
J. Functional Programming 11 (1): 117–153, January 2001. Printed in the United Kingdom

c© 2001 Cambridge University Press

117

On characterizations of the basic feasible
functionals, Part I

ROBERT J. IRWIN, JAMES S. ROYER

Department of Electrical Engineering and Computer Science,

Syracuse University, Syracuse, NY 13244, USA

(e-mail: {rjirwin,royer}@ecs.syr.edu)

BRUCE M. KAPRON

Department of Computer Science, University of Victoria,

Victoria, BC V8W 3P6, Canada

(e-mail: bmkapron@maclure.csc.uvic.ca)

Abstract

We introduce a typed programming formalism, type-2 inflationary tiered loop programs or

ITLP2, that characterizes the type-2 basic feasible functionals. ITLP2 is based on Bellantoni

and Cook’s (1992) and Leivant’s (1995) type-theoretic characterization of polynomial-time,

and turns out to be closely related to Kapron and Cook’s (1991; 1996) machine-based

characterization of the type-2 basic feasible functionals.

1 Introduction

Higher-type functionals and operators have proven to be valuable tools in both

theoretical and practical work on programming languages. Indeed, classes, modules,

and their kith are – at least in part – higher-type notions, so features of higher-

types pervade contemporary computing. There is a great deal of useful theoretical

work in support of reasoning about the correctness of programs that make use

of higher-order features. In contrast, there has been very little theoretical work in

support of reasoning about the performance (e.g. time and space complexity) of such

programs. It is clearly a great folly to ignore correctness in program development,

but it is nearly as great a folly to ignore performance. Thus there is a serious gap

in the scientific underpinnings of programs that use higher-type features – even

benchmarking a higher-type procedure is problematic in the absence of a theory to

help interpret what the numbers mean.

There is a small body of complexity-theoretic work on higher-type functionals.

Most of this work has concentrated on the study of the basic feasible functionals.

These are a class of functionals, at all simple types, that were intended to be a

higher-type analogue of the class of polynomial-time computable functions. The

extent to which the Basic Feasible Functionals (BFFs) realize this intent is not yet

clear and a focus of current research. However, independent of such questions, the

BFFs have proven to be a robust class whose various characterizations contain many

https://doi.org/10.1017/S0956796800003841 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003841

118 R. J. Irwin et al.

ideas of independent interest. This paper and its sequel consider several of these

characterizations – some old, some new – with the goal of clarifying their underlying

ideas and placing these ideas into something like a uniform framework. The end

result of this is, we hope, a much clearer picture of the BFFs that is accessible to

the programming languages and complexity theoretic communities.

Very briefly, this paper concerns characterizations of the type-2 basic feasible

functionals, and its sequel concerns the extensions of these characterizations to all

simple types. The next section provides some background on some of the prior work

on the computational complexity of higher-type functionals. The section following

gives an overview of this particular paper and its objectives.

2 Background

Initial notation: N denotes the set of natural numbers. We identify each x ∈ N

with its dyadic representation over { 0, 1 }. So, there is a one-to-one correspondence

between N and { 0, 1 }∗. Unless we state otherwise, A→ B denotes the collection of

all set-theoretic functions from A to B.

2.1 Computability at higher-types

Higher-type recursion and computability has a long, rich, and confusing history,

some of which is recounted by Gandy and Hyland (1977) and Cook (1991). The

most dramatic difference between ordinary and higher-type computability is that

there is no higher-type analogue of Church’s Thesis. The difficulty is this: any notion

of higher-type computability starts with the finitary notion of computation and adds

to it infinitary objects, the functional parameters. To make such an addition, one

must choose what a computation can know about and do with these infinite objects.

Different choices can lead to conflicting notions of higher-type computability. We

shall see examples of such conflicting notions below; the aforementioned surveys

discuss more drastic cases.

2.2 Constable’s problem and its rationale

Subrecursive higher-type recursion and computation also has a long history – Hilbert

(1925; 1967) made use of subrecursive higher-type schemes in his proof theoretic

work. In complexity theory, higher-type computability seems to have cropped up first

as an object of study (as opposed to a tool) in the early 1970s. Cook reductions (Cook,

1971) are polynomial-time functionals of type 2N×N→ N. In 1973 Constable (1973)

posed the problem of finding a natural analogue of polynomial-time computability

for functionals of type (N → N)k × N` → N. This problem has been a dominant

issue in the sporadic work on the complexity of higher-type computation since 1973.

One might well ask:

1. Why has this problem been so prominent?

2. Why, after all this time, is the thing still open?

https://doi.org/10.1017/S0956796800003841 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003841

On characterizations of the BFFs, Part I 119

The first question is easy to answer. A good deal of computational complexity theory

concerns trying (and occasionally succeeding) to draw a sharp boundary between

the computationally feasible and the computationally infeasible. ‘Computational

feasibility’ is a pre-formal notion with a meaning that shifts with the context.

However, polynomial-time (in the guises of P, the class of polynomial-time decidable

sets, and PF, the class of polynomial-time computable functions) has proven itself

to be a good, pliable, first approximation to feasibility. This is because

(i) most tasks that one could consider feasible have polynomial-time algorithms,

(ii) most tasks that sit outside of polynomial-time seem quite infeasible,

(iii) almost all reasonable models of deterministic computation are polynomially

related,1 and

(iv) both P and PF have good closure properties.

So if we want to understand type-2 (and higher) computational complexity at a

useful level of detail, then trying to identify what corresponds to polynomial-time

is a sensible first step. For the second question we simply note that as there is no

higher type Church’s thesis, even formally posing the problem may itself be difficult.

2.3 The emergence of the basic feasible functionals

Mehlhorn took up Constable’s problem (Mehlhorn, 1974; Mehlhorn, 1976). He de-

fined a class of type-2 functionals, denoted L(), through a careful relativization

of Cobham’s (1965) syntactic characterization of polynomial-time. (Cobham’s char-

acterization is formally stated as Theorem 2(a) below.) Mehlhorn developed some

evidence that this class was a type-2 analogue to PF, but his main motivation was

to show that L() is a sensible extension of Cook reducibilities to function classes.

In the ten years following Mehlhorn’s papers, there was relatively little work in this

area. Then, in 1986 Buss (1986) introduced a class of ‘polynomial-time’ functionals

at all simple types as realizers for IS 1
2, his intuitionistic theory of bounded arithmetic.

While these functionals served his needs, their definition was rather involved. Cook

and Urquhart decided to try to develop a simpler class of realizers for IS 1
2 that could

be presented as a feasible variant of Gödel’s Dialectica interpretation of Heyting

Arithmetic (Gödel, 1958; Gödel, 1990). Their approach to this problem was, like

Mehlhorn’s work, based on Cobham’s (1965) syntactic definition of polynomial-time.

(Their initial work was independent of Constable and Mehlhorn.) They introduced

a formal system PVω in which the terms consist of simply typed λ-expressions built

from numeric constants, function constants for each element of PF, variables of all

finite types, and a type-2 recursor R that corresponds to Cobham’s limited recursion

on notation (see Definition 1 below). They showed that the resulting class of func-

tionals nicely satisfied their goals (Cook and Urquhart, 1989; Cook and Urquhart,

1 Suppose M0 and M1 are two models of computation with associated cost models. M0 and M1 are called
polynomially related if and only if there exist a polynomial q and t0, t1 ∈ PF such that, for i = 0, 1:
(a) for each Mi-program p, ti(p) is a semantically equivalent M1−i-program, and (b) for all p and
x, the M1−i-cost of running M1−i-program ti(p) on input x is no greater than q(ci,p,x), where ci,p,x is
the Mi-cost of running Mi-program p on input x. See Jones (1997) for a careful, complexity-theoretic
treatment of the equivalence of machine models.

https://doi.org/10.1017/S0956796800003841 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003841

120 R. J. Irwin et al.

1993). This class of functionals (at all simple types) was named the basic feasible

functionals (abbreviated, BFF) in Cook and Kapron’s work (1989; 1990), where

it was shown that Mehlhorn’s L() exactly corresponds to the type-2 BFFs. The

‘basic’ in ‘basic feasible functionals’ is meant to suggest that any natural higher-type

analogue of PF should include the BFFs, but it leaves open the possibility that the

BFFs may be too small to be this analogue.

2.4 Robustness of the BFFs

The issue of the naturalness of BFFs as higher-type analogues of PF was taken

up by Cook and Kapron (1989; 1990). They establish several function-algebra

characterizations of the BFFs and showed that the BFFs satisfy a Ritchie–Cobham

property2 at all simple types. The naturalness question was also a central issue in

Cook’s (1991), where he stated two serious reservations about the type-2 BFFs.

Notation: let BFF2 denote the class of type-2 BFFs (defined formally in Definition 4

below).

Cook’s first reservation was based on an example he gave of a functional, L, that

was outside of BFF2, but nonetheless appeared feasible. The criteria for feasibility

consisted of three properties that, he proposed, should necessarily be satisfied by

any class that is a natural type-2 analogue of PF. The appropriate closure of BFF2

and L turned out to satisfy these three conditions. Seth pursued this issue (Seth,

1992; Seth, 1993) (also see (Seth, 1994)). He presented a complexity-theoretic based

class of functionals that included L and satisfied the three conditions (Seth, 1992).

However, he also showed (Seth, 1993) that both his class and Cook’s BFF2 +L class

have some undesirable complexity-theoretic properties. Seth proposed a reasonable

fourth naturalness property, but in recent work, Pezzoli (1998) shows that these four

properties fail to characterize BFF2. Pezzoli proposes her own fourth condition that,

together with Cook’s conditions, does characterize BFF2, but whether her condition

begs the question in some sense is not presently clear.

Cook’s second reservation was based on the lack of a pure machine characteri-

zation of BFF2; all of the then-known characterizations of BFF2 involved function

algebras in an essential way. In theoretical computer science, machine models and

characterizations have been the basis for quantitative reasoning about the use of

computational resources. Thus, if BFF2 is a true ‘type-2 complexity class’, it should

have a purely machine-based characterization. Such a machine characterization was

provided by Kapron and Cook (1991; 1996). They introduced the notion of the

length of a type-1 object and a type-2 notion of polynomial, and proved that the

oracle Turing machines that run in time (second-order) polynomial in the lengths of

their (type-1 and type-0) inputs compute exactly the type-2 BFFs. (These notions are

treated in section 6.) Seth (1995) extended Kapron and Cook’s argument to give a

machine characterization of the BFFs at all simple types. (Seth’s characterization is

2 This is an important complexity-theoretic closure property. Very roughly, a collection of functions C
has the Ritchie–Cobham property if and only if, for each f ∈ C, there is a program pf for computing
f such that λx [the run-time of pf on x] is also in C.

https://doi.org/10.1017/S0956796800003841 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003841

On characterizations of the BFFs, Part I 121

treated at some length in this paper’s sequel.) In related work, Royer (1997) showed

that BFF2 satisfies a weak analogue of the Kreisel–Lacombe–Shoenfield Theorem

(Kreisel et al., 1957).

While the evidence is still incomplete, BFF2 has proven to be a strong candidate

for the natural type-2 analogue of PF. For the BFFs at type-3 and above the

situation is much less clear, as discussed in this paper’s sequel.

3 Plan of this paper

In the early 1970s there was an interest among complexity theorists in axiomatically

characterizing the natural complexity measures – a problem that is still largely open

and ‘not quite abandoned’. In commenting upon this work Young (1990) notes (in

his footnote 6) that the contemporary understanding of what constitutes a natural

complexity measure or class is based on two things: (i) well-understood, concrete,

computational models and (ii) low complexity translations between these models

which establish model equivalences, e.g. polynomial relatedness of footnote 1. Thus

when a complexity theorist proves something about a specific model of computation,

it is understood (but seldom made explicit) that the result in fact holds for a certain

equivalence class of models. This state of affairs is perhaps not mathematically

dignified, but it has been remarkably productive.

This paper and its sequel take the complexity-theoretic route of studying specific

formalisms and computational models for the BFFs and examining how closely

these are related. Our particular interest is in machine/resource-bound characteri-

zations and closely related programming formalisms. The motivation for this focus

in only partly complexity theoretic – as we will see, some algorithms have very

straightforward expressions in certain formalisms, but seemingly only very clumsy

expressions in others. We are thus broadening the BFF naturalness question to

include the naturalness and character of the programming formalisms for the BFFs

and related classes. We are far from a final resolution of these questions which,

because of their intensional character, may not have tidy answers. Be that as it may,

this study is a means of addressing some fundamental issues and developing some

ideas and observations that may lead to a deeper understanding of the underlying

problems.

This paper considers three characterizations of BFF2.

The type-2 bounded typed loop programs (abbreviated, BTLP2) of Cook and Kapron

(1989; 1990) are introduced in section 5. BTLP2 is a simply-typed, imperative pro-

gramming formalism with a loop construct directly inspired by Cobham’s limited re-

cursion on notation. Our official definition of BFF2 will be as the BTLP2-computable

functionals.

Kapron and Cook’s (1991; 1996) type-2 basic polynomial-time functionals are

developed in section 6. This is a class of type-2 functionals computed by ‘poly-

nomial-time bounded’ oracle Turing machines. To formalize what ‘polynomial-

time bounded’ should mean in this context, we also introduce the notions of the

length of a type-1 object and of second-order polynomials. The Kapron–Cook

Theorem (Theorem 9 below) states the equivalence of the type-2 basic polynom-

https://doi.org/10.1017/S0956796800003841 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003841

122 R. J. Irwin et al.

ial-time functionals and BFF2. To clarify a uniformity issue with this theorem, we

discuss Seth’s notion of polynomially-clocked oracle Turing machines. In many ways

this machine-based characterization gives a much clearer picture of BFF2 than does

the BTLP2 characterization, but in other ways it may appear rather ad hoc by the

standards of the programming language community.

To better explain this machine-based model, we introduce our type-2 inflationary

tiered loop programs (abbreviated ITLP2) formalism in Section 8, with section 7 laying

the groundwork for its definition. ITLP2 is a typed programming formalism inspired

by Bellantoni and Cook’s (1992) and Leivant’s (1995) type-theoretic characterizations

of PF. ITLP2 is nonetheless very close to the polynomially-clocked oracle Turing

machine scheme. The price for this closeness is that certain types and iteration

bounds are inflationary in the sense that in the course of a computation they can

grow (inflate) with the increase of information about the type-1 arguments. ITLP2 is

original to this paper.

The sequel to this paper uses extensions of these three formalisms to higher-types

as the basis for investigation of the BFFs of type-3 and beyond. The ITLP2 formalism

is, however, interesting in its own right as an example of how to use types to capture

complexity-theoretic notions.

4 Notation, conventions and such

Numbers and strings. As stated before, N denotes the set of natural numbers, and

each x ∈ N is identified with its dyadic representation over { 0, 1 }. Thus, 0 ≡ ε,

1 ≡ 0, 2 ≡ 1, 3 ≡ 00, etc. We will freely pun between x ∈ N as a number and

a 0-1-string. The function `en: N → N is such that, for each x ∈ N, `en(x) = the

length of the dyadic representation of x.

For each natural number n, let n denote 0n, i.e., n’s unary representation over { 0 }.
We sometimes refer to the elements of 0∗ as tally strings.

The set of finite ordinals is denoted by ω. N and ω are of course isomorphic

and we treat the elements of ω as numbers, but we identify each n ∈ ω with n.

The function | · |: N → ω is such that, for each x ∈ N, |x| = `en(x), i.e., the unary

representation of `en(x). The function | · |:ω → ω is simply the identity on ω.

We use the elements of N as integer (and string) values to be computed over and

use the elements of ω as tallies to represents lengths, run times, and, generally, the

results of size measurements. This is a common type distinction that is implicit in

much complexity theory. We make this distinction explicit here – probably to the

confusion of all concerned.

Functions and operations. Unless otherwise stated, A → B denotes the collection of

all total functions from A to B, and A ⇀ B denotes the collection of all (possibly)

partial functions from A to B.

For a0, . . . , an ∈ N, max({ a0, . . . , an }) = max(a0, . . . , an) = the largest element of

the set { a0, . . . , an }. By convention, max(∅) = 0. We also have occasion to use the

notation: a ⊕ b = max(a, b) and
⊕n

i=m ai = max({ ai m 6 i 6 n }). For each x and

https://doi.org/10.1017/S0956796800003841 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003841

On characterizations of the BFFs, Part I 123

y ∈ N, define

x# y = 2`en(x)·`en(y).

Note that |x| · |y| = |x# y|. So # (called smash) can be thought of a kind of a unary

multiplication. By convention, for all x, (x mod 0) = (x mod 1) = 0. Let P be a

predicate on integers. Then (µy)][P (~x, y)] denotes the least y such that P (~x, y) holds,

if such a y exists, and is undefined otherwise. (We often abbreviate a list x0, . . . , xk
by ~x.) Let 〈·, ·〉 be a standard, polynomial-time computable pairing function, e.g.

that from Rogers (1967). By convention, 〈x〉 = x and 〈x0, . . . , xn〉 = 〈x0, 〈x1, . . . , xn〉〉.
Suppose α:X ⇀ Y and A ⊆ X. Then, for all x,

α|A =

{
α(x), if x ∈ A;

undefined, otherwise.

For any given set X, idX denotes the identity function on X. Suppose f:X → X.

f(0) = idX , and, for each n, f(n+1) = f ◦ f(n).

Suppose A is a set and B is a set with a total order 6. For f, g:A→ B we write

f 6 g if and only if, for all a ∈ A, we have f(a) 6 g(a). Suppose C is a collection of

functions of type A→ B. We say that C0 is cofinal in C if and only if C0 ⊆ C and,

for each f ∈ C, there is a f0 ∈ C0 such that f 6 f0.

PF and Cobham’s characterization of it. We formally define PF as the class of

functions ⊂ ⋃k>0(Nk → N) such that for each f: Nk → N in PF, there are Mf and

qf such that Mf is a deterministic Turing Machine, qf is a polynomial, and for each

input (x1, . . . , xk):

1. Mf outputs f(~x), and

2. Mf runs within qf(|x1|, . . . , |xk|) time steps.

Definition 1. Suppose f, h: Nn+1 → N, g0: Nn → N, and g1: Nn+2 → N.

(a) We say that f is defined by recursion on notation via g0 and g1 if and only if

f is given by the following equation:

f(x,~y) =

{
g0(~y), if x = 0;

g1(f(bx/2c,~y), x,~y), if x > 0.
(1)

(b) We say that f is defined by limited recursion on notation via g0, g1, and h, if

and only if, for all x and ~y, both (1) and

|f(x,~y)| 6 |h(x,~y)|
are satisfied. �

Theorem 2 (Cobham, 1965).

(a) Let P be the smallest collection of functions that contains the initial functions

λx 0, λx 2x, λx 2x+1, λx, y x# y, and, for all n and all j 6 n, λx0, . . . , xn xj and

that is closed under composition and limited recursion on notation. Then, P = PF.

(b) Let P′ be the smallest collection of functions that contains the same initial func-

tions as P and is closed under composition and recursion on notation. Then P′ = the

class of primitive recursive functions.

https://doi.org/10.1017/S0956796800003841 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003841

124 R. J. Irwin et al.

The simple types: Syntax. The simple types over the base types b0, b1, . . . consist of

the base types themselves together with the inductively constructed terms of the

form σ → τ where σ and τ are simple types over b0, b1, Terms of the form σ → τ

are called arrow or higher types. The → operator associates to the right, hence,

b0 → b1 → b2 parses as b0 → (b1 → b2). By convention, we shall write terms of the

form τ0 → τ1 → · · · → τk−1 → τk as τ0 × τ1 × · · · × τk−1 → τk . (Since we shall always

be interpreting types over closed cartesian categories, this notation is justified.) An

easy argument shows that any arrow type is equivalent to a unique type of the form

τ0 × τ1 × · · · × τk−1 → τk , where τk is a base type. We shall almost always put our

types in this form. The level of a type τ, written as level(τ), is defined by:

level(bi) = 0.

level(τ0 × · · · × τk → bi) = 1 + max
i6k

level(τi).

The simple types: Semantics. Base types are usually identified with particular sets in

mind and σ → τ is interpreted as being some class of functions from the set named

by σ to the set named by τ. In this paper (but not its sequel) we always take σ → τ

as denoting the class of all functions from the set named by σ to the set named by

τ. We usually use our standard notation for a set serving as a base type as notation

for that type, e.g. N in (N→ N)×N→ N.

5 Type-2 bounded typed loop programs

Our official definition of the type-2 basic feasible functionals will be through Cook

and Kapron’s BTLP (Bounded Typed Loop Programs), a straightforward, simply-

typed, imperative, programming formalism. The version of BTLP presented here and

this paper’s sequel differs in several ways from the original version in Cook and

Kapron (1990), but the two versions are essentially equivalent. This section describes

BTLP2, a type-2 fragment of BTLP. A description of the full version of BTLP can

be found in Part II.

In BTLP2 all variables come equipped with a type. To make the type of a

variable explicit, we may decorate the variable with the type as a superscript or, in

declarations, add “: the name of the type” after the variable. The allowable types in

BTLP2 are the simple types over N of type-levels 0, 1, and 2. The grammar of our

version of BTLP2 is given below. The intuition behind each of the syntactic categories

is: P ≡ procedure declarations, V ≡ local variable declarations, I ≡ instructions,

L ≡ loop statements, E ≡ natural number valued expressions, and v ≡ variables.

P : : = Procedure v0 (v1, . . . , v`) P
∗ V I∗ Return vN

r End

V : : = var vN
1 , . . . , v

N
m ;

I : : = L ; | vN÷E ;

L : : = Loop vN
0 with vN

1 do I∗ Endloop

E : : = 1 | vN | vN
0 + vN

1 | vN
0
.− vN

1 | vN
0 # vN

1 | v0 (v1, . . . , vn)

https://doi.org/10.1017/S0956796800003841 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003841

On characterizations of the BFFs, Part I 125

In the procedure declaration production, the declared variable v0 has type τ1× · · ·×
τ` → N, where for i = 1, . . . , `, vi has type τi, and similarly with the procedure

application clause of the last production. All variables must be declared either in

procedure declarations, parameter lists, or in local variable declarations. Variable

scoping is static and follows standard conventions except that we forbid recursive

procedure calls and nonlocal references to variables of type N.

Convention: in writing BTLP2 programs, we shall set key words in bold roman

font and variables in typewriter font. Variables in italic font are meta-variables,

e.g., they stand for a syntactic category, a semantic object, etc. The range of these

meta-variables should be clear from context.

The semantics of BTLP2 is quite conventional and we shall discuss only its key

points. Parameter passing is call-by-value. From this and our conventions of global

variables, it thus follows that procedure calls, and expressions in general, have no

side-effects. Type N variables local to a block are initialized to 0 every time the block

is entered. In expressions, ‘+’ denotes addition, ‘ .−’ denotes proper subtraction, and

‘#’ denotes the smash function. Convention: |w| denotes the length of the value of w.

Now, the effect of a loop statement of the form

Loop w with x do I1 · · · In Endloop

is to iterate on I1 · · · In |w|-many times with the following restrictions: neither w nor

x may be assigned to within I1 · · · In and, for each assignment ‘v ÷ E’ within the

body of the loop, whenever this assignment is executed, if the value of E is of length

greater than |x|, then the result of the statement’s execution is to assign 0 to v.

Since the types are simple and there are no recursive calls in procedures, one

can give a straightforward, inductive semantics to the language. Also, since the only

global references are to variables with immutable bindings and since parameter

passing is call-by-value, it follows that the semantics of x0(x1, . . . , xn) is simply the

application of the function named by x0 to the values named by x1, . . . , xn.

In BTLP2 procedures one can – by standard, hoary tricks – achieve the effect of

If-statements, a richer set of expressions, and so on. Cook and Kapron (1989, 1990)

provide details on this. In writing BTLP2 procedures we shall blithely make use of

these obvious extensions.

Example 3. T = λf, x
∑

i<|x| f(i) is computed by the BTLP2 procedure of Figure 1.

The first loop finds a value in { 0, . . . , |x| − 1 } on which f (or more properly, the

denotation of f) is maximal. Once this value is obtained, an upper bound on the sum

is computed and used as the size bound in the second loop that actually computes

the sum. �

The basic feasible functionals were first defined as the PVω-computable functionals

and later characterized via BTLP (Cook and Kapron, 1989; Cook and Kapron, 1990).

Here we formally define the type-2 BFF’s through BTLP2.

Definition 4. The type-2 basic feasible functionals (abbreviated, BFF2) are the BTLP2-

computable functionals. �

https://doi.org/10.1017/S0956796800003841 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003841

126 R. J. Irwin et al.

Procedure SumUp(f: N→ N, x: N)

var bnd, maxarg, sum, i;

maxarg÷ 0; i÷ 0;

Loop x with x do

If f(maxarg) < f(i) then maxarg÷ i; Endif ;

i÷ i + 1;

Endloop;

bnd÷ (x + 1) · (f(maxarg) + 1);

sum÷ 0; i÷ 0;

Loop x with bnd do

sum÷ sum + f(i);

i÷ i + 1;

Endloop;

Return sum

End

Fig. 1. A BTLP2 procedure for T .

6 Type-2 basic polynomial-time functionals

Recall that our formal definition of PF was that f: Nk → N (for k > 0) is in PF if

only if there are Mf , a deterministic Turing Machine, and qf , a polynomial, such

that, for each input (x1, . . . , xk),

1. Mf outputs f(x1, . . . , xk), and

2. Mf runs within qf(|x1|, . . . , |xk|) time steps.

An analogous notion for functionals, say of type (N → N) × N → N, would run

something like: the collection of all functionals F for which there is a deterministic

machine MF such that for each f and x, the machine MF outputs F(f, x) and MF

runs in time ‘polynomial’ in the ‘lengths’ of f and x. So, to formalize this notion,

we must specify (i) what the machine-based model of computation is, (ii) what the

‘length’ an object of type N→ N should be, and (iii) what ‘polynomial’ should mean

in this context.

Machines

Turing Machines, while anachronistic in many respects, have a conservative and

fairly unproblematic cost model (each operation is small and takes unit time),

and admit some wonderfully delicate complexity analyses. We shall thus follow

complexity-theoretic tradition and make deterministic, multi-tape Turing Machines

(TMs) our default model of computation. To deal with arguments of type N→ N,

we need to consider oracle Turing machines (OTMs). Under our setup OTMs have

two special tapes: a query tape and a reply tape. To make a query of an oracle f, an

OTM writes a 0-1 string (interpreted as the dyadic representation of an x ∈ N) on

the query tape and goes into its query state, whereupon the contents of the query

tape are erased and the contents of the reply tape become the dyadic representation

https://doi.org/10.1017/S0956796800003841 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003841

On characterizations of the BFFs, Part I 127

of f(x). The cost model for OTMs is identical to that for TMs except for the issue of

the cost of a query. There are two standard models for query costs: (i) the length-cost

model under which the cost of a query is max(|f(x)|, 1), where |f(x)| is the length of

the string on the reply tape, and (ii) the unit-cost model under which queries cost

unit time. As the length-cost model is easier to work with, we will use it as our

default cost model for OTMs. We will come back to the unit-cost model in Part II.

(N.B. The great bother with Turing machines is that no sensible person wants to

read or write a nontrivial Turing machine program. Consequently, the tradition

(starting with Turing (1936)), is to play loose with the model and speak of Turing

machines as having subroutines, counters, arrays, etc.) All of these can be realized

in the standard model in straightforward ways with polynomial overhead, and this

suffices for our purposes.

Lengths

For the length of an f: N→ N, we have the choice of making it either (i) a number

or (ii) some sort of function. Option (i) is quite limiting for our purposes. Here is

the difficulty. Suppose `(f) denotes the number giving the length of f. Then “M, on

(f, x), runs in time polynomial in the lengths of f and x” should mean that for some

fixed (ordinary) polynomial q, M on (f, x) should run within q(`(f), |x|) steps. But

it is easy to show that no such M can compute the type-2 application functional

(f, x) 7→ f(x). So we choose option (ii). We require the length of f, denoted |f|, to

be a monotone, nondecreasing function from type-0 lengths to type-0 lengths.3 We

also require that the cost of the query ‘f(x) =?’ (under the length-cost model) be

bounded above by |f| on |x|, i.e. |f(x)| 6 |f|(|x|). This will help make application

polynomial-time computable. With these requirements in mind, we introduce

Definition 5 (Kapron and Cook, 1991, 1996). The length of f: N → N is the func-

tion |f|:ω → ω such that |f| = λn max({ |f(x)| |x| 6 n }). �

One bothersome thing about this definition is that the functional (f, x) 7→ |f|(|x|)
fails to be basic feasible, the problem being that the value of |f|(|x|) depends upon

2|x|+1 − 1 many values. It will turn out that, for our purposes, this is usually a

surmountable problem.

Polynomials

It is clear from the above discussion that our notion of a polynomial over |f| and |x|
must include terms such as |f|(|x|). So, we need to extend the notion of polynomial

to incorporate type-1 (function) variables. We are thus led to the following:

3 This requirement is a bit arbitrary, but fairly standard for complexity-theoretic bounds – we typically
want the resources allotted to solve a problem of size n+ 1 to be at least as large as those allotted for
a problem of size n.

https://doi.org/10.1017/S0956796800003841 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003841

128 R. J. Irwin et al.

Program sketch for MT .

Input (f, x).

sum÷ 0.

For i = 0, . . . , |x| − 1 do sum÷ sum + f(i).

Output sum .

End

Fig. 2. Sketch of an OTM program for T .

Definition 6 (Kapron and Cook, 1991, 1996). A second-order polynomial over type-

1 variables g0, . . . , gm and type-0 variables y0, . . . , yn is an expression of one of the

following five forms:

1. a 2. yi 3. q1 + q2 4. q1 · q2 5. gj(q1)

where a ∈ ω, i 6 n, j 6 m, and q1 and q2 are second-order polynomials over ~g and

~y. A second-order polynomial over m type-1 variables and n type-0 variables is said

to be of rank (m, n). The depth of a second-order polynomial q is the maximum depth

of nesting of applications of the gj ’s in q. The value of a second-order polynomial

as above on f0, . . . , fm:ω → ω and x0, . . . , xn ∈ ω is the obvious thing. �

For example, g(y+23) is a rank-(1, 1), depth-1, second-order polynomial over type-

1 variable g and type-0 variable y, and g0((g0(2·y·g1(y2))+6)3) is a rank-(2, 1), depth-3,

second-order polynomial over type-1 variables g0 and g1 and type-0 variable y.

Polynomial-time bounded OTMs

Having specified our machine model and our notions of length and polynomial, we

are now in a position to state a machine-based notion of type-2 polynomial-time.

Definition 7 (Kapron and Cook, 1991, 1996). Suppose k > 1 and ` > 0. Then,

F: (N → N)k × N` → N is a basic polynomial-time functional if and only if

there is an OTM M and a second-order polynomial q such that, for each input

(f1, . . . , fk, x1, . . . , x`),

1. M outputs F(f1, . . . , fk, x1, . . . , x`), and

2. M runs within q(|f1|, . . . , |fk|, |x1|, . . . , |x`|) time steps.

�

Example 8. Let T = λf, x
∑

i<|x| f(i) be as in Example 3. T is computed by the

OTM program sketched in Figure 2. If one fills in the details of the sketch in a

straightforward way, an easy analysis shows that there is an ordinary, one-variable

polynomial q such that MT as sketched above runs within q(|x|+ 1) · (|f|(|x|) + 1))

time. �

The central result of Kapron and Cook (1991, 1996) is the following characteri-

zation which establishes that, under the above definitions, the type-2 BFFs are the

exact type-2 analogue of PF.

https://doi.org/10.1017/S0956796800003841 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003841

On characterizations of the BFFs, Part I 129

Theorem 9 (Kapron and Cook, 1991, 1996). The basic polynomial-time functionals

and BFF2 are one and the same class. This equivalence is constructive in the sense

that:

(a) For each BTLP P , one can construct an OTM M and a second-order polynomial

q such that M computes the same functional as P and M runs within the time bound

given by q.

(b) Given a second-order polynomial q and an OTM M that runs within the time bound

specified by q, one can construct a BTLP P that computes the same functional as M.

Note that there is an asymmetry between (a) and (b) – the translation of (a)

works for any BTLP procedure P , whereas the translation of (b) works only for

M and q such that q happens to bound M’s run time. (The problem of whether

q bounds M’s run time is clearly undecidable in general.) The root cause of this

asymmetry is a looseness in Definition 7, which permits any M that obeys the run-

time bound through any method whatsoever. The fact that the run-time bound is

itself not generally basic feasibly computable adds to the confusion. We can resolve

this mismatch by means of polynomially-clocked machines.

Clocking

Among its many properties, PF admits of a machine/resource-based indexing of the

following form. Fix an indexing of TMs 〈Mi〉i∈N. For each i, k ∈ N, let Mi,k be a TM

that, on input x, simulates Mi on input x for up to k · (|x|+ 1)k steps and:

• If Mi on x halts within this time with output y, then Mi,k outputs y.

• If Mi on x fails to halt within this time, then Mi,k outputs 0.

With a bit of care in the construction of the Mi,k ’s, one can arrange that there

is a polynomial q0 such that, for all i, k, and x, Mi,k on input x runs within

k · (|x| + 1)k + q0(k, |x|) time. Clearly, Mi,k computes an element of PF and if, for

each input x, a given Mi runs within k · (|x| + 1)k time, then Mi and Mi,k compute

the same element of PF. Hence, the Mi,k ’s determine a subclass of PF. Note that for

each one-variable polynomial q, there is a k such that, for all n, q(n) 6 k · (n+ 1)k .

It thus follows that the Mi,k ’s determine exactly PF. For obvious reasons 〈Mi,k〉i,k∈N

is called a clocked indexing of PF. (For more than you ever wanted to know about

clocked indexings of type-1 subrecursive classes, see Chapter 4 of Royer and Case,

1994.)

The type-2 BFFs have analogous machine/resource-based indexings. This is not

an obvious result because of the previously noted failure of (~f,~x) 7→ q(|f1|, . . . , |fk|,
|x1|, . . . , |x`|) to be basic feasible. The existence of such an indexing was implicit (but

buried) in Kapron and Cook’s proof of Theorem 9(b) and was first made explicit

by Seth (1992). We develop one such indexing below. To keep the notation down,

we will restrict our attention to functionals of type (N → N) × N → N. We first

introduce a collection of second-order polynomials analogous to the k · (n + 1)k ’s

above.

https://doi.org/10.1017/S0956796800003841 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003841

130 R. J. Irwin et al.

Definition 10. For each k ∈ N, let pk be the two-variable polynomial k · (m+ n+ 1)k .

For each d, k ∈ N, define qd,k to be the second-order polynomial over g and y as

follows:

q0,k(g, y) = pk(0, y).

qd+1,k(g, y) = pk(g(qd,k(g, y)), y). �

A straightforward argument shows that, for each second-order polynomial q over

f and x, if d is the depth of q, then there is a k ∈ N such that, for all f and x,

q(|f|, |x|) 6 qd,k(|f|, |x|).
Now let us consider the problem of how a clocked OTM M is to deal with a bound

of the form qd,k(|f|, |x|) that M cannot, in general, feasibly compute. The solution

is that it suffices for M, on input (f, x), to keep a running, lower approximation to

qd,k(|f|, |x|) based on M’s current knowledge of f. At any point in a computation,

‘M’s knowledge of f’ consists simply of f|Q = the finite function that results from

restricting f to Q, the finite set of queries that M has made of f up to this point. To

formalize this approximation process we first extend the notion of length to finite

functions. Notation: in the following ζ will range over finite functions N ⇀ N, and

for each ζ, let ζ̂ denote the total function extending ζ that is 0 every place ζ is

undefined.

Definition 11. The length of ζ is the function |ζ|:ω → ω such that, for each n,

|ζ|(n) = max({ |ζ(x)| |x| 6 n & x ∈ dom(ζ) }). �

Some observations: first note that |ζ| = |ζ̂|. Fix, for this paragraph, f: N→ N and

n ∈ ω. Let D = { ζ ζ ⊂ f }, which is a directed set partially ordered by ⊆. For ζ over

D we have that |ζ|(n) is monotone nondecreasing in ζ, and limζ→f |ζ|(n) = (least

upper bound of { |ζ|(n) ζ ∈ D}) = |f|(n). More generally, a simple argument shows

that, for any second order polynomial q, for ζ over D we also have that q(|ζ|, |x|)
is monotone, nondecreasing in ζ and limζ→f q(|ζ|, |x|) = q(|f|, |x|). Finally, we note a

key observation of Kapron and Cook (1991, 1996), although the statement here is a

bit different from theirs.

Lemma 12 (The Continuity of Bounds). Suppose M is a OTM and q is a second-order

polynomial. For each f: N→ N, x ∈ N, and s ∈ ω, let ζf,x,s denote the finite part of

f that M discovers through queries when M, on input (f, x), has run s steps. Then, the

following are equivalent:

(a) For each input (f, x), M runs within q(|f|, |x|) time.

(b) For each f, x, and s, on input (f, x) the total cost of M’s computation up through

step s is no greater than q(|ζf,x,s|, |x|).
Proof

(b) =⇒ (a). This follows from the observations just prior to the statement of the

lemma.

(a) =⇒ (b). Suppose (a). Fix an input (f, x) and, for each s, let ζs = ζf,x,s. Suppose

by way of contradiction that at step s, the total cost of M’s computation up through

step s is greater than q(|ζs|, |x|). Consider the computation of M on input (ζ̂s, x). This

https://doi.org/10.1017/S0956796800003841 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003841

On characterizations of the BFFs, Part I 131

computation and the computations of M on (f, x) must be identical up through

step s. But by (a), M, on input (ζ̂, x), runs within time q(|ζ̂s|, |x|) = q(|ζs|, |x|). Hence,

the computations of M on both (ζ̂s, x) and (f, x) halt in fewer than s steps, a

contradiction. q

Lemma 12 more or less tells us how to carry out the clocking. Suppose 〈Mi〉i∈N is

an indexing of OTMs. For each d and k ∈ N, let Mi,d,k be an OTM that, on input

(f, x), does something equivalent to the following. Mi,d,k carries out a step-by-step

simulation of Mi and, in the process, keeps track of two auxiliary pieces of data:

cost , an integer counter that records the total cost of the steps of Mi executed thus

far, and ζ, a finite function (stored in some appropriate data structure) that records

what is known about the type-1 argument thus far. On startup, Mi,d,k initializes

cost ÷ 0 and ζ ÷ ∅. Then Mi,d,k commences a step-by-step simulation of Mi on

input (f, x). After each simulation of an Mi-step, Mi,d,k goes through:

If Mi halted on this step with output y,

then Mi,d,k outputs y and halts,

else:

If this step was a query “f(y) =?”,

then set cost ÷ cost + max(1, |f(y)|) and ζ÷ ζ ∪ { (y, f(y)) },
else set cost ÷ cost + 1.

If cost > qd,k(|ζ|, |x|),
then Mi,d,k outputs 0 and halts,

else the simulation continues.

With a bit of care in the construction of the Mi,d,k ’s, one can arrange that there is a

k0 such that, for all i, d, k, and x, at any time in the computation, the run time of

Mi,d,k on input (f, x) up to that point is bounded by qd,k(|ζ|, |x|) + qd+1,k0 (|ζ|, k+ |x|).
(Seth (1992) and Royer (1997) provide for details on similar clocking schemes.)

Thus by Lemma 12, Mi,d,k computes a basic polynomial-time functional. If Mi is

an OTM that just happens to run within a qd,k time bound, then it follows from

the construction and Lemma 12 that Mi and Mi,d,k compute the same functional.

Since the qd,k ’s are cofinal in the second-order polynomials, we have that the Mi,d,k ’s

determine exactly the BFFs of type (N→ N)×N→ N.

Lemma 12 plays a critical role in the proof of Theorem 9(b) that can be amended

to read: For each i, d, and k, one can construct a BTLP P that computes the same

functional as Mi,d,k . (We will see something analogous in our versions of Seth’s

machine characterization for type-levels 3 and above in Part II.)

The Mi,d,k ’s provide a crisp, complexity-theoretic way of looking at the type-2

BFFs. Furthermore, in contrast to the program of Example 3, the program of

Example 8 corresponds to a more natural way to express programs for type-2

functionals. On the other hand, the Mi,d,k ’s are less than satisfactory in several

regards. First, the program of Example 8 is not an OTM program, it is just a

sketch of one. An actual OTM program for T would be some rat’s nest of tuples.

Second, while perhaps palatable to complexity theorists, the explicit clocking in the

definition of the Mi,d,k ’s looks quite ad hoc. What would be nice is a fairly simple

https://doi.org/10.1017/S0956796800003841 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003841

132 R. J. Irwin et al.

programming formalism for BFF2 that is closer in spirit to the Mi,d,k ’s than BTLP,

but that would avoid the grubbiness of OTM programs and the explicit clocking.

The next two sections address this problem.

7 Inflationary tiers and iterations

This section lays the type-theoretic and recursion-theoretic groundwork for type-2

inflationary tiered loop programs (abbreviated as ITLP2), a second-order programming

formalism developed in the next section. ITLP2 was inspired by Leivant’s (1995)

tiered-recursion formalism. The roots of Leivant’s work trace through Nelson’s

(1986) work on predicative arithmetic, Leivant’s (1991, 1994a) earlier work on

predicative recursion, and Bellantoni and Cook’s (1992) safe-recursion formalism.

Bellantoni and Cook’s, Leivant’s, and our programming formalisms are all partly

based on reforming Cobham’s scheme of limited recursion on notation. We thus

start with a critique of that scheme.

Recall that f is defined by limited recursion on notation via g0, g1 and h, if and

only if the following two conditions are satisfied for all x and ~y:

f(x,~y) =

{
g0(~y), if x = 0;

g1(f(bx/2c,~y), x,~y), if x > 0.
(2)

|f(x,~y)| 6 |h(x,~y)|. (3)

The side condition, (3), seems a great necessity and a great nuisance. The necessity

is clear from Theorem 2(b) – without something like the tempering influence of (3)

one can take feasible initial functions and through (2) produce highly nonfeasible

results. The nuisance is also clear if only from aesthetic considerations. More

serious for us is that it seems quite awkward to program in formalisms such as

PVω and BTLP that have a type-2 analogue of limited recursion on notation as

their sole iteration construct – compare the programs of Examples 3 and 8. We

suspect that this awkwardness is quantifiable. It would be worthwhile, then, to find

a less troublesome constraint that would play the same role as (3) in moderating

(2). Bellantoni and Cook (1992) found such a constraint in a simple type system,

together with safe recursion and safe composition, which are, respectively, versions

of (2) and composition satisfying some type constraints. Their system provides a

quite natural characterization of PF. Following up on their work, Leivant (1995)

gave an even more elegant characterization of PF and analogous characterizations

of several other complexity classes. Below we sketch a function algebra TR that is a

variant of Leivant’s system for PF.

Predicative tiered recurrence

To motivate the core idea, let us examine a specific problematic use of (2). Consider

the function b defined by the recursion

b(x) =

{
3, if x = 0;

b(bx/2c) # b(bx/2c), if x > 0.

https://doi.org/10.1017/S0956796800003841 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003841

On characterizations of the BFFs, Part I 133

Recall that x# y = 2|x|·|y|, so |x# y| = |x| · |y|. Thus it follows that, for all x,

|b(x)| = 22|x| . Now, we certainly want to be able to compute λy y# y and we

certainly want recursions of the form of (2), but their combination results in a

‘vicious spiral’, which we most certainly do not want.

To break the vicious growth rates, we apply an idea of Russell’s (1903; 1908;

1967) for breaking vicious circles, the ramified theory of types. Russell’s vicious-

circle principle (Russell, 1908) is:

No totality can contain members defined in terms of itself.

In Russell’s setting this meant that if Y is defined in terms of a quantification

over objects of a particular type, then Y must be of a higher type. In the present

setting, this principle should mean something like: if y is a number that results from

a recursion on x, then y should be of a type higher than x, where the meaning

of “type” needs to be clarified. Towards this end we introduce ω-many copies

of N, denoted N0, N1, N2, . . . , which we will call tiers. These tiers are ordered

N0 ≺ N1 ≺ · · · ≺ Ni ≺ · · · . We usually view input values as residing in tier N0 and

values in tier Ni+1 as the result of TR-recursions on values from N0, . . . ,Ni. (N.B.

Our conventions on tier-levels are the reverse Leivant’s – in his system inputs are

from some tier Nk and the values in tier Ni (i < k) arise from recursions on values

from Ni+1, . . . ,Nk .)

Before introducing TR, we establish a bit of notation. For each x ∈ N ∪ N0 ∪
N1 ∪ · · ·, let (x)ω be the N version of x and (x)i be the Ni version of x. Let

F = { g: Ni1 × · · · ×Nir → Ni0 r, i0, . . . , ir ∈ N }, the collection of all functions over

the tiers. TR will determine a particular subset of F.

Here then is the definition of TR. For each i we define the constructor functions

ciε: ()→ Ni, c
i
0: Ni → Ni, and ci1: Ni → Ni by the equations:

ciε() = ε. ci0(w) = 0w. ci1(w) = 1w.

(Recall that we are identifying the elements of N and { 0, 1 }∗.) The ciε’s, ci0’s, and

ci1’s are TR’s initial functions. We usually write εi for ciε(). TR permits the following

three ways of defining new functions from old. Let N (and decorated versions of

it) range over finite products of the Ni’s.

Explicit Definition. We say f:N→ Nn is defined through explicit definition from a

collection of previously introduced functions S ⊆ F if and only if the definition

consists of a correctly typed equation of the form f(~x) = t, where t is a term over

the vocabulary made up of ~x and names for the elements of S.

Definition by Cases. Suppose m 6 n. We say that f: Nm ×N → Nn is defined by

cases from gε:N → Nn and g0, g1: Nm ×N → Nn if and only if the following

equations hold:

f(εm,~x) = gε(~x).

f(dw,~x) = gd(w,~x), for d = 0, 1.

Ramified Recurrence. Suppose m < n. We say that f: Nm ×N → Nn is defined by

ramified recurrence from gε:N→ Nn and g0, g1: Nn×Nm×N→ Nn if and only

https://doi.org/10.1017/S0956796800003841 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003841

134 R. J. Irwin et al.

if the following equations hold:

f(εm,~x) = gε(~x).

f(dw,~x) = gd(f(w,~x), w,~x), for d = 0, 1.

This completes the definition of TR.

Example 13 (Some sample TR definitions).

(a) The destructor function destr i: Ni → Ni given by the definition by cases:

destr i(εi) = εi.

destr i(dw) = idNi
(w), for d = 0, 1.

(Note: idNi
can be given by explicit definition.)

(b) Suppose i < j. The upward coercion function up ij: Ni → Nj is given by the

recurrence:

up ij(εi) = εj .

up ij(dw) = c
j
d(up ij(w)), for d = 0, 1.

(c) The concatenation function �: N0 ×N0 → N1 is given by:

�(ε0, x) = up01(x).

�(dw, x) = c1
d(�(w, x)), for d = 0, 1.

(d) Suppose s: N1 → N1 is given. For each k > 0, let iterks : (N0)k ×N1 → N1 be the

function such that, for all x1, . . . , xk ∈ N0 and y ∈ N1, iterks (x1, . . . , xk, y) = s(n)(y),

where n = Πk
i=1(|xi|+1). (In particular, iterks (x, . . . , x, y) = s((|x|+1)k)(y).) We can define

iter0
s by: iter0

s (y) = s(y). Given iterks , we can define iterk+1
s by:

iterk+1
s (ε0, x2, . . . , xk+1, y) = iterks (x2, . . . , xk+1, y).

iterk+1
s (dx1, x2, . . . , xk+1, y) = iterks (x2, . . . , xk+1, y

′),
where y′ = iterk+1

s (x1, x2, . . . , xk+1, y)

and d = 0, 1. �

To evaluate f on ~x, where f:N → Ni is given by a set of TR definitions and

~x ∈ N, we use a standard, call-by-value evaluation scheme. The semantics of TR

are thus straightforward. Let TRF ⊂ F be the class of TR-definable functions and

let (TRF)ω ⊂ { g: Nk → N k ∈ ω } denote the collection of functions obtained from

TRF by identifying all the Ni’s in the domains and ranges with N.

We also want to consider the variant of TR that results from replacing ramified

recurrence with

Simultaneous Ramified Recurrence. Suppose m < n and r ∈ N. We say that f0, . . . ,

fr: Nm ×N → Nn are defined by simultaneous ramified recurrence from g0
ε , . . . ,

grε:N → Nn and g0
0 , . . . , g

r
0, g

0
1 , . . . , g

r
1: (Nn)

r × Nm ×N → Nn if and only if the

https://doi.org/10.1017/S0956796800003841 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003841

On characterizations of the BFFs, Part I 135

following equations hold, for j = 0, . . . , r and d = 0, 1:

fj(εm,~x) = gjε(~x).

fj(dw,~x) = g
j
d(f0(w,~x), . . . , fr(w,~x), w,~x).

We call the resulting function algebra TR∗ and define TRF∗ and (TRF∗)ω analo-

gously to TRF and (TRF)ω .

The next proposition compares (TRF)ω , (TRF∗)ω , and PF.

Proposition 14 (After Leivant, 1995).

(a) PF ⊆ (TRF∗)ω . In fact, each f ∈ PF is given by a TR∗ definition that uses only

tiers N0 and N1.

(b) TRF∗ = TRF. In fact, each TR∗ definition that uses only tiers N0 and N1 can be

uniformly effectively translated to an equivalent TR definition that also uses only tiers

N0 and N1.

(c) (TRF)ω ⊆ PF.

Proof sketch

The proof of the analogous results for Leivant’s system can be found in (Leivant,

1995). Here we simply state the core ideas for each part.

Part (a) follows from an elaboration on the definition of iterks . Suppose f: N→ N

is an element of PF. (The Nk → N case is analogous.) Then there is a 1-tape

deterministic TM M with tape alphabet { 0, 1, B,# } (where B stands for blank

and # is an end of tape marker) that, for each x, computes f(x) within time

k(|x|+ 1)k for some fixed k > 0. We can simulate M in TR as follows. Suppose the

states of M are numbered 0 through j. An instantaneous description (abbreviated as

ID) of M consists of the current state number plus the current state of the tape,

a−m . . . a−2a−1a0a1a2 . . . an, where a−m = an = #, ai ∈ { 0, 1, B } for −m < i < n, and

a0 is the symbol currently scanned by the tape-head. By coding the tape symbols 0,

1, B, and # by the strings b0 = 00, b1 = 01, bB = 10, and b# = 11, respectively, we

can represent such an ID by (s, `, r) ∈ (N1)3, where s is the current state number,

` = ba−1
. . . ba−m , and r = ba0

. . . ban . It is straightforward to give TR∗ definitions

for nextstate, nextleft, nextright: (N1)3 → N1 such that, if (s, `, r) represents an

ID, then (nextstate(s, `, r), nextleft(s, `, r), nextright(s, `, r)) is the succeeding ID. The

core of the simulation is a simple variation on the definition of iterks to define in

TR∗ a recursion that simultaneously iterates nextstate, nextleft, and nextright an

appropriate number of times, starting from the representation of M’s initial ID on

input x.

Part (b) follows from a careful use of pairing functions.

Part (c) can be argued as follows. For this argument suppose that f:N → Ni

is given by Df , some set of TR definitions of f and all of f’s auxiliary functions.

Our goal is to show that f is polynomial-time computable. Conventions: for each

j and each x ∈ Nj , let |x| = |(x)ω|. For each j, N0, and ~x ∈ N0, let |~x|<j denote

the maximum length of the elements of ~x of tier less than j and |~x|=j denote the

maximum length of the elements of ~x of tier j. (Recall that max(∅) = 0.)

https://doi.org/10.1017/S0956796800003841 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003841

136 R. J. Irwin et al.

Claim 1. For each g:N0 → Nj defined in Df , there is a polynomial pg such that, for

each ~x ∈ N0, |g(~x)| 6 pg(|~x|<j) + |~x|=j .
The proof is a structural induction on the functions defined in Df . The key case

is where g: Nk ×N1 → Nj (with k < j) is defined by ramified recurrence on hε, h0,

and h1, where phε , ph0
, and ph1

are polynomials such that, for all v ∈ Nj , w ∈ Nk ,

and ~x ∈ N1, we have:

|hε(~x)| 6 phε (|~x|<j) + |~x|=j .
|hd(v, w,~x)| 6 phd

(|w,~x|<j) + |v,~x|=j , for d = 0, 1.

(Note that |w,~x|<j = max(|w|, |~x|<j) and |v,~x|=j = max(|v|, |~x|=j).) Let λn c · (n+ 1)m

(with c, m > 1) be a polynomial that everywhere dominates phε , ph0
, and ph1

. A

simple induction shows that, for all w ∈ Nk and ~x ∈ N1,

|g(w,~x)| 6 (|w|+ 1) · c · (|w,~x|<j + 1)m + |~x|=j .
So, letting pg = λn c · (n+ 1)m+1 suffices.

Now consider a straightforward, RAM-based interpreter for TR definitions. For

each g:N0 → Nj defined in Df and each ~x ∈ N0, let tg(~x) = the number steps the

interpreter requires to compute g(~x) (via Df). Also, for each i, define tciε() = 1 and

tci0 = tci1 = λx: Ni (|x|+ 1). By a bit of analysis and an argument similar to that for

Claim 1, we obtain

Claim 2. For each g:N0 → Nj defined in Df , there is a polynomial qg such that for

each ~x ∈ N0, tg(~x) 6 qg(|~x|<j) + |~x|=j .
It thus follows that f is polynomial-time computable. q

As an immediate corollary to the above, we obtain a characterization of PF which

is roughly analogous to that of Bellantoni and Cook.

Corollary 15 (After Leivant, 1995). Suppose f: N→ N. Then, f ∈ PF if and only if

there is a TR definition using only tiers N0 and N1 that determines f as a function

from N0 to N1.

Thus in TR, tiers 2 and above really are not needed to characterize PF. We put

these higher tiers to use just below.

Extending TR to type-2: A first attempt

Leivant (1994b) shows one way of extending his systems to higher types, but the

result involves complexity classes much larger than of interest here. We offer another

approach inspired by the structure of second-order polynomials.

Recall that the depth of a second-order polynomial q(g, x) is the maximum depth

of nesting of applications of the g in q. Our initial idea for a second-order version

of TR is to extend the use of tiers so that, in a particular definition, the level of a

tier is somehow connected with the depth of a second-order polynomial bound on

the length of values that can appear in that tier. Here is a sketch of one way of

https://doi.org/10.1017/S0956796800003841 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003841

On characterizations of the BFFs, Part I 137

doing this. Let TR2 be the function algebra TR augmented with a function symbol f

of polymorphic type (∀i)[Ni → Ni+1]. Each TR2 definition of a function g:N→ Nk

determines a functional Fg: (N→ N)×N→ Nk such that, on input (f,~y), Fg(f,~y)

is the value produced by g on input ~y when f is the function that, for each i, maps

(x)i to (f(x))i+1. Let us consider an example. Define t: N0 → N3 by:

t(x) =

{
(0)3, if (i) x = ε;

f(`en(x′)) + t(x′), if (ii) x = dx′ for d = 0, 1;

where +: N2 × N3 → N3 is addition for the indicated tiers, `en: N0 → N1 is the

length function for elements of N0, and f is used as a function from N1 to N2.

Then Ft(f, (x)0) = (T (f, x))3, where T is the functional from Examples 3 and 8.

We can adapt the argument for Proposition 14(c) to show that, for each TR2-

defined g: N0 → Nk , there is a depth k second-order polynomial q such that, for all

f: N → N and x ∈ N0, |Fg(f, x)| 6 q(|f|, |x|). The key point is that since there is

no downward coercion in tiers, if a value v is somehow obtained through j-many

nested applications of the oracle, then v must be in tier j or higher. Thus all the

TR2-definable functionals have a second-order polynomial growth rate as desired.

There is trouble, however. Consider the functional given by the equation:

G(f, x, y, z) =

y mod z, if x = ε;

f(y′) mod z, if x = dx′ for d = 0, 1 and

where y′ = G(f, x′, y, z).
(4)

This is a perfectly respectable basic feasible functional, but it is not TR2-definable.

The problem is that successive applications of f push the result higher and higher

in the tiers, so no definition of G can be finitely tiered.

Inflationary tiers

The problem represented by equation (4) is a difficulty with pure ramified type

systems: intuitively mundane things can end up at enormous type levels or at no

type level at all. Because of this difficulty, ramified type systems sometimes include

downward coercion rules to bring mundane things down to mundane type levels.

Russell’s axiom of reducibility from Russell (1908) is precisely a rule of this sort. For

our setting we will choose ‘mundane’ to mean ‘of small length’. So following Bertie’s

lead, we introduce the following length-based, downward coercion functions. For

each i and j with i < j, down i,j: Ni ×Nj → Ni is defined through the equation:

down i,j(x, y) =

{
(y)i, if |y| 6 |x|;
εi, otherwise.

Let TR′2 be the function algebra obtained from TR2 by adding the down i,j ’s to the

set of initial functions. TR′2 definitions determine functionals in the same way TR2

definitions do. Note that, as with the TR2-defined functionals, each TR′2-defined

functional has a second-order polynomial upper bound on its growth rate. This is

because any downward coercion of a value into a tier does not produce a value of

length any greater than already found at that tier. The TR′2-definable functionals

https://doi.org/10.1017/S0956796800003841 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003841

138 R. J. Irwin et al.

(when all the tiers are identified with N) turn out to be precisely the BFFs with

types of the form (N → N)×Nk → N. Before considering this characterization we

need to discuss some points related to the changed meaning of the tiers in TR′2.

1. TR′2 is impredicative. Unlike the previous systems of this section, TR′2 fails to

satisfy our interpretation of Russell’s vicious-circle principle. For example, we

can take the leftmost ‘bit’ of any value in any tier and coerce it down to

N0. Thus in TR′2 one can no longer think of Ni+1 as the values arising from

recursions and oracle-queries applied to Ni values.

2. Tiers classify relative lengths. Since the downward coercions produce values of

length no greater than values already in the lower tier, it follows that, like TR2,

the TR′2-definable functionals have growth rates that are bounded by second-

order polynomials. In fact, the argument shows that, given a TR′2 definition

of a functional F: (N → N) × Nk → N and given an i, there is a depth i

second-order polynomial qi such that, for each input (f,~x), the values that

appear in tier i in the ‘computation’ of F are of length 6 qi(|f|, |x1|, . . . , |xk|).
Moreover, if x is a variable in this TR′2 definition that is typed at Ni, then

this means that we can prove that any value bound to x in the course of the

computation must satisfy the qi length bound.

3. Tiers are inflationary. The phenomenon noted in Lemma 12 occurs in this

context as well. The bounds represented by the tiers are based on current

knowledge of the oracle. As the computation progresses, the information on

the oracle increases, the bounds can thus increase, and the tiers can be thought

of as inflating with the evolution of the computation. Thus, a value v that

cannot be classified at tier i at an early stage of the computation may be so

classifiable later after tier i has inflated to the point where it includes values

of length |v| or greater.

TR′2 still is not satisfactory. As mentioned, TR′2-definable functionals turn out to

be precisely the BFFs with types of the form (N→ N)×Nk → N, but the proof of

this seems to require a fairly involved argument along the lines of the proof of the

Kapron-Cook Theorem (Theorem 9). Thus we do not have the evidence to claim

that TR′2 is ‘close in spirit to the second-order polynomially clocked OTMs’. The

root of our problem here is that we have not been thorough enough in our reform

of Cobham’s limited recursion on notation scheme. Our attention has been on the

side condition (3), which has been replaced by tiers that control, in an inflationary

fashion, growth rates throughout the computation. The present trouble lies with (2).

The bound on the number of recursions is set on the initial call and remains static

throughout the computation for that call. So, as with the tiers, we will let this bound

on the number recursions be inflationary. To formalize this, in the next section we

shall introduce a programming formalism based on BTLP.

8 Type-2 inflationary tiered loop programs

ITLP2 (for Type-2 Inflationary Tiered Loop Programs) is a modification of the BTLP2

formalism. The base types consist of N0, N1, (We shall refer to the elements of

https://doi.org/10.1017/S0956796800003841 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003841

On characterizations of the BFFs, Part I 139

N ∪ N0 ∪ N1 ∪ · · · collectively as integers, and variables over any of N0, N1, . . . as

integer variables.) For each k > 1, we include the polymorphic type (∀i)[Nk
i → Ni+1]

which we abbreviate to Nk →+ N. These polymorphic types are considered to be

at type-level one. The remaining allowable types in ITLP2 are those of the form

τ0 × · · · × τn → Ni built up from the Ni’s and Nk →+ N’s subject to the restrictions:

1. τ0 × · · · × τn → Ni is of type-level one or two, and

2. i is greater than the tier number of any base type among τ0, . . . , τn.

Note that if there are no base types among τ0, . . . , τn, then i may be zero.

To cut down on notation we make upward tier-coercions automatic in ITLP2. We

say that Ni is coercible to Nj (written: Ni � Nj) if and only if i 6 j.
All variables in ITLP2 come equipped with a type. To make the type of a variable

explicit, we may decorate the variable with the type as a superscript or add ‘: the

name of the type’ after the variable in declarations. The grammar of ITLP2 is given

below. The intuitions behind the syntactic categories are the same as those of BTLP2

with the one addition: C ≡ case statements. (Recall that n denotes the tally string

0n.)

P : : = Procedure v0 (v1, . . . , v`): Ni P
∗ V I∗ Return vr End

V : : = var v
Ni1

1 , . . . , vNim
m ;

I : : = C ; | L ; | vNi÷E ;

C : : = Case vNi

0 of ε : I∗ or 0vNi

1 : I∗ or 1vNi

1 : I∗ Endcase

L : : = For vNi

0 ÷ 1 to vNi

1 do I∗ Endfor

E : : = ε | vNi | c0(vNi) | c1(vNi) | down (vNi

0 , v
Nj

1) | v0(v1, . . . , vn)

Convention: in writing ITLP2 programs, we shall set key words in bold sans serif

font and variables in normal sans serif font. As before, variables in italic font are

meta-variables.

We require all ITLP2 procedures to be well-typed with the types allowable in

ITLP2. In the procedure declaration production the declared variable v0 has type

τ1 × · · · × τ` → Ni, where for j = 1, . . . , `, vj has type τj , and the type of vr
must be coercible to Ni. In an assignment of the form: ‘vNi ÷ E’, the type of the

expression must be coercible to Ni. Expressions are typed according to the rules

given in Figure 3. All variables must be declared either in procedure declarations,

parameter lists, or local variable declarations. Variable scoping is static and follows

standard conventions, except that we forbid recursive procedure calls and references

to nonlocal integer variables.

As with BTLP2, the semantics of ITLP2 are quite conventional and we shall discuss

only its key points. Parameter passing is call-by-value. Variables local to a block

are initialized to ε every time the block is entered. In expressions, ‘ε’ denotes ε0

and ‘c 0’, ‘c 1’ and ‘down ’ each denotes the obvious thing. The interpretation of

Case -statements is standard. A For -loop of the form

For v
Nj

0 ÷ 1 to v
Nj

1 do ~I Endfor (5)

https://doi.org/10.1017/S0956796800003841 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003841

140 R. J. Irwin et al.

ε: N0

v: Ni

c 0(v): Ni

v: Ni

c 1(v): Ni

v0: Ni v1: Nj

down (v0, v1): Ni

(where i < j)

v: τ0 × · · · × τn → Nj v0: σ0 . . . vn: σn
v(v0, . . . , vn): Nj

(
where for each i 6 n,
σi = τi or σi � τi

)

v: Nk →+ N v0: Ni0 . . . vn: Nin

v(v0, . . . , vn): Nj

(
where j = 1 + max(i0, . . . , in)

)

Fig. 3. Typing rules for ITLP2 expressions.

must satisfy the following restrictions:

1. No assignments to v
Nj

0 occur within ~I .

2. Each ‘vNi÷E’ with i 6 j occurring within ~I must be such that either

(a) each integer variable in E is of tier strictly less than i, or

(b) E is of the form ‘down (vNi

2 , v
Nk

3)’.

Note that assignments to v
Nj

1 are permitted in~I , and the initialization and increments

to control variables of any inner For -loops are not considered violations to the

restrictions of the containing For -loops. Given these restrictions, the For -loop of

(5) is equivalent to:

v
Nj

0 ÷ c 0(εj);

While |vNj

0 | 6 |vNj

1 | do ~I v
Nj

0 ÷ c 0(v
Nj

0); Endwhile

where While . . . do . . . Endwhile has the usual meaning. The not-so-obvious fact

that such For -loops always terminate will fall out from the proof of Proposition 19

below.

Since the types are simple and there are no recursive calls in procedures, one

can give a straightforward, inductive semantics to the language. Also, since the only

global references are to variables with immutable bindings and since parameter

passing is call-by-value, it follows that the semantics of x(x0, . . . , xn) is simply the

application of the function named by x to the values named by x0, . . . , xn.

As with BTLP, one can apply variations on standard tricks to achieve the effect

of a richer set of control structures, expressions, and so on, in ITLP2 procedures. We

shall occasionally make use of these extensions.

Definition 16.

(a) For each f: Nk → N, let (f)0 be the function that, for each x1, . . . , xk ∈ N and

each i1, . . . , ik ∈ ω, satisfies

(f)0((x1)i1 , . . . , (xk)ik) = (f(x1, . . . , xk))max(i1 ,...,ik)+1.

Also, let (N)0 = N0 and (Nk → N)0 = Nk →+ N.

(b) Suppose τ1 × · · · × τn → N is a type over N at type-level two. We say that

https://doi.org/10.1017/S0956796800003841 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003841

On characterizations of the BFFs, Part I 141

Procedure Gdef(f: N→+ N, x: N0, y: N0, z: N0): N1

var w: N0, temp: N2;

For w÷ 1 to x do
temp÷ f(y) mod z;

y÷ down (z, temp);

Endfor ;

Return y

End

Fig. 4. Sketch of an OTM program for G.

F: τ1 × · · · × τn → N is ITLP2-computable if and only if there is an ITLP2 procedure

P of type (τ1)0 × · · · × (τn)0 → Nj for some j such that, for each z1: τ1, . . . , zn: τn, we

have that P on input ((z1)0, . . . , (zn)0) returns (F(z1, . . . , zn))j . �

For example, the procedure given in Figure 4 witnesses that G defined in (4) is

ITLP2-computable. In the following mod: N1 × N0 → N2 is the modulus function

over the indicated tiers. For a crucial example of the use of the inflationary aspect

of For -loops, see the procedure Sim in the proof of Proposition 18 below.

The following is our promised characterization of BFF2. Its proof takes up the

remainder of this section.

Proposition 17. The class of ITLP2-computable functionals is exactly BFF2.

To keep the notation manageable, we shall argue this proposition only for func-

tionals of type (N→ N)×N→ N. We first show

Proposition 18. Suppose that F: (N → N) × N → N is computed by an OTM M

and that q is a second-order polynomial that bounds M’s run time. Then, F is ITLP2-

computable.

Proof

Recall from Definition 10 that the second-order polynomials qd,k (d, k ∈ ω) are given

by the equations:

q0,k(g, y) = pk(0, y)

qd+1,k(g, y) = pk(g(qd,k(g, y)), y)

where pk = λm, n (m + n + 1)k . Without loss of generality, we take q to be qd,k

for some d > 0 and k > 0. Also without loss of generality we assume that each

M instruction (other than the oracle query instruction) involves a single tape and

makes no changes to the contents or head positions on the other tapes. We sketch a

ITLP2 procedure, Sim, that simulates M. We make use of the following observation

in the construction.

Claim 1. For each f: N→ N, x ∈ N, and s ∈ ω, let ζf,x,s denote the finite part of f

that M discovers through queries when M, on input (f, x), has run s steps. Then, for

each f, x, and s, on input (f, x), all of M’s queries up through (and including) step s

are of length no greater than qd−1,k(|ζf,x,s|, |x|).

https://doi.org/10.1017/S0956796800003841 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003841

142 R. J. Irwin et al.

Proof

Fix f and x and, for each s, let ζs = ζf,x,s. The value of qd,k(|ζs|, |x|) depends

exclusively on the values of ζs (and hence f) of length no greater than qd−1,k(|ζs|, |x|).
Hence, if at some step s, M had the temerity to query its oracle on some value

of length greater than qd−1,k(|ζs|, |x|), then there are f’s consistent with ζs such that

the length of answer received to the query (and hence the cost of M’s computation)

would exceed qd,k(|f|, |x|), a contradiction. Hence, Claim 1 follows.

Sim is of type (N →+ N) × N0 → N2d+2 and uses integer variables of tiers 0

through 2d + 2. The variables concerned with simulating tape contents are of tier

N2d+2. Since we have seen the simulation of a non-oracular TM in a similar setting

(the proof of Proposition 14(a)), here we will suppress all the details of simulating the

steps of M except for the case of oracle queries. Among the variables concerned with

the clocking there are a few that merit special mention. (Note: for each i, ωi denotes

the subtype of Ni consisting of the elements of Ni whose dyadic representation is in

0∗.)

• The variable Queries: N2d+1 will store the list of oracle queries that have been

made up to the current point in the computation.4

• The variables mi:ω2i and ni:ω2i+1, where i 6 d, are used in computing the

clock bound. In the main loop of the simulation we shall maintain the following

invariants on the mi’s and ni’s. For i 6 d, ni = pk(mi, |x|) (where the arithmetic

is unary), m0 = ε0, and, for i > 0,

mi = max({ |f(w)| |w| 6 |ni−1| and w is listed in Queries }).
It follows from the definition of the qd,k ’s that, for each i 6 d, after each

step in the simulation, the value of ni will be qi,k(|ζ|, |x|), where ζ is the finite

part of the oracle currently known. Thus, the value of nd is the (inflationary)

run-time bound. Note that if the simulation of M halts in a given step, we

violate the invariant on nd by assigning it ε2d+1; this provides us a quick exit

from the For -loop.

Sim also uses the nested procedures P0, . . . ,Pd. For each i, Pi is of type N2i ×N0 →
N2i+1 and computes the function λy: N2i, x: N0 (pk(|y|, |x|))2i+1. By adapting the

technique from Example 13(d), we can give ITLP2 procedure definitions for the

Pi’s. A high-level sketch of Sim is given in Figure 5. The correctness of Sim is

straightforward. q

Proposition 19. Every ITLP2-computable functional of type (N → N) ×N → N is in

BFF2.

The rest of this section is devoted to the proof of this proposition. The argument

is modeled after the proof of Proposition 14(c). We first establish second-order

polynomial bounds on the growth rates of ITLP2-computable functionals. Suppose

4 To be specific: if Queries represents the list “w1, w2, . . . , wj ,” then the actual value of Queries is
h(w1)11h(w2)11 · · · 11h(wj), where h is the string homomorphism given by h(0) = 00 and h(1) = 01. The
empty list is represented by ε.

https://doi.org/10.1017/S0956796800003841 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003841

On characterizations of the BFFs, Part I 143

Procedure Sim(f: N→+ N, x: N0): N2d+1

(* Notation: f and x respectively denote the values of f and x. *)

· · · declarations of the Pi’s · · ·
var query0: N1, . . . , queryd−1: N2d−1, answer1: N2, . . . , answerd: N2d,

m0: N0, . . . ,md: N2d, n0: N1, . . . , nd: N2d+1,

Queries: N2d+1, result: N2d+2, · · · ;
(* Initializations *)

Queries÷ the empty list;

m0÷ ε0; m1÷ ε2; . . . ; md÷ ε2d;

n0÷P0(m0, x); n1÷P1(m1, x); . . . ; nd÷Pd(md, x);

· · · other initializations · · ·
For i÷ 1 to nd do
(* The Simulation Section *)

If the next step of M is an oracle query then
queryd−1÷ down (nd−1, the contents of the query tape);

(* By Claim 1, queryd−1 always receives the query tape contents. *)

the contents of the answer tape÷ f(queryd−1);

the contents of the query tape÷ ε;

Add queryd−1 to the list kept in Queries;

else (* the next step is an ordinary instruction *)

· · · the simulation of such instructions · · ·
Endif ;

(* The Bookkeeping Section *)

If the computation of M halts in the step just simulated then
nd÷ ε2d+1;

ElseIf the step just simulated was an oracle query then
(* Update m1 and n1 *)

Examine the w’s of length no greater than n0 in the Queries list and find the smallest

such that |f(w)| is maximal among these w’s;

query0÷ down (n0, the w found in the search);

answer1÷ f(query0);

m1÷ |answer1|; n1÷P1(m1, x);

· · · Analogous updates of mi and ni for i = 2, . . . , d. · · ·
Endif ;

Endfor ;

If nd = ε2d+1

then result÷ the contents of the M’s output tape;

else result÷ ε2d+2; Endif ;

Return result

End

Fig. 5. Sketch of Sim.

F: (N → N) × N → N is computed via an ITLP2-procedure P of type (N →+

N)×N0 → Nj for some j. Let Nk be the highest tier occurring in P.

Conventions: to argue about computations of P, we adapt some of the notions from

the proof of Proposition 14(c) to this imperative setting. Suppose we are considering

a particular step in a given P-computation and~v is a list of integer variables visible

https://doi.org/10.1017/S0956796800003841 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003841

144 R. J. Irwin et al.

(with respect to the block structure) at the current point in the program. Then |~v|i
denotes the maximum length of the values assigned to the current instantiation of

the variables in~v of types N0, . . . ,Ni up through this point in the computation. That

is, |~v|i is the current high-water mark of the present instantiation of the variables

of types N0, . . . ,Ni in ~v. Also, at each point in the computation, ζ denotes the finite

portion of the oracle f discovered (via queries) up through this point. Thus, an

oracle query can enlarge ζ. Recall that for each a and b ∈ ω, a ⊕ b = max(a, b).

In the following we allow ourselves the liberty of using ⊕ as another ‘additive’

operator in first- and second-order polynomials. We can always get rid of the ⊕’s in

a q by replacing them with +’s and thus obtain a pure second-order polynomial q′
such that q 6 q′. Below, let ~p, ~q, and~r range over finite sequences of one variable,

nonconstant, first-order polynomials.

Definition 20. Given ~p = p0, . . . , pn, we define b~p,0, . . . , b~p,n and c~p,0, . . . , c~p,n to be the

second-order polynomials such that, for g:ω → ω and m0, . . . , mn ∈ ω:

b~p,0(g, m0) = p0(0) + m0.

b~p,i+1(g, mi+1, . . . , m0) = pi+1(bi) +
(
g(bi)⊕ mi+1

)
, where

bi = b~p,i(g, mi, . . . , m0).

c~p,0(g, m0) = p0(0)⊕ m0.

c~p,i+1(g, mi+1, . . . , m0) =
(

2 · pi+1(bi) + g(bi)
)
⊕ mi+1, where

bi = b~p,i(g, ci, . . . , c0) and

cj = c~p,j(g, mj, . . . , m0), for each j 6 i. �

For a given choice of ~p, p~p,i(g, mi, . . . , m0) is intended to express a bound on the

lengths of possible tier-i values at a particular point in an ITLP2 code fragment,

where g corresponds to the estimated length of the oracular argument and mj (for

j = 0, . . . , i) is roughly the maximum length of the values of the tier-j variables at

the beginning of the execution of the fragment; c~p,i serves an analogous purpose for

the lengths of possible tier-i values inside of For -loops where, in this case i, is no

greater than the tier of the loop’s control variable. We formalize these intentions in

Definition 21.

(a) Suppose ~I is a sequence of instructions occurring within P and that ~v is a list

of all the integer variables visible in ~I . We say that ~p = p0, . . . , pk is a sequence of

growth bounds for ~I if and only if it is the case that whenever before executing~I we

have mi = |~v|i for each i 6 k, then after executing~I we have |~v|i 6 b~p,i(|ζ|, mi, . . . , m0)

for each i 6 k, where ζ denotes the finite part of f known after the execution of ~I .

(b) Suppose ~I and ~v are as in part (b). We say that ~p = p0, . . . , pj is a sequence of

copacetic growth bounds for~I through tier j if and only if it is the case that whenever

before executing ~I we have mi = |~v|i for each i 6 j, then after executing ~I we have

|~v|i 6 c~p,i(|ζ|, mi, . . . , m0) for each i 6 j, where ζ denotes the finite part of f known

after the execution of ~I .

(c) Suppose Q is a procedure occurring within P that has return type Ni and that ~v

https://doi.org/10.1017/S0956796800003841 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003841

On characterizations of the BFFs, Part I 145

is a list of all the integer variables that appear as arguments in a particular call to

Q. Then~p = p0, . . . , pi gives a growth bound for Q if and only if, in any computation

of P, if mj = |~v|j for each j 6 i before a particular call to Q, then the length of the

value returned by this call is no greater than b~p,i(|ζ|, mi, . . . , m0), where ζ denotes the

finite portion of f known as of the end of this particular call.

(d) Suppose ~I is a sequence of instructions occurring within P. We say that ~I is

copacetic through tier j if and only if every assignment vNi ÷ E occurring within ~I

with i 6 j is such that either (i) each integer variable in E is of tier less than i, or

(ii) E is of the form down (xNi , yNj). �

Lemma 22.

(a) Suppose Q is a procedure occurring within P that has return type Ni. Then there

is a ~p that gives a growth bound for Q.

(b) Suppose ~I is a sequence of instructions occurring within P. Then there is an asso-

ciated sequence of growth bounds for ~I .

(c) Suppose~I is a sequence of instructions occurring within P that is copacetic through

tier j. Then there is an associated sequence of copacetic growth bounds for ~I through

tier j.

Proof

The argument is a structural induction on P. Recall that Nk is the highest tier

occurring in P.

Part (a). Suppose that Q is a declared procedure occurring within P with return

type Ni and with body ~IQ. Let ~v be a list of the integer variables occurring as

arguments of Q in a particular call and, for i = 0, . . . , k, let mi be the value of |~v|i just

before this call in a particular computation. Let ~p be a sequence of growth bounds

for ~IQ. (By the induction hypothesis, such a ~p must exist.) Let ~u be a list of all the

integer variables visible within ~IQ. Recall that there are no nonlocal references to

integer variables in ITLP2 and that the local variables introduced in a procedure’s var

declaration are initialized to ε in every execution of the procedure. It follows then

that |~u|0 6 m0, · · ·, |~u|k 6 mk just before the execution of~IQ on this call. So since~p is a

sequence of growth bounds on~IQ and since all of the polynomials involved are mono-

tone, nondecreasing, we have that bound on the value returned by Q is as required.

Parts (b) and (c). The case of individual assignments. Consider an assignment

vNi ÷ E. Let ~v be a list of all the integer variables appearing in this assignment.

Suppose that m−1 = 0 and, for each ` = 0, . . . , k, m` is the value of |~v|` before the

assignment in some execution of P.

Subcase (i). Suppose E is of the form: down (v0, v1). Then the length of value of

E is no greater than mi. For each ` = 0, . . . , k, let p` = λn n. Then straightforward

arguments show that p0, . . . , pk is a sequence of growth bounds for the assignment

and that p0, . . . , pk is also a sequence of copacetic growth bounds for the assignment

through tier k.

Subcase (ii). Suppose E is of one of the forms ε, v0, c 0(v0), or c 1(v0). Then

the length of the value of E is clearly no greater than mi + 1. Let pi = λn n + 1

and pj = λn n for j 6= i. Then a straightforward argument shows that p0, . . . , pk is

https://doi.org/10.1017/S0956796800003841 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003841

146 R. J. Irwin et al.

a sequence of growth bounds for the assignment. Suppose all the variables in E

are from tiers less than i. Then the length of the value of E is clearly no greater

than mi−1 + 1. Another straightforward argument shows that the same p0, . . . , pk is

a copacetic sequence of growth bounds for the assignment through tier k.

Subcase (iii). Suppose E is of the form v0(v1) where v0 is of type N→+ N and v1

is of tier less than i. (Hence, i > 0.) Then the length of the value of E is clearly no

greater than |ζ|(mi−1). Let the pi’s be as in subcase (i). Then straightforward argu-

ments show that p0, . . . , pk is both a sequence of growth bounds for the assignment

and a sequence of copacetic growth bounds for the assignment through tier k.

Subcase (iv). Suppose E is a call to a procedure Q with return type Nj , where

j 6 i. By part (a), there is a sequence p0, . . . , pj that gives a growth bound for Q.

For each ` ∈ { j + 1, . . . , k }, let p` = λn n. Then it follows that ~p = p0, . . . , pk is a

sequence of growth bounds for the assignment. Now let us consider the copacetic

case. By the restrictions on ITLP2 types, we know that each of the integer variables

appearing in the call has its tier-level less than i. If i = 0, then by part (a) the length

of the value returned by the call is no greater than p0(0) and it follows that ~p is

a sequence of copacetic growth bounds for the assignment through tier k. Suppose

i > 0. Then by our hypothesis on ~p we have that the value returned by the call

is of length no greater than b~p,i(|ζ|, mi, . . . , m0) = pi(bi−1) + (|ζ|(bi−1) ⊕ mi), where

bi−1 = b~p,i−1(|ζ|, mi−1, . . . , m0). Since there are no tier i variables in ~v we have that

mi = mi−1. Hence, pi(bi−1)+(|ζ|(bi−1)⊕mi) = pi(bi−1)+(|ζ|(bi−1)⊕mi−1). Also, by our

assumption that all of the pi’s are non-constant, it follows that pi(bi−1) > mi−1. Hence

pi(bi−1) + (|ζ|(bi−1)⊕ mi−1) 6 2 · pi(bi−1) + |ζ|(bi−1). It thus follows that in this case

too, ~p is a sequence of copacetic growth bounds for the assignment through tier k.

Part (b): The sequencing case. The following claim shows how to construct growth

bounds for a sequence of instructions from growth bounds for the constituent in-

structions in the sequence.

Claim 1. Suppose that I1 · · · In+1 is a sequence of instructions occurring within P, that

~p is a sequence of growth bounds for I1 · · · In, and that ~q is a sequence of growth

bounds for In+1. For each i 6 k, let ri = pi +qi. Then~r is a sequence of growth bounds

for I1 · · · In+1.

Proof of Claim 1 Suppose that~v is the list of all variables visible within I1 · · · In+1

and that at some point of an execution of P, the execution passes through I1 · · · In+1

and we have that, for each i 6 k,

mai = |~v|i just before executing I1,

mbi = |~v|i just after executing In (but before executing In+1), and

mci = |~v|i just after executing In+1.

Also let ζb (respectively, ζc) be the finite portion of f known just before (respectively,

after) In+1 is executed. By hypothesis we have that, for each i 6 k, mbi 6 b~p,i(|ζb|, ~ma)

https://doi.org/10.1017/S0956796800003841 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003841

On characterizations of the BFFs, Part I 147

and mci 6 b~q,i(|ζc|, ~mb). For i = 0 we have, by Definition 20 and our hypotheses:

mc0 6 b~q,0(|ζc|, ~mb) = q0(0) + mb0 6 q0(0) + b~p,0(|ζb|, ~ma)
= q0(0) + p0(0) + ma0 = b~r,0(|ζc|, ~ma).

Thus, mc0 6 b~q,0(|ζc|, ~mb) 6 b~r,0(|ζc|, ~ma). Now suppose as an induction hypothesis

that mci 6 b~q,i(|ζc|, ~mb) 6 b~r,i(|ζc|, ~ma). Let bpi = b~p,i(|ζb|, ~ma), b
q
i = b~q,i(|ζc|, ~mb), and

bri = b~r,i(|ζc|, ~ma). By the monotonicity of the functions involved we have bpi 6 bri
and by the induction hypothesis we have bqi 6 b

r
i . Thus,

mci+1 6 b~q,i+1(|ζc|, ~mb)
(by our hypothesis on ~q)

= qi+1(bqi) +
(|ζc|(bqi) ⊕ mbi+1

)
(by the definition of b~q,i+1)

6 qi+1(bri) +
(|ζc|(bri) ⊕ mbi+1

)
(by the monotonicity of the functions involved and

since bqi 6 b
r
i)

6 qi+1(bri) +
(|ζc|(bri) ⊕ b~p,i+1(|ζb|, ~ma))

(by our hypothesis on ~p)

6 qi+1(bri) +
(|ζc|(bri) ⊕ (pi+1(bpi) + (|ζb|(bpi)⊕ mai+1)

))
(by the definition of b~p,i+1)

6 qi+1(bri) +
(
|ζc|(bri) ⊕

(
pi+1(bri) + (|ζc|(bri)⊕ mai+1)

))
(by the monotonicity of the functions involved)

6 qi+1(bri) + pi+1(bri) +
(
|ζc|(bri) ⊕ mai+1

)
(by algebra)

= ri+1(bri) +
(
|ζc|(bri) ⊕ mai+1

)
(by the definition of ri+1)

= b~r,i+1(|ζc|, ~ma)
(by the definition of b~r,i+1).

Thus, mci+1 6 b~q,i+1(|ζc|, ~mb) 6 b~r,i+1(|ζc|, ~ma). Therefore, ~r is a sequence of growth

bounds for I1 · · · In+1 and Claim 1 follows.

Part (c): The sequencing case. The following shows how to compose copacetic

growth bounds.

Claim 2. Suppose that I1 · · · In+1 is a sequence of instructions occurring within P, that

~p is a sequence of copacetic growth bounds for I1 · · · In through tier j, and that ~q is a

https://doi.org/10.1017/S0956796800003841 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003841

148 R. J. Irwin et al.

sequence of copacetic growth bounds for In+1 through tier j. For each i 6 k, let ri =

pi ⊕ qi. Then~r is a sequence of copacetic growth bounds for I1 · · · In+1 through tier j.

Proof of Claim 2 Suppose that~v, ζb, ζc, and, for each i 6 k, mai , m
b
i , and mci are as

in the proof of Claim 1. By hypothesis we have that, for i = 0, . . . , j, mbi 6 c~p,i(|ζb|, ~ma)
and mci 6 c~q,i(|ζc|, ~mb). For i = 0 we have, by Definition 20 and our hypotheses:

mc0 6 c~q,0(|ζc|, ~mb) = q0(0)⊕ mb0
6 q0(0)⊕ c~p,0(|ζb|, ~ma) = q0(0)⊕ (p0(0)⊕ ma0)

= (p0(0)⊕ q0(0))⊕ ma0 = c~r,0(|ζc|, ~ma).
Thus, mc0 6 c~q,0(|ζc|, ~mb) 6 c~r,0(|ζc|, ~ma). Now suppose as an induction hypothesis

that for each ` 6 i we have mc` 6 c~q,`(|ζc|, ~mb) 6 c~r,`(|ζc|, ~ma). For each ` 6 i, let

c p
` = c~p,`(|ζb|, ma`, . . . , ma0), c q

` = c~q,`(|ζc|, mb`, . . . , mb0), and c r
` = c~r,`(|ζc|, ma`, . . . , ma0).

For each ` 6 i, we have by the monotonicity of the functions involved that c p
` 6 c r

`

and by our induction hypothesis that c q
` 6 c r

`. Let bpi = b~p,i(|ζb|, c p
i , . . . , c

p
0),

b
q
i = b~q,i(|ζc|, c q

i , . . . , c
q
0), and bri = b~r,i(|ζc|, c r

i , . . . , c
r
0). Since cp`⊕ cq` 6 cr` for each

` 6 i, it follows by the monotonicity of the functions involved that bpi ⊕bqi 6 bri . Thus,

mci+1 6 c~q,i+1(|ζc|, ~mb)
(by our hypothesis on ~q)

=
(

2 · qi+1(bqi) + |ζc|(bqi)
)
⊕ mbi+1

(by the definition of b~q,i+1)

6
(

2 · qi+1(bri) + |ζc|(bri)
)
⊕ mbi+1

(by the monotonicity of the functions involved and

since bqi 6 b
r
i)

6
(

2 · qi+1(bri) + |ζc|(bri)
)
⊕
(

2 · pi+1(bpi) + |ζb|(bpi)
)
⊕ mai+1

(by our hypothesis on ~p)

6
(

2 · qi+1(bri) + |ζc|(bri)
)
⊕
(

2 · pi+1(bri) + |ζc|(bri)
)
⊕ mai+1

(by the monotonicity of the functions involved and

since bpi 6 b
r
i)

6
(

2 · (pi+1(bri)⊕ qi+1(bri)) + |ζc|(bri)
)
⊕ mai+1

(by algebra)

=
(

2 · ri+1(bri) + |ζc|(bri)
)
⊕ mai+1

(by the definition of ri+1)

= c~r,i+1(|ζc|, ~ma)
(by the definition of c~r,i+1).

https://doi.org/10.1017/S0956796800003841 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003841

On characterizations of the BFFs, Part I 149

Thus, mci+1 6 c~q,i+1(|ζc|, ~mb) 6 c~r,i+1(|ζc|, ~ma). Therefore, ~r is a sequence of growth

bounds for I1 · · · In+1 and Claim 2 follows.

Parts (b) and (c): The Case-statement case. This is straightforward and omitted.

Parts (b) and (c): The For-loop case. Given an n ∈ ω and an ~I , a sequence of

instructions, let (~I)n denote the sequence of instructions obtained by repeating ~I

n-many times. As a corollary to Claims 1 and 2 we have

Claim 3. Fix n

(a) Suppose ~p is a sequence of growth bounds for ~I . Let n′ = max(n, 1) and, for each

i 6 k, let qi = λm
(
n′ · pi(m)

)
. Then ~q is a sequence of growth bounds for (~I)n.

(b) If ~p is a sequence of copacetic growth bounds for ~I through tier j, then ~p is also

a sequence of copacetic growth bounds for (~I)n through tier j.

The proof of part (a) of the claim follows directly from Claim 1. The proof of

part (b) of the claim follows from Claim 2 and the fact that, for all a ∈ ω, a⊕a = a.

The next claim provides us with one more fact we need before proceeding with

the analysis of For -loops.

Claim 4. Given ~q = q0, . . . , qj , there exists ~r = r0, . . . , rj such that for all mono-

tone nondecreasing g:ω → ω and for all mj, . . . , m0 we have that for i = 0, . . . , j,

c~q,i(g, mi, . . . , m0) 6 b~r,i(g, mi, . . . , m0).

This claim follows by more dreadful algebra – which we omit.

Now, suppose that

For vNj ÷ 1 to wNj do ~I Endfor

occurs in P and that ~v is a list of all the integer variables visible in the For -loop.

To argue part (c), suppose the For -loop meets the copaceticity conditions through

tier j ′. Then it follows that ~I also meets copaceticity conditions through tier j ′. So,

by the induction hypothesis there is a ~q = q0, . . . , qj ′ that is a sequence of copacetic

growth bounds for~I . It follows by Claim 3(b) that ~q is also a sequence of copacetic

growth bounds for the entire For -loop through tier j ′. Hence, part (c) follows for

this case.

To argue part (b), we first note that, by the induction hypothesis, there is a

~p = p0, . . . , pk that is a sequence of growth bounds for~I . By the conditions on bodies

of For -loops, it must be the case that~I is copacetic through tier j. So, by the argu-

ment for part (c) we have that there is a~q = q0, . . . , qj which is a sequence of copacetic

growth bounds for the For -loop through tier j. Therefore, if some execution of P

executes this For -loop and before this particular execution we have, for i = 0, . . . , j,

mi = |~v|i, then we have that this execution goes through at most c~q,j(|f|, mj , . . . , m0) it-

erations. Hence, the execution of this For -loop terminates and, in fact, goes through

no more than c~q,j(|ζ|, mj , . . . , m0) iterations, where ζ is that part of f known as of the

end of this execution. Let ~r = r0, . . . , rj be as in Claim 4. Therefore, in this execu-

tion, the number of iterations is no more than b~r,j(|ζ|, mj , . . . , m0) iterations. For each

` = j+1, . . . , k, let r` = λm (m ·p`(m)). Then some algebra shows that~r is a sequence

of growth bounds for the For -loop. Hence, part (b) follows in this case. q

https://doi.org/10.1017/S0956796800003841 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003841

150 R. J. Irwin et al.

Scholium: note that the argument for the For -loop case of Lemma 22 amounts

to determining a ‘fixed-point’ for the bounds on tier values.

By Lemma 22(a) it follows that there is a depth j second-order polynomial q

such that the value returned by P on input (f, x) is bounded above by q(|f|, |x|).
Let q′ be the result of replacing each ‘⊕’ in q by ‘+’. Clearly, q′ is also a depth

j second-order polynomial such that q′(|f|, |x|) bounds the value returned by P on

input (f, x). Therefore, we have the desired (conventional) second-order polynomial

bounds on the growth rates of ITLP2-computable functionals.

The rest of the proof of Proposition 19 is blessedly conventional. One defines

a simple OTM-based interpreter for ITLP2 programs and a cost model for ITLP2

programs based on this interpreter and argues that each ITLP2-program has a

second-order polynomial bound on the cost of running it. The details of this are

standard and straightforward and thus omitted. Proposition 19 thus follows.

9 Conclusions

Have our goals been met?

Our aim in constructing ITLP2 was to replace the machines and clocks of the

Mi,d,k ’s with programming constructs and types to achieve a more structured and

understandable version of the programming formalism of the Mi,d,k ’s. In some

respects ITLP2 clearly satisfies our goals, in other respects things are not so clear.

First, let us argue that the Mi,d,k ’s and ITLP2 are in a reasonable sense closely

related. Note that the only difficult part of showing Proposition 17 comes in arguing

Lemma 22 – the confirmation of the connection between the tiers and second-order

polynomial bounds. Beyond the proof of that lemma, the argument for Proposi-

tion 17 consists of two straightforward simulations. So if we measure closeness in

terms of the ease of the simulations and translations, ITLP2 and the clocked OTMs

are indeed close.

It is more questionable as to whether ITLP2 provides more understandable pro-

grams than the Mi,d,k ’s. Clearly, ITLP2 procedures are more palatable than OTM

code. However, many of the dynamic aspects of the Mi,d,k ’s are inherited by ITLP2

in its inflationary tiers and For -loop and, as the proof of Lemma 22 shows, these

inflationary features take some work to analyze. We suspect that the dynamics are

inherent to the situation, which in our view is one of its charms.

Types for complexity analyses

Bellantoni and Cook’s safe-recursion formalism, Leivant’s tiered-recursion formal-

isms, and our ITLP2 all provide examples of how to use types to capture complexity

classes. (For other examples, we refer the reader to the work of Asperti (1998),

Bellantoni, Niggl and Schwichtenberg (2000), Hofmann (1997; 1999b; 1999a), Girard

(1998), Girard, Scedrov and Scott (1992), and Otto (1995).) A natural question is

whether these ideas can be developed to the point of providing type systems to

https://doi.org/10.1017/S0956796800003841 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003841

On characterizations of the BFFs, Part I 151

aide in practical complexity analyses of programs – particularly, programs that use

higher-types.

ITLP2 certainly is not a practical tool for the analysis of type-2 algorithms. In

any given ITLP2 program, the set of bounds corresponding to any particular tier is

simply too loose and big to support precise reasoning about sizes and complexity.

A tighter type system for reasoning about complexity would link tiers/types with

smaller classes of complexity bounds, e.g., O(q) or q + O(1), where q is a second-

order polynomial. It is clearly possible to push the ITLP2 system in this direction.

We suspect, however, something more radical is required to produce a practical

tool. The problem is that the ITLP2 type system respects abstraction barriers, but

tight complexity analyses of algorithms are often forced to ignore these barriers.

A possible way around this would be to have a family of related type-systems

for a given programming formalism, each of which would give a different view of

the program – some views appropriate for reasoning about correctness, others for

reasoning about complexity. This, of course, is simply speculation. However, types

are such powerful and flexible tools that it would be surprising if one could not craft

a type system that would closely support reasoning about algorithmic complexity.

Acknowledgements

Thanks to Stuart Kurtz, Gary Leavens, Jack Lutz, Peter O’Hearn and Sue Older for

their comments on various stages of this work. The anonymous referees also made

many very helpful comments. We happily acknowledge the influence of Neil Jones’s

text (Jones, 1997) that provided us with an extended example of how to carefully

mesh programming language and complexity-theoretic concerns. Thanks also to

Elaine Weinman for her careful comments on the text. Preliminary reports on this

work were presented at the 14th Annual Mathematical Foundations of Programming

Semantics Workshop (London, May 1998) and the Implicit Computational Complexity

in Programming Language Design and Methodology Workshop (Baltimore, September

1998). The research of the first and third authors was supported in part by NSF

grant CCR-9522987.

References

Asperti, A. (1998) Light affine logic. Proceedings of the 13th Annual IEEE Symposium on

Logic in Computer Science.

Bellantoni, S. (1992) Predicative recursion and computational complexity. PhD thesis, Univer-

sity of Toronto. (University of Toronto Computer Science Department, Technical Report

264/92.)

Bellantoni, S. and Cook, S. (1992) A new recursion-theoretic characterization of the polytime

functions. Computational Complexity, 2, 97–110.

Bellantoni, S., Niggl, K.-H. and Schwichtenberg, H. (2000) Characterising polytime through

higher type recursion. Annals of Pure and Applied Logic. To appear.

Buss, S. (1986) The polynomial hierarchy and intuitionistic bounded arithmetic. In: Selman,

A. (ed.), Structure in Complexity Theory: Lecture Notes in Computer Science 223, pp. 77–103.

Springer-Verlag.

https://doi.org/10.1017/S0956796800003841 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003841

152 R. J. Irwin et al.

Cobham, A. (1965) The intrinsic computational difficulty of functions. In: Bar Hillel, Y.

(ed.), Proceedings of the International Conference on Logic, Methodology and Philosophy,

pp. 24–30. North-Holland.

Constable, R. (1973) Type two computational complexity. Proceedings of the Fifth Annual

ACM Symposium on the Theory of Computing, pp. 108–121.

Cook, S. (1971) The complexity of theorem proving procedures. Proceedings of the Third

Annual ACM Symposium on the Theory of Computing, pp. 151–158.

Cook, S. (1991) Computability and complexity of higher type functions. In: Moschovakis,

Y.N. (ed), Logic from Computer Science, pp. 51–72. Springer-Verlag.

Cook, S. and Kapron, B. (1989) Characterizations of the basic feasible functions of finite type.

Proceedings of the 30th Annual IEEE Symposium on the Foundations of Computer Science,

pp. 154–159.

Cook, S. and Kapron, B. (1990) Characterizations of the basic feasible functions of finite type.

In: Buss, S. and Scott, P. (eds.), Feasible Mathematics: A Mathematical Sciences Institute

Workshop, pp. 71–95. Birkhäuser.

Cook, S. and Urquhart, A. (1989) Functional interpretations of feasibly constructive arith-

metic. Proceedings of the 21st Annual ACM Symposium on the Theory of Computing, pp. 107–

112.

Cook, S. and Urquhart, A. (1993) Functional interpretations of feasibly constructive arith-

metic. Annals of Pure and Applied Logic, 63, 103–200.

Gandy, R. and Hyland, J. (1977) Computable and recursively countable functions of higher

type. Logic Colloquium 76, pp. 407–438. North-Holland.

Girard, J.-Y. (1998) Light linear logic. Information and Computation, 143, 175–204.

Girard, J.-Y., Scedrov, A. and Scott, P.J. (1992) Bounded linear logic: A modular approach

to polynomial time computability. Theoretical Computer Science, 97, 1–66.

Gödel, K. (1958) Über eine bisher noch nicht benützte Erweiterung des finiten. Dialectica, 12,

280–287.

Gödel, K. (1990) On a hitherto unutilized extension of the finitary standpoint. In: Feferman,

S., Dawson, J., Kleene, S., Moore, G., Solovay, R., & van Heijenoort, J. (eds.), Kurt Gödel:

Collected Works, Volume II, pp. 241–251. Oxford University Press.

Hilbert, D. (1925) Über das unendliche. Mathematische annalen, 95, 161–190.

Hilbert, D. (1967) On the infinite. In: van Heijenoort, J. (ed.), From Frege to Gödel: A source

book in mathematical logic, 1879–1931, pp. 367–392. Harvard University Press.

Hofmann, M. (1997) An application of category-theoretic semantics to the characterisation

of complexity classes using higher-order function algebras. Bulletin of Symbolic Logic, 3,

469–486.

Hofmann, M. (1999a) Linear types and non-size-increasing polynomial time computation.

Proceedings of the 14th Annual IEEE Symposium on Logic in Computer Science.

Hofmann, M. (1999b) Type systems for polynomial-time computation. Habilitation thesis, Darm-

stadt. (University of Edinburgh LFCS Technical Report ECS-LFCS-99-406.)

Jones, N. (1997) Computability and Complexity from a Programming Perspective. MIT Press.

Kapron, B. and Cook, S. (1991) A new characterization of Mehlhorn’s polynomial time

functionals. Proceedings of the 32nd Annual IEEE Symposium Foundations of Computer

Science, pp. 342–347.

Kapron, B. and Cook, S. (1996) A new characterization of type 2 feasibility. SIAM Journal

on Computing, 25, 117–132.

Kreisel, G., Lacombe, D. and Shoenfield, J. (1957) Partial recursive functionals and effec-

tive operations. In: Heyting, A. (ed.), Constructivity in Mathematics: Proceedings of the

Colloquium held at Amsterdam, pp. 195–207. North-Holland.

https://doi.org/10.1017/S0956796800003841 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003841

On characterizations of the BFFs, Part I 153

Leivant, D. (1991) A foundational delineation of computational feasibility. Proceedings of the

Sixth IEEE Conference on Logic in Computer Science, pp. 2–11.

Leivant, D. (1994a) A foundational delineation of poly-time. Information and Computation,

110, 391–420.

Leivant, D. (1994b) Predicative recurrence in finite types. In: Nerode, A. and Matiyasevich,

Yu. (eds.), Logical Foundations of Computer Science: Third International Symposium, lfcs

’94: Lecture Notes in Computer Science 813, pp. 227–239. Springer-Verlag.

Leivant, D. (1995) Ramified recurrence and computational complexity I: Word recurrence

and poly-time. In: Clote, P. and Remmel, J. (eds.), Feasible Mathematics II, pp. 320–343.

Birkhäuser.

Mehlhorn, K. (1974) Polynomial and abstract subrecursive classes. Proceedings of the Sixth

Annual ACM Symposuium on the Theory of Computing, pp. 96–109.

Mehlhorn, K. (1976) Polynomial and abstract subrecursive classes. J. Computer and System

Science, 12, 147–178.

Nelson, E. (1986) Predicative Arithmetic. Princeton University Press.

Otto, J. (1995) Complexity doctrines. PhD thesis, McGill University.

Pezzoli, E. (1998) On the computational complexity of type two functionals. In: van Dalen,

D. and Bezem, M. (eds.), Proceedings of the Conference for Computer Science Logic ’97:

Lecture Notes in Computer Science 1414, pp. 373–388. Springer-Verlag.

Rogers, H. (1967) Theory of Recursive Functions and Effective Computability. McGraw-Hill.

MIT Press (reprinted 1987).

Royer, J. (1997) Semantics versus syntax versus computations: Machine models for type-2

polynomial-time bounded functionals. J. Computer and System Science, 54, 424–436.

Royer, J. and Case, J. (1994) Subrecursive Programming Systems: Complexity & succinctness.

Birkhäuser.

Russell, B. (1903) The Principles of Mathematics, Vol. I. Cambridge University Press.

Russell, B. (1908) Mathematical logic as based on the theory of types. Am. J. Mathematics,

30, 222–262.

Russell, B. (1967) Mathematical logic as based on the theory of types. In: van Heijenoort,

J. (ed), From Frege to Gödel: A source book in mathematical logic, 1879–1931. Harvard

University Press.

Seth, A. (1992) There is no recursive axiomatization for feasible functionals of type 2.

Proceedings of the Seventh Annual IEEE Symposium on Logic in Computer Science, pp. 286–

295.

Seth, A. (1993) Some desirable conditions for feasible functions of type 2. Proceedings of the

Eighth Annual IEEE Symposium on Logic in Computer Science, pp. 320–331.

Seth, A. (1994) Complexity theory of higher type functionals. PhD thesis, University of Bombay.

Seth, A. (1995) Turing machine characterizations of feasible functionals of all finite types. In:

Clote, P. and Remmel, J. (eds.), Feasible Mathematics II, pp. 407–428. Birkhauser.

Townsend, M. (1990) Complexity for type-2 relations. Notre Dame J. Formal Logic, 31, 241–

262.

Turing, A. (1936) On computable numbers, with an application to the entscheidungsproblem.

Proc. London Mathematical Society, 42, 230–265.

Young, P. (1990) Juris Hartmanis: Fundamental contributions to isomorphism problems. In:

Selman, A. (ed.), Complexity Theory Retrospective, pp. 28–58. Springer-Verlag.

https://doi.org/10.1017/S0956796800003841 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003841

