparing the case of highest Ra = 100 with lowest
Ra = 50, we found that the highest Ra has a larger snow density change as its
convective flow velocity is higher (figure 5o). Moreover, the difference in the snow
density changes between the two cases gets larger as the flow penetrates further down
since the convective flow increases in strength. However, for the case of medium
Ra = 75, the effect of the larger saturation density gradient compensates the effect
of its lower convective flow velocity to have more or less the same snow density
change compared with the case of higher Ra.

(ii) In the downward flow, the region close to the bottom boundary: the case of higher
Ra has a larger snow density change (figure 5l) because of its stronger saturation
density gradient (figure 5m) and higher convective flow velocity (figure 5o). Note
that the larger convective temperature stretching and also the larger 	T within the
same snow height both lead to a stronger saturation vapour density gradient for the
case of higher Ra.

(iii) In the upward flow, the region from the top boundary to the non-dimensional height
level of z∗ = 0.25: similar to what was previously analysed for the downward flow,
even with a larger temperature gradient (figure 5s), the case of higher Ra has a
smaller saturation vapour density gradient (figure 5r) as it is colder in this region.
However, its higher convective flow velocity causes a larger snow density change and
saturation degree compared with the lowest Ra case. Comparing with the medium Ra
case, the case of high Ra has almost the same snow density change in the upper half
of the domain while a larger snow density change in the lower half of the domain
(figure 5q). This is because in the lower half of the domain, both the convective
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flow velocity (figure 5t) and the saturation vapour density gradient are larger in the
high-Ra case.

(iv) In the upward flow, the region close to the bottom boundary: for the case of higher
Ra, the larger temperature gradient because of larger 	T over the same snow height
and thus the stronger saturation vapour density gradient and also higher convective
flow velocity all cause a larger snow density change compared with the lower-Ra
cases.

The convection displacements at four different time snapshots are shown in figure 13.
During the first month of the simulation, by comparing figure 13(b) with figure 13(a)
for the low-Ra case and also figure 13(e) with figure 13( f ) for the medium-Ra case, we
found that for both low- and medium-Ra cases, no convection displacement is observed
while the case of high Ra experiences a displacement of around 0.2H because of its larger
snow density change (larger heterogeneity) at the bottom and middle of the snowpack
(comparing figure 13j with figure 13i). During the second month of the simulation,
the low-Ra case still has almost no convection displacement (figure 13c compared with
figure 13b) while the medium-Ra case has a large enough heterogeneity in the snow density
to have a displacement of around 0.2H (figure 13g compared to figure 13f ). In this period,
for the case of high Ra, the convection displacement of the cells gets even larger than
during the first month (figure 13k compared with figure 13j) and the cells are almost fixed
until the end of the simulation (figure 13l compared with figure 13k). For the cases of
low and medium Ra, large enough heterogeneity in the snow porosity is only achieved
during the last four months of the simulation and triggers a significant convection cell
displacement (comparing figure 13d with figure 13c for the low-Ra case and also figure 13h
with figure 13g for the medium-Ra case). Obviously, this is faster for the case of medium
Ra as its snow density change due to convective vapour transport is stronger than the case
of low Ra.

The time series of snow density change and the standard deviation of snow density
change are shown in figure 14 for a general comparison of convective water vapour
transport between three temperature differences. To reach for the first time the minimum
snow density at the bottom, it takes 16.5, 8.5 and 6 weeks for the low-, medium- and
high-Ra cases, respectively. After six months of the simulation, the non-dimensional
thickness for the low-density ‘weak layer’ with MPD for all cases is around 0.1H. However,
above this weak layer, there is another low-density layer until the non-dimensional height
level of 0.2, 0.3 and 0.4 for the low-, medium- and high-Ra cases respectively, in which
the density decreases almost linearly due to phase change from 15 % (at top of the second
weak layer) to 70 % (at top of the first weak layer). The medium- and high-Ra cases have
almost the same pattern for an increase in density on top with maximum values of 42.8 %
(65.4 kg m−3) and 47.4 % (72.3 kg m−3) respectively. However, the low-Ra case has two
peaks for the density increase of which the first one is only 23.8 % (36.38 kg m−3) while
the second peak is very close to the top boundary with the significant value of 44 %
(67.4 kg m−3).

5.5. Scaling and order-of-magnitude analyses

5.5.1. Scaling argument
Non-dimensional governing equations and relevant scaling factors are introduced in detail
in Appendix F. As shown in normalized equations, the controlling parameters for heat
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Figure 13. Simulated two-dimensional plots for snow density change 	ρs, showing the horizontal
displacement of the convection cells at four time snapshots for three temperature differences of 	T =
25 K (Ra = 50), 	T = 37.5 K (Ra = 75) and 	T = 50 K (Ra = 100). The grey column is used as the
reference to measure the horizontal displacement between the different time snapshots. The black line refers
to the saturation line where σ = 0. The isotherm lines for the snow temperature are in blue which are equally
spaced by 5 K.

and mass transfer are Ra and M = (6εiShref )/(d∗
p

2RaLem). A complete scaling is achieved
when the influence of initial and boundary condition disappears (Barenblatt 1996). This
would be the case for a system with only heat transfer (and no phase change) since
the thermal boundary conditions are mapped from [Tc, Th] to [−1, 0]. In this case, the
bottom/top thermal boundary layer thickness is only scaled and dependent on Rayleigh
number (the non-dimensional temperature and temperature gradient are completely
scalable and dependent on Ra). However, for the case with phase change, the scaling for
water vapour distribution is not complete and it depends on both Ra and bulk temperature
difference. Using the Clausius–Clapeyron law for ρvs = ρvsref exp

[
A(1/Tref − 1/T)

]
,

934 A38-28

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

11
46

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.1146


Convection of water vapour in snowpacks

(a) (b) (c)

(d) (e) ( f )

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

z/
H

z/
H

0
10
20
30
40
50
60
70

0

40

–40

–80

–120

80

�
ρ

s 
(k

g
 m

−
3
)

ρ
s,s

td
 (

k
g
 m

−
3
)

Time (month) Time (month) Time (month)
2 4 6 2 4 6 2 4 6

2 4 6 2 4 6 2 4 6

�T = 25 °C; Ra = 50; H = 50 cm �T = 37.5 °C; Ra = 75; H = 50 cm �T = 50 °C; Ra = 100; H = 50 cm

Figure 14. The time-series of (a–c) snow density change 	ρs and (d–f ) the standard deviation of snow
density change ρs,std for three temperature differences.

where A = Livm/(ρik), m is the mass of a water molecule and k is the Boltzmann constant,
we show the dependency of ρ∗

vs and ∇∗ρ∗
vs on 	T and the reference temperature Tref as

ρ∗
vs = ρvs

ρvsref

= exp
[

A	T
T∗

Tref (T∗ + Tref /	T)

]
, (5.1a)

∇∗ρ∗
vs = ∇ρvs

ρvsref /H
= dρvs/dT ∇T

ρvsref /H
= ρvs

∗∇∗T∗ A	T
(T∗ + Tref /	T)2 . (5.1b)

Equations (5.1) suggest that phase change behaviour (which is directly connected to the
water vapour density gradient as discussed earlier) cannot be completely scaled only by Ra
and M. This may be shown by comparing two most similar cases for which both Ra and
M are the same but the bulk temperature difference is different. As shown in figure 15, the
non-dimensional porosity change rate and saturation degree are very different. For other
cases in which the Rayleigh numbers are the same but with different M, the deviation
and difference between cases are even larger, e.g. comparing figure 16 with figure 18
for non-dimensional temperature, temperature gradient, diffusive flux and flow velocity.
Between the cases with same Rayleigh number, the smaller deviation in non-dimensional
temperature (figure 17c,h) and temperature gradients (figure 17d,i) compared to deviation
in diffusive water vapour density gradient (figure 17b,g) is directly linked to the relative
contribution of phase change terms in energy and mass conservation equations, which is
discussed in the next section. Overall, it appears that Ra is effective in partially but not
completely collapsing the non-dimensional profiles.

5.5.2. Analysis of dominant terms
The contributions of each term in gas and ice energy equations ((2.18) and (2.19)
respectively) are shown in figures 19 and 20 for the horizontally averaged profiles
and domain-averaged time series respectively. For the gas energy, the dominant term
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Figure 15. Non-dimensional results for two cases with the same Ra = 50 and M = 0.3514 but different bulk
temperature difference 	T = 25 and 50 K for (a, f ) saturation degree σ , (b,g) rate of change for ice volumetric
content dεi/dt∗, (c,h) snow temperature T∗

m, (d,i) snow temperature gradient dT∗
m/dz∗ and (e,j) gas flow velocity

U∗
g.

is convection but comparable with the conduction term. Figure 20 shows the relative
magnitude as the ratio of each term (magnitude) to the summation of magnitude for
all terms. The relative magnitudes of convection and conduction are 40 % and 35 %
respectively (figure 20c). The heat transfer between phases is comparable to the net of
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Figure 16. The relative error between two cases with the same Ra = 50 and M = 0.3514 but different bulk
temperature difference 	T = 25 and 50 K for the dimensionless results for (a, f ) convective water vapour
transport ∇∗ρ∗

v · U∗
g, (b,g) diffusive water vapour flux J∗

v, (c,h) snow temperature T∗
m, (d,i) snow temperature

gradient dT∗
m/dz∗ and (e,j) gas flow velocity U∗

g.

convection and conduction terms while it is quite well matched with the ice conduction
term (figure 20a,c). Its relative magnitudes in gas and ice energy equations are 20 % and
40 % respectively (figure 20c). This shows that we cannot neglect this term and this is
the reason why the thermal equilibrium assumption is not valid. This is further shown
in figure 21 for the temperature difference between gas and ice phases, in which the
difference ranges from −5 to 2 K. The phase change term in ice energy is much larger
than that in gas energy with relative magnitudes of 15 % and 1 % respectively (figure 20c).
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Figure 17. Non-dimensional results for (a, f ) saturation degree σ , (b,g) rate of change for ice volumetric
content dεi/dt∗, (c,h) snow temperature T∗

m, (d,i) snow temperature gradient dT∗
m/dz∗ and (e,j) gas flow velocity

U∗
g. The cases with the same Ra have the same colour in which the solid line is for larger M and the dashed line

is for smaller M.

However, the phase change term in ice energy is pronounced during the first month and
later on it decreases gradually. Where the snow porosity increases laterally (at the bottom
of the snowpack) and vertically (in MPD patches at bottom), the flow velocity grows and
consequently both convection and conduction terms grow (figure 19a,b). Later on, at the
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Figure 18. The relative error between two cases with the same Ra but different M shown in figure 17 for the
dimensionless results for (a, f ) convective water vapour transport ∇∗ρ∗
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g, (b,g) diffusive water vapour flux
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v, (c,h) snow temperature T∗

m, (d,i) snow temperature gradient dT∗
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middle of the snowpack, we observe that the convection term adds energy to the gas phase
(figure 19a). This is because convection brings more energy through the MPD patches than
the one leaving the deposition zone. This results in a convective energy flux convergence.
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Figure 19. The horizontally averaged time series for the contribution of each term in (2.18) and (2.19) for gas
and ice energy equations respectively.

We see that for the same area in the heat transfer term shown in figure 19(c), the energy is
negative. This means the convective energy is converted to the heat transfer between two
phases. The term associated with the gas pressure change (figure 19g), energy transport by
diffusive flux (figure 19h) and temporal term (figure 19d) are negligible and much smaller
than the other terms.

The relative magnitude and contribution of each term in (2.2) for the mass conservation
of the water vapour component are shown in figures 20 and 22. During the first week
of simulation when the convection cells are forming (stage 1 to stage 3 of thermal
behaviour explained in § 5.1), the diffusion term is dominant at the bottom, while later
the convection is dominant at the bottom and top of the snowpack (comparing figure 22e
with figure 22f and also see figure 20d). At the bottom, once the porosity reaches the
maximum possible value, the phase change stops and consequently both diffusion and
convection balance each other. Also, on top, due to an increase in snow density, the
convection contribution decreases gradually with time (figures 22e, 20b and 20d). As
shown in figure 20(b,d), the dominant term in the mass conservation of the water vapour
component is the phase change term with a relative magnitude of 45 % early in the
simulation, which decreases gradually with time. The larger relative magnitude of the
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Figure 20. The domain-averaged time series for the contribution and relative magnitude of each term
respectively: (a,c) for gas and ice energy equations (equations (2.18) and (2.19) respectively); (b,d) for mass
conservation of water vapour component (equation (2.2)).

phase change term in the mass conservation equation of around 45 % compared with its
contribution in the energy equation (approximately 15 %) supports that non-dimensional
temperature and temperature gradient are partially scaling with Ra (within around 20 %
deviation) while this is not the case at all for the phase change rate. Finally, similar to the
energy equation, the temporal term for mass conservation of the water vapour component
(figure 22d) is negligible and smaller than the other terms by two orders of magnitude.

The gas density gradient term (last term in (2.8)) is always upward in vertical flows
(upward and downward) and it has the same direction as lateral flow on top. However,
the dynamic pressure gradient is always downward in vertical flows and it has an opposite
direction to the lateral flows on top. Hence, for the upward flow and also lateral flows on
top, the gas density gradient term is the driving force and the dynamic pressure gradient
and viscous forces are the opposite forces. However, for downward flow and also lateral
flow at the bottom, the dynamic pressure gradient is larger and acts as driving force. As
shown in figure 22(a), the buoyancy term is larger on top mainly because of |gz|. Also,
because of the no-flux condition, the dynamic pressure gradient must be the same as the
gas density gradient term on top and bottom boundaries and its magnitude is larger on
top, similar to the gas density gradient term. The viscous resistance force is two orders
of magnitude smaller than the other terms in the momentum equation. Moreover, we
see that the viscous resistance force gradually increases on top while decreasing at the
bottom. The increase (decrease) in snow density results in decrease (increase) in both
intrinsic permeability and flow velocity which has opposite effects in changing the viscous
resistance force. However, the change in the intrinsic permeability is more pronounced
than the change in flow velocity and it is the reason for increasing the resistance force on
top (deposition zone) and decreasing it at the bottom (sublimation zone). Note that since
the pore Reynolds number is much smaller than 1, the second term in the momentum
equation is neglected and not presented in our analysis.
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Figure 21. The horizontally averaged time series for the temperature difference between gas and ice phases.
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Figure 22. The horizontally averaged time series for the contribution of each term in (2.8) for momentum
and in (2.2) for mass conservation of water vapour component.

6. Conclusions

In this paper, the effects of convective vapour transport for different snowpack
conditions such as vertical size, thermal boundary conditions and Rayleigh number
have been investigated numerically. To that end, a direct numerical solver based on
the volume-averaged two-phase model has been implemented in the open-source fluid
dynamics software OpenFOAM 5.0 (www.openfoam.org).
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Investigating the scaling behaviour of our system, it is found that we do not have a
complete scaling since heat and mass transfer are coupled by phase changes. It is discussed
that we only have partially scaled results for interior temperature and its gradient but not
for water vapour density and its gradient. We supported our argument by comparing the
relative contribution of phase change terms in heat and mass transfer equations. Overall, it
appears that Ra is effective in partially but not completely collapsing the non-dimensional
profiles.

Analysing thermal and phase change regimes in detail, it is found that (1) the thermal
and phase change behaviours in the upward and downward flows of a convection cell are
qualitatively the same for snowpacks with different conditions, (2) once convection cells
are completely formed, compared with the pure conduction temperature profile, the region
is colder in downward flow and warmer in upward flow, (3) phase change rate is very small
for the cold region on top in downward flow and a very small value for oversaturation σ of
just around 0.05 is observed while for the warm region at the bottom, the sublimation rate
is much larger, (4) the top region in downward flow has the lowest water vapour content
while the bottom region in upward flow has the highest water vapour content, (5) there is
a vertical effective deposition zone with a smaller saturation degree of less than around
0.2 while the effective sublimation zone is horizontal in the bottom region with saturation
degree ranging from −0.05 to −0.9 and (6) convection cells are not fixed and may have
horizontal displacements due to horizontal heterogeneity induced in the snow porosity.
This leads to an almost uniform higher snow density close to the surface and a layer of
significantly lower density at the bottom for the assumed temperature gradient of warmer
temperatures at the bottom, which is the usual case in seasonal snow and on sea ice.

A significant influence of the snowpack size on the heat and mass transfer is observed:
(1) for the sublimation zone in the downward flow, the larger the snowpack, the smaller the
area in which the saturation degree magnitude is greater than 5 %, meaning that it has a
smaller significant sublimation area in percentage compared to the smaller snowpacks, (2)
at the bottom of snowpack in the upward flow, the larger snowpack reaches the saturation
line closer to the bottom boundary, resulting in a smaller sublimation zone, (3) for the
deposition region in the upward flow, while the small snowpack has more uniform and
linear saturation degree and phase change rate, the large snowpack has two peaks in the
saturation degree with a large saturation area in between and (4) the induced heterogeneity
in snow porosity occurs faster and earlier and is stronger for the small snowpack due to its
larger relative size (or extent) for the sublimation and deposition zones. During the first
month of the simulation, the convection cell displacement is around 0.8H for the small
snowpack while it is only 0.15H for the medium snowpack.

Based on lateral averages for each level of z, it is observed for small, medium and
large snowpacks respectively that: (1) the weak layer at the bottom with the MPD has
a non-dimensional thickness of around 0.2H, 0.1H and 0.05H, (2) it takes 5, 7 and 11
weeks to reach for the first time the minimum snow density at the bottom, (3) after six
month of the simulation, the portion of the top region with density increase more than
25 % is around 46 %, 30 % and 10 %, (4) the maximum increase in density on top is 57 %
(87 kg m−3), 47 % (72 kg m−3) and 29 % (45 kg m−3) and (5) the MPD patches formed in
the weak layer are larger for the small snowpack with vertical size of around 0.5H. As a
result, the standard deviation for the snow density change is larger for the small snowpack
around 70 kg m−3 while it is around 50 and 40 kg m−3 for the medium and large ones.

Results of various temperature differences indicate that (1) in both downward and
upward flows far from the bottom boundary, the high-Ra case even with a smaller
saturation vapour density gradient has a larger snow density change as its convective flow
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velocity is higher; however, it has almost the same snow density change compared with
the medium-Ra case in the upper half of the domain while a larger snow density change
in the lower half, (2) in both downward and upward flows close to the bottom boundary,
snow density change is larger for the case of higher Ra because of its stronger saturation
density gradient, (3) it takes 16.5, 8.5 and 6 weeks for the low-, medium- and high-Ra
cases respectively to reach the minimum snow density at the bottom and (4) the maximum
increase in density on top for medium- and high-Ra cases is around 42.8 % (65.4 kg m−3)
and 47.4 % (72.3 kg m−3) respectively. The low-Ra case has two peaks for the density
increase with a maximum one very close to the top boundary of 44 % (67.4 kg m−3).

The model system simulated and analysed in this study is a considerably simplified
representation of a naturally occurring snowpack. A very important process, not
considered here, is the densification of snow due to metamorphism and overburden
pressure arising from its own weight. Additionally the effect of wind pumping and the
exchange of vapour with the atmosphere is also neglected. This effect was tested in
sensitivity simulations to verify and confirm that its effect is small (see figure 30 in
Appendix E). In spite of these simplifications, there are indeed vast areas of naturally
occurring snowpacks, such as those in the polar regions or on sea ice, for which convection
should be very important and likely needs to be considered (Appendix G). This study
was motivated by the long-standing debate in the cryospheric community about the
relevance of vapour convection in snowpacks. There have been various field campaigns
and reports that invoke vapour convection as the only plausible mechanism to explain
observations of temperature and density distributions. This study was the first attempt
to use a fluid-dynamics-based, numerical approach to investigate convection in snow.
Our current and future work is to expand our numerical modelling to simulate more
realistic scenarios where there is multi-scale heterogeneity, i.e realistic layering and lateral
variations. The model system in this study, with its homogeneous boundary conditions
and simple bottom geometry is in fact the most restrictive in triggering and sustaining
convection. This study thus establishes the ‘baseline’ for future explorations. For example,
there is long-standing evidence by Sturm & Johnson (1991) who reported implications of
convective transport in natural snowpacks with Ra as low as 5. It is highly likely that their
and many other natural systems are heavily influenced by heterogeneity.

We demonstrated that the new model reproduces a low-density layer and a high-density
layer respectively at the bottom and top of snow covers and, especially for thin snow
covers, the high-density layer on top is often observed together with density decreases
at the bottom. This has not been possible to reproduce with current snow models. While
settling will partially counteract the generation of this low-density layer at the bottom, we
note that the generation of asymmetric depth hoar crystals as a result of vapour transport
allows for quite low-density patches between chains of supporting depth hoar structures.
The high porosity between such chains will help to keep convection going in real snow
covers. For future work, the model developed in this paper for convective vapour transport
will therefore be used to improve the one-dimensional physics-based multi-layer snow
model by a tight coupling between OpenFOAM and SNOWPACK (Lehning et al. 1999),
in which lateral averages of the porosity change due to convective vapour transport will be
fed into SNOWPACK.
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Appendix A. Results of the sensitivity analysis for the initial values

The sensitivity analysis for the initial temperature and vapour distribution is shown in
figure 23.

Appendix B. Results of the sensitivity analysis for the maximum Courant number

The sensitivity analyses for the maximum Courant number after 1 month and 6 months of
simulation are shown in figures 24 and 25 respectively.

Appendix C. Results of the sensitivity analysis for the domain width

The sensitivity analysis of the domain width for the normalized snow density is shown
in figure 26. Also, comparisons of the normalized convection cell size for different

934 A38-39

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

11
46

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://orcid.org/0000-0003-4794-4431
https://orcid.org/0000-0003-4794-4431
https://orcid.org/0000-0002-4449-0246
https://orcid.org/0000-0002-4449-0246
https://orcid.org/0000-0002-8442-0875
https://orcid.org/0000-0002-8442-0875
https://doi.org/10.1017/jfm.2021.1146


M. Jafari, V. Sharma and M. Lehning

–100 –80 –60 –40 –20 0 20

–50 –40 –30 –20 –10 0

0 1 2 3 4 5 6

(a)

(b)

(c)

1.00

0.75

0.50

0.25

0

1.00

0.75

0.50

0.25

0

1.00

0.75

0.50

0.25

0

z/H

z/H

z/H

�ρs (kg m–3)

Tm (K)

Ug (mm s–1)

Ra = 50, ε = 0.8336, �T = 50 K, H = 25 cm, Courant = 10

Ra = 50, ε = 0.8336, �T = 50 K, H = 25 cm, Courant = 200

Ra = 50, ε = 0.8336, �T = 50 K, H = 25 cm, Courant = 1

Figure 24. Comparison of the results for different maximum Courant numbers after a month of simulation.
(a) The snow density change, (b) the snow temperature and (c) the gas flow velocity.

domain width for the case without and with phase change are shown in figures 27 and
28 respectively.

Appendix D. Qualitative analysis of the phase change rate

To analyse the local mass transfer regime, we rely on the qualitative dependency of
the phase change rate (or saturation degree) on both the convective flow rate and the
gradient of the saturation vapour density. Extending the convection term of the steady-state
continuity equations for the air component and gas mixture and also neglecting the
diffusion term due to its small relative contribution compared with convection, we have
the following equations respectively:〈

ρg
〉g ∇ · 〈

Ug
〉 + 〈

Ug
〉 · ∇ 〈

ρg
〉g = ṁiv, (D1)
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Figure 25. Comparison of the results for different maximum Courant numbers after 6 months of simulation.
(a) The snow density change, (b) the snow temperature and (c) the gas flow velocity.

〈ρa〉g ∇ · 〈
Ug

〉 = − 〈
Ug

〉 · ∇ 〈ρa〉g . (D2)

Using the approximation
〈
ρg

〉g ≈ 〈ρa〉g in the first term of (D1) and then replacing it
with the term on the right-hand side of (D2) and simplifying, we have finally the driving
force for the mass transfer as

〈
Ug

〉 · ∇ 〈ρv〉g = ṁiv. (D3)

Note that in (D3), for the qualitative analysis, the water vapour density gradient may be
approximated by the gradient of saturation vapour density. As shown in figure 29, this is
because ρv = (1 + σ)ρvs means that the vapour density is directly correlated to saturation
vapour density.
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Figure 26. Comparison of the normalized snow density for different domain lengths with Ra = 100,
H = 50 cm and 	T = 50 K.

Appendix E. A test case for the wind pumping effect

We performed a test case for different snow heights to investigate the wind pumping effect
when natural convection is active in the system. To this end, the perturbation by wind
turbulence is randomly sampled by the normal Gaussian distribution as wind-turbulent
ventilation is a high-frequency phenomenon. In the sampling distribution with a standard
deviation of 1, the mean ventilation velocity is considered as 0.05 cm s−1 which is reported
by Colbeck (1989) and Waddington et al. (1996). Since for each cell face on the top
boundary the ventilation velocity is sampled randomly, we modified the resulting sampled
velocities to guarantee that the net air flux on the top boundary is zero due to air mass
conservation in the whole system. Note that in spite of zero net gas (air and vapour) flux,
there is still a non-zero vapour flux, both locally and globally, and thus the system is ‘open’
for water vapour. Comparing the cases with and without ventilation, we found almost no
difference in laterally averaged snow density change profile as shown in figure 30. Note
that this was expected since the ventilation velocity of 0.05 cm s−1 is almost one order of
magnitude smaller than the convective velocity scale Uconv . Obviously, larger ventilation
velocities might lead to a stronger disturbance in convection cells and if strong enough it
may stop and shut down the convection in the snowpack. Moreover, in many Arctic snow
covers and for snow on sea ice, a hard crust or wind slab frequently develops at the surface.
With such a hard surface, our assumption is less unrealistic.
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Figure 27. Comparison of the normalized convection cell size for different domain widths for the case
without phase change.

Appendix F. Non-dimensional governing equations

The scaling factors for the length, pressure and density gradient are selected as H,
ρβ	TgH and ρβ	T/H respectively. Note that ρa0 is used for the gas mixture density
whereas ρvs0 (saturation vapour density at Tref ) is used for the water vapour density as
scaling factor. The effective thermal conductivities and the intrinsic permeability all both
scaled based on the initial porosity as keff ,s0 and K0 respectively. Since convection is the
dominant transport mechanism, the reference velocity and time scales are chosen as Uconv

and H/Uconv respectively. The dimensionless variables with superscript asterisk are as
follows:

t∗ = t
H/Uconv

; x∗ = x
H

; z∗ = z
H

; ∇∗ = ∇
H

, (F1a–d)

〈
T∗

g

〉g =
〈
Tg

〉g − Th

Th − Tc
; 〈

T∗
i
〉i = 〈Ti〉i − Th

Th − Tc
, (F2a,b)

〈
ρ∗

g

〉g =
〈
ρg

〉g
ρaref

; 〈
ρ∗

v

〉g = 〈ρv〉g

ρvsref

; 〈
ρ∗

a
〉g = 〈ρa〉g

ρaref

; 〈
J∗
v

〉 = 〈Jv〉
Dvaρvsref /H

, (F3a–d)

〈
U∗

g

〉
=

〈
Ug

〉
Uconv

;
〈
P∗

g

〉g =
〈
Pg

〉g
ρaref β	TgH

; ∇∗
〈
ρ∗

g

〉g = ∇ 〈
ρg

〉g
ρaref β	T/H

, (F4a–c)

D∗
eff ,s = Deff ,s

Dva
; k∗

eff ,g = keff ,g

keff ,s0
; k∗

eff ,i = keff ,i

keff ,s0
; c∗

pg = cpg

cpa
; d∗

p = dp

H
. (F5a–e)
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Figure 28. Comparison of the normalized convection cell size for different domain widths for the case with
phase change.

Using the defined scaling factors and dimensionless variables, the final set of (2.1), (2.2)
and (2.3) for the mass conservation, (2.8) for the momentum and (2.18) and (2.19) for the
temperature-based energy equations are normalized respectively as follows to extract the
group of non-dimensional numbers important for the convection of water vapour in the
snowpack:

∂

∂t∗
(
εg

〈
ρ∗

g

〉g) + ∇∗ ·
(〈

ρ∗
g

〉g 〈
U∗

g

〉)
= −

[
ρvsref

ρaref

6εiShref

d∗
p

2RaLem

]
σ, (F6)

∂

∂t∗
(
εg

〈
ρ∗

v

〉g) + ∇∗ ·
(〈

ρ∗
v

〉g 〈
U∗

g

〉)
=

[
1

RaLem

]
∇∗ ·

(
D∗

eff ,s∇∗ 〈
ρ∗

v

〉g) −
[

6εiShref

d∗
p

2RaLem

]
σ,

(F7)

∂εi

∂t∗
=

[
ρvsref

ρi

6εiShref

d∗
p

2RaLem

]
σ, (F8)

−
〈
U∗

g

〉
K∗ −

〈
ρ∗

g

〉g
cF

√
K∗

∣∣∣〈U∗
g

〉∣∣∣ 〈U∗
g

〉 [
Ra

√
Da

Prm

]
− ∇∗

〈
P∗

g

〉g + ∇∗
〈
ρ∗

g

〉g
z∗ = 0, (F9)
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Figure 29. One-dimensional profiles of the saturation vapour density ρvs and vapour density ρv at the location
of downward and upward flows of a convection cell for different snow heights H, and the temperature difference
	T , all after a week of simulation.

∂

∂t∗
(
εg

〈
ρ∗

g

〉g
c∗

pg

〈
T∗

g

〉g) + ∇∗ ·
(〈

ρ∗
g

〉g
c∗

pg

〈
T∗

g

〉g 〈
U∗

g

〉)

=
[

1
Ra

]
∇∗ ·

(
εgk∗

eff ,g∇∗
〈
T∗

g

〉g)
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Figure 30. Comparison of the results for a case without wind pumping and a case with a ventilation velocity
of 0.05 cm s−1: (a) Ra = 50, H = 25 cm; (b) Ra = 100, H = 50 cm; (c) Ra = 200, H = 100 cm.

+ [Ge]
(

εg
∂

∂t∗
〈
P∗

g

〉g +
〈
U∗

g

〉
· ∇∗

〈
P∗

g

〉g
)

−
[

ρvsref (cpv − cpa)

ρaref cpa

1
RaLem

]
∇∗ ·

(〈
T∗

g

〉g 〈
J∗
v

〉)

+
[

6εiShref Leref

d∗
p

2ρ∗
vsRaLem

](〈
T∗

g

〉g
(wg − 1) + 〈

T∗
i
〉i wi

)

−
[

ρvsref cpv

ρaref cpa

6εiShref

d∗
p

2RaLem

]
σ

〈
T∗

g

〉g
, (F10)
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∂

∂t∗
(
εi

〈
T∗

i
〉i) =

[
ρaref cpa

ρicpi

1
Ra

]
∇∗ ·

(
εik∗

eff ,i∇∗ 〈
T∗

i
〉i)

−
[

ρaref cpa

ρicpi

6εiShref Leref

d∗
p

2ρ∗
vsRaLem

] (〈
T∗

g

〉g
(wg − 1) + 〈

T∗
i
〉i wi

)

+
[

ρvsref cpv

ρicpi

6εiShref

d∗
p

2RaLem

]
σ

(〈
T∗

g

〉g
wg + 〈

T∗
i
〉i wi

)

+
[

ρvsref (cpi − cpv)Tref

ρicpi	T
6εiShref

d∗
p

2RaLem

]
σ

+
[

ρvsref Liv

ρicpi	T
6εiShref

d∗
p

2RaLem

]
σ. (F11)

In the above set of equations, groups of non-dimensional numbers are put inside the
brackets. Also, for the sake of convenience, the group of non-dimensional numbers on the
right-hand side of (F7) is named as M = (6εiShref )/(d∗

p
2RaLem), which appears in other

terms. The other non-dimensional numbers in the above equations include the Sherwood
number, the Lewis number, the reference Lewis number, the Prandtl number, the Darcy
number and finally the Gebhart number, which are given as follows:

Shref = ρidp

Bρvsref Dva
, (F12)

Lem = keff ,s0

ρa,ref cpaDva
; Leref = ka

ρa,ref cpaDva
, (F13a,b)

Prm = keff ,s0

ρa,ref cpa
, (F14)

Da = K0

H2 , (F15)

Ge = βgH
cpa

. (F16)

As shown in these normalized equations, for both heat and mass transfer, the controlling
parameters are Ra, Lem and d∗

p (as they appear in the parameter M), meaning that the
mass transfer regime cannot be abstracted only by Ra. The term M can be interpreted
as the dimensionless mass transfer coefficient and σ as the potential or driving force
for the mass transfer. By expanding parameter M, one can show that for a specified
porosity and grain size, M is indeed a function of the inverse characteristic temperature
gradient 	T/H.

Appendix G. Model system and real-world analogues

The conditions that we assume in our idealized set-up are realistic and can be found in
snowpacks in the polar regions, and especially for snow on sea ice, where the temperature
at the bottom remains always close to melting if the ice is thin and the surface can get
very cold. But also in other snow covers, conditions can be found that are close to those

934 A38-47

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

11
46

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.1146


M. Jafari, V. Sharma and M. Lehning

of our idealized set-up. We discuss this now in more detail and provide the references as
follows:

(i) Snow density. there are many areas in the cryosphere that are subjected to perhaps
only a few snowfall events during the entire winter period. Examples include vast
expanses of Siberia and the Arctic (Gouttevin et al. 2018; Jafari et al. 2020), or, for
instance Tibet. In many of these areas, a singular snowfall event with new snow
densities well below 100 kg m−3 can be found and low densities can persist for
multiple months. In the polar regions in particular, absence of solar radiation and
persistent low temperatures throughout the winter months help to limit settling in
these conditions. Thus even the very idealized case in this study has many real-world
analogues.

(ii) Temperature gradients. Temperature gradients of O(100) K m−1 are quite common
in snowpacks. For example, our own previous work on vapour diffusion (Jafari et al.
2020) discusses data from Samoylov, shown in figure 1(a) of Jafari et al. (2020). In
Samoylov, we can see persistent negative temperature gradients of 100–200 K m−1

over a period of 4–5 months interrupted only by the onset of spring (figure 1a of
Jafari et al. 2020).

(iii) Bottom thermal boundary at 0 ◦C. For snow on sea ice, where the temperature at the
bottom remains always close to melting if the ice is thin and the surface can get very
cold (Nicolaus & Schwegmann 2017; Wever et al. 2020).
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