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Abstract

We study the asymptotics of the survival probability for the critical and decomposable
branching processes in a random environment and prove Yaglom-type limit theorems
for these processes. It is shown that such processes possess some properties having no
analogues for the decomposable branching processes in a constant environment
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1. Introduction

The multitype branching processes in a random environment we consider here can be viewed
as a discrete-time stochastic model for the sizes of a geographically structured population
occupying islands labeled 0, 1, . . . , N. One unit of time represents a generation of particles
(individuals). Particles located on island 0 give birth under the influence of a randomly changing
environment. They may migrate to one of the islands 1, 2, . . . , N immediately after birth
with probabilities again depending upon the current environmental state. Particles of island
i ∈ {1, 2, . . . , N − 1} either stay at the same island or migrate to the islands i + 1, 2, . . . , N

and their reproduction laws are not influenced by any changing environment. Finally, particles
of island N do not migrate and continue to evolve in a constant environment.

The goal of this paper is to investigate the asymptotic behavior of the survival probability
of the whole process and the distribution of the number of particles in the population given its
survival or survival of particles of type 1.

Let mi,j be the mean number of type j particles produced by a type i particle at her death
and Zn,j be the number of type j particles in the process at moment n. Sometimes we will
write mij and Znj for mi,j and Zn,j , respectively, if there is no confusion.

We formulate our main assumptions as follows.

Assumption 1. (i) Particles of type 0 form (on their own) a critical branching process in a
random environment.

(ii) Particles of any type i ∈ {1, 2, . . . , N} form (on their own) a critical branching process in
a constant environment, i.e. mi,i = 1.
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(iii) Particles of any type i are able to produce descendants of all the next in order types (may
be not as the direct descendants) but not any preceding ones. In particular, mi,j = 0 for
1 ≤ j < i ≤ N and mi,i+1 > 0 for i = 1, . . . , N − 1.

Let Xn be the number of particles of type 0 and Zn = (Zn,1, . . . , Zn,N ) be the vector of the
numbers of particles type 1, 2, . . . , N , respectively, present at time n. Throughout this paper,
considering the (N + 1)-type branching process, it is assumed (unless otherwise specified) that
X0 = 1 and Z0 = (0, . . . , 0) = 0.

We investigate asymptotics of the survival probability of this process as n → ∞ and the
distribution of the number of particles in the process at moment n given Zn1 > 0 or Zn �= 0. Note
that the asymptotic behavior of the survival probability for the N = 1 case has been investigated
in [9] under stronger assumptions than those imposed in this paper. The essential novelty of
this paper areYaglom-type limit theorems for the population vector Zn (see Theorem 2 below).

The structure of the remaining part of this paper is as follows. In Section 2 we recall
known facts for decomposable branching processes in constant environments and present some
preliminary results. In Section 3 we deal with the (N + 1)-type decomposable branching
processes in a random environment. Here, we study the asymptotic behavior of the survival
probability and prove aYaglom-type conditional limit theorem for the number of particles in the
process given Zn1 > 0. In Section 4 we consider a 3-type decomposable branching process in a
random environment and, proving aYaglom-type conditional limit theorem under the condition
Zn1+Zn2 > 0 show the essential difference of such processes with the decomposable processes
evolving in a constant environment.

2. Multitype decomposable branching processes in a constant environment

The aim of this section is to present a number of known results about the decomposable
branching processes. We are interested in the case of a constant environment and, therefore,
we do not deal with particles of type 0.

If Assumption 1 holds then the mean matrix of our process has the form

M = (mij ) =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 m1,2 · · · · · · m1,N

0 1 m2,3 · · · m2,N

0 0 1 · · · · · ·
· · · · · · · · · · · · · · ·
· · · · · · · · · · · · mN−1,N

0 0 · · · 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

, (1)

where
mi,i+1 > 0, i = 1, 2, . . . , N − 1. (2)

Under conditions (1) and (2) one obtains a complete ordering 1 → 2 → · · · → N of types.
Observe that according to the classification given in [6] the process we consider is strongly

critical.
In what follows, we need some results from [5] and [6]. To this aim, we introduce additional

notation.
1. For any vector s = (s1, . . . , sp) (the dimension will usually be clear from the context),

and integer-valued vector k = (k1, . . . , kp) define

sk = s
k1
1 · · · skp

p .
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Furthermore, let 1 = (1, . . . , 1) be a vector of units and let ei be a vector whose ith component
is equal to 1 while the remaining are 0.

2. The first and second moments of the components of the population vector Zn =
(Zn1, . . . , ZnN) will be denoted as

mil(n) := E[Znl | Z0 = ei], mil := mil(1),

bikl(n) := E[ZnkZnl − δklZnl | Z0 = ei], bikl := bikl(1),

where E is the expectation in a constant environment.
To go further, we introduce probability generating functions

h(i,N)(s) := E

[ N∏
k=i

s
ηik

k

]
, 1 ≤ i ≤ N, (3)

where ηij represents the number of children of type j of a parent of type i ∈ {1, 2, . . . , N}. Let

H(i,N)
n (s) := E

[ N∏
k=i

s
Znk

k

∣∣∣∣ Z0 = ei

]
, 1 ≤ i ≤ N,

be the probability generating functions for the vector of the number of particles at moment n

given the process is initiated at time 0 by a single particle of type i ∈ {1, 2, . . . , N}. Clearly,
H

(i,N)
1 (s) = h(i,N)(s). Denote

Hn(s) := (H (1,N)
n (s), . . . , H (N,N)

n (s)),

Qn(s) := (Q(1,N)
n (s), . . . , Q(N,N)

n (s)) = (1 − H(1,N)
n (s), . . . , 1 − H(N,N)

n (s)).

As usual, for two sequences an, bn, we write an ∼ bn, an = O(bn), an = o(bn), and an 	 bn

meaning that these relationships are valid as n → ∞. In particular, an 	 bn if and only if

0 < lim inf
n→∞

an

bn

≤ lim sup
n→∞

an

bn

< ∞.

The following theorem is a simplified combination of the respective results from [5] and [6].

Theorem 1. (i) Let {Zn, n = 0, 1, . . . } be a strongly critical multitype branching process
satisfying (1) and (2). Then, as n → ∞,

mil(n) ∼ ciln
l−i , i ≤ l, (4)

where cil are positive constants known explicitly (see [6, Theorem 1]);

(ii) if bikl < ∞, i, k, l = 1, . . . , N then

bikl(n) ∼ cikln
k+l−2i+1, (5)

where cikl are constants known explicitly (see [6, Theorem 1]) and

Q(i,N)
n (0) = 1 − H(i,N)

n (0) = P (Zn �= 0 | Z0 = ei ) ∼ cin
−2−(N−i)

, ci > 0, (6)

where P is the probability measure in a constant environment.
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Let H(s1, . . . , sp) = H(s) be a multivariate probability generating function with

ml := ∂H(s)

∂sl

∣∣∣∣
s=1

, bkl := ∂2H(s)

∂sk∂sl

∣∣∣∣
s=1

< ∞.

Lemma 1. (See [3, Equation (1), p. 189].) For any s = (s1, . . . , sp) ∈ [0, 1]p, we have

p∑
l=1

ml(1 − sl) − 1

2

p∑
k,l=1

bkl(1 − sk)(1 − sl) ≤ 1 − H(s) ≤
p∑

l=1

ml(1 − sl).

From now on, we denote by C, C0, C1, . . . positive constants which may be different in
different equations.

For s = (s1, . . . , sN ) put

Mi(n; s) :=
N∑
l=i

mil(n)(1 − sl), Bi(n; s) := 1

2

N∑
k,l=i

bikl(n)(1 − sk)(1 − sl).

Lemma 2. Let the conditions of Theorem 1 hold. Then for any tuple t1, . . . , tN of positive
numbers and

1 − sl = n−tl , l = 1, 2, . . . , N,

there exists C+ < ∞ such that, for all n = 1, 2, . . . ,

Q(i,N)
n (s) ≤ C+ min{n−2−(N−i)

, n− mini≤l≤N(tl−l+i)}.
If, in addition,

min
i≤l≤N

(tl − l + i) ≥ 1 (7)

then there exists a positive constant C− such that, for all n = 1, 2, . . . ,

C−n− mini≤l≤N(tl−l+i) ≤ Q(i,N)
n (s) ≤ C+n− mini≤l≤N(tl−l+i). (8)

Proof. Take ε ∈ (0, 1] and denote s(ε) = (1 − εn−t1 , . . . , 1 − εn−tN ). By Lemma 1 and
the monotonicity of Q

(i,N)
n (s(ε)) in ε, we have

Mi(n; s(ε)) − Bi(n; s(ε)) ≤ Q(i,N)
n (s(ε)) ≤ Q(i,N)

n (s) ≤ Mi(n; s). (9)

In view of (4) and (5) there exist positive constants Cj , j = 1, 2, 3, 4 such that

εC1n
− mini≤l≤N(tl−l+i) ≤ εC1

N∑
l=i

nl−i

ntl
≤ Mi(n; s(ε)) = ε

N∑
l=i

mil(n)n−tl

≤ Mi(n; s) ≤ C2

N∑
l=i

nl−i

ntl

≤ C3n
− mini≤l≤N(tl−l+i) (10)

and

0 ≤ Bi(n; s(ε)) ≤ ε2C4

N∑
k,l=i

nk−i+1+l−i

ntkntl
.
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If mini≤k≤N(tk − k + i − 1) ≥ 0 then for a fixed ε > 0,

0 ≤ Bi(n; s(ε)) ≤ ε2C4

N∑
k,l=i

1

ntl−(l−i)ntk−(k−i+1)
≤ ε2N2C4n

− mini≤l≤N(tl−l+i). (11)

Take 0 < ε < min{1, C1/N
2C4}. From the estimates (9)–(11), we obtain (8) with C− =

εC1 − ε2N2C4 and C+ = C3.

Write 0(r) = (0, 0, . . . , 0) and 1(r) = (1, 1, . . . , 1) for the r-dimensional vectors whose
components are all 0 and 1, respectively; set sr = (sr , sr+1, . . . , sN ) and denote by 1{A} the
indicator of the event A.

In the next lemma, we assume that Z0 = e1 and provide an approximation for the function
Q

(1,N)
n (0(r), sr+1).

Lemma 3. If minr+1≤l≤N(tl − l + 1) > 2−(r−1) and

1 − sl = n−tl , l = r + 1, r + 2, . . . , N,

then, as n → ∞,

Q(1,N)
n (0(r), sr+1) ∼ P (Znr > 0) ∼ crn

−2−(r−1)

.

Proof. In view of (6) for sr+1 ∈ [0, 1]N−r , we have

P (Znr > 0) ≤ P

( r⋃
j=1

{Znj > 0}
)

= Q(1,N)
n (0(r), 1(N−r))

≤ Q(1,N)
n (0(r), sr+1)

= E

[
1 − s

Zn,r+1
r+1 · · · sZnN

N 1{∩r
j=1{Znj =0}}

]

≤ P

( r⋃
j=1

{Znj > 0}
)

+ E[1 − s
Zn,r+1
r+1 · · · sZnN

N ]

≤
r∑

j=1

P (Znj > 0) + E[1 − s
Zn,r+1
r+1 · · · sZnN

N ]

= (1 + o(1))P (Znr > 0) + Q(1,N)
n (1(r), sr+1).

Furthermore, by the conditions of the lemma, we deduce that

Q(1,N)
n (1(r), sr+1) ≤

N∑
l=r+1

m1l (n)n−tl

≤ Cn− minr+1≤l≤N(tl−l+1) = o(n−2−(r−1)

).

Hence, the statement of the lemma follows.
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2.1. The case of two types

Here we consider the situation of two types and investigate the behavior of the function
1 − H

(1,2)
n (s1, s2) as n → ∞ assuming that 1 − si = n−ti for i = 1, 2.

Lemma 4. If the conditions of Theorem 1 hold for N = 2, then

1 − H(1,2)
n (s1, s2) 	

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

n−1/2 if t1 ∈ (0, ∞), 0 < t2 ≤ 1,

n−t2/2 if t1 ∈ (0, ∞), 1 < t2 < 2,

n−1 if 0 < t1 < 1, t2 ≥ 2,

n−1−min(t1−1,t2−2) if t1 ≥ 1, t2 ≥ 2.

Proof. Observe that, for any 0 ≤ s1 ≤ s′
1 ≤ 1,

H(1,2)
n (s′

1, s2) − H(1,2)
n (s1, s2) = E[((s′

1)
Zn1 − s

Zn1
1 )s

Zn2
2 ]

≤ E[1 − s
Zn1
1 ]

= 1 − H(1,1)
n (s1)

≤ P (Zn1 > 0 | Z0 = e1)

≤ Cn−1. (12)

Now let m = m(s2) be specified by the inequalities

Q(2,2)
m (0) ≤ 1 − s2 = n−t2 ≤ Q

(2,2)
m−1(0). (13)

In view of

Q(2,2)
m (0) = 1 − H(2,2)

m (0) = P (Zm2 > 0 | Z0 = e2) ∼ 2

m var η22
,

it follows that m ∼ 2nt2/ var η22. Using this fact, (12), and the branching property

H(1,2)
n (H (1,2)

m (s), H (2,2)
m (s2)) = H

(1,2)
n+m (s),

by (6), we conclude that

1 − H(1,2)
n (s1, s2) ≥ 1 − H(1,2)

n (s1, H
(2,2)
m (0))

= 1 − H(1,2)
n (H (1,2)

m (0), H (2,2)
m (0)) + O(n−1)

= Q
(1,2)
n+m(0) + O(n−1)

= (1 + o(1))c1(n + m)−1/2 + O(n−1).

Clearly, the result remains valid when ‘≥’is replaced by ‘≤’with m replaced by m−1.Therefore,
1 − H

(1,2)
n (s1, s2) 	 n−1/2 if t2 ∈ (0, 1], and 1 − H

(1,2)
n (s1, s2) 	 n−t2/2 if t2 ∈ (1, 2). This

proves the first two relationships of the lemma.
Consider now the t2 ≥ 2 case. In view of (4),

1 − H(1,1)
n (s1) = 1 − H(1,2)

n (s1, 1)

≤ 1 − H(1,2)
n (s1, s2)

≤ 1 − H(1,1)
n (s1) + n−t2E[Zn2 | Z0 = e1]

= 1 − H(1,1)
n (s1) + (1 + o(1))c12n

1−t2 .
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Recalling that 1 − s1 = n−t1 and selecting m = m(s1) similar to (13), we obtain

1 − H(1,1)
n (s1) ∼ 1 − H

(1,1)
n+m (0) 	 1

nt1 + n
.

Hence, if t1 < 1 then 1 − H
(1,2)
n (s1, s2) 	 n−1 as claimed.

The statement for t1 ≥ 1, t2 ≥ 2 follows from (8).

3. Decomposable branching processes in a random environment

The model of branching processes in a random environment which we are dealing with
is a combination of the processes introduced by Smith and Wilkinson [8] and the ordinary
decomposable multitype Galton–Watson processes. To provide a formal description of the
model denote by M the space of probability measures on N

N+1
0 , where N0 := {0, 1, 2, . . . }

and let e be a random variable with values in M. An infinite sequence E = (e1, e2, . . . ) of
independent and identically distributed (i.i.d.) copies of e is said to form a random environment.

We associate with e and en, n = 1, 2, . . . random vectors (ξ0, . . . , ξN) and (ξ
(n)
0 , . . . , ξ

(n)
N )

such that, for k ∈ N
N+1
0 ,

P((ξ0, . . . , ξN) = k | e) = e({k}), P((ξ
(n)
0 , . . . , ξ

(n)
N ) = k | en) = en({k}).

We now specify a branching process (Xn, Zn) = (Xn, Zn1, . . . , ZnN) in a random environ-
ment E with types 0, 1, . . . , N as follows:

(i) (X0, Z0) = (1, 0);

(ii) Given E = (e1, e2, . . . ) and (Xn−1, Zn−1), n ≥ 1,

Xn =
Xn−1∑
k=1

ξ
(n−1)
k0 , Znj =

Xn−1∑
k=1

ξ
(n−1)
kj +

j∑
i=1

Z(n−1)i∑
k=1

η
(n−1)
k,ij , j = 1, . . . , N,

where the tuples (ξ
(n−1)
k0 , ξ

(n−1)
k1 , . . . , ξ

(n−1)
kN ), k = 1, 2, . . . , Xn−1 are i.i.d. random

vectors with distribution en−1, i.e. given en−1 = en−1 distributed as (ξ
(n−1)
0 , ξ

(n−1)
1 , . . . ,

ξ
(n−1)
N ), and the tuples (η

(n−1)
kii , η

(n−1)
ki,i+1, . . . , η

(n−1)
kiN ) are independent random vectors

distributed as (ηii , ηi,i+1, . . . , ηiN ) for i = 1, 2, . . . N , i.e. in accordance with the
respective probability generating function h(i,N)(s) in (3).

Informally, ξ
(n−1)
kj is the number of type j children produced by the kth particle of type 0 of

generation n − 1, while η
(n−1)
k,ij is the number of type j children produced by the kth particle of

type i of generation n − 1.
We denote by P and E the corresponding probability measure and expectation on the

underlying probability space to distinguish them from the probability measure and expectation
in a constant environment specified by P and E.

Thus, in our model particles of type 0 belonging to the (n − 1)th generation give birth in
total to Xn particles of their own type and to the tuple Yn = (Yn1, . . . , YnN) of child particles
of types 1, 2, . . . , N, where

Ynj =
Xn−1∑
k=1

ξ
(n−1)
kj .

In particular, Y1 = (Y11, . . . , Y1N) = (ξ
(0)
1 , . . . , ξ

(0)
N ) = Z1.

https://doi.org/10.1239/jap/1445543853 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1445543853


884 V. VATUTIN AND Q. LIU

Finally, each particle of type i = 1, 2, . . . , N generates its own (decomposable, if i < N )
process with N − i + 1 types evolving in a constant environment.

Let μ1 = E[ξ0 | e], μ2 = E[ξ0(ξ0 − 1) | e], and

θi = E[ξi | e], i = 1, 2, . . . , N, �1 :=
N∑

l=1

θl.

Our assumptions on the characteristics of the process we consider are formulated as follows.

Assumption 2. (i) The initial state of the process is (X0, Z0) = (1, 0).

(ii) Particles of type 0 form (on their own) a critical branching process in a random environment
such that

E log μ1 = 0, E log2 μ1 ∈ (0, ∞). (14)

(iii) Particles of type 0 produce particles of type 1 with a positive probability and

P(θ1 > 0) = 1.

(iv) Particles of each type form (on their own) critical branching processes which are indepen-
dent of the environment, i.e. mii = Eηii = 1, i = 1, 2, . . . , N .

(v) Particles of type i = 1, 2, . . . , N − 1 produce particles of type i + 1 with a positive
probability, i.e. mi,i+1 = Eηi,i+1 > 0, i = 1, 2, . . . , N − 1.

(vi) The second moments of the offspring numbers are finite:

Eη2
ij < ∞, 1 ≤ i ≤ j ≤ N

with bi = 1
2 var ηii ∈ (0, ∞).

The following theorem is the main result of the paper.

Theorem 2. If Assumption 2 holds and

E[μ−1
1 ] < ∞, E[μ2μ

−2
1 (1 + max(0, log μ1))] < ∞, (15)

then there exists a positive constant K0 such that

P(Zn �= 0 | X0 = 1, Z0 = 0) ∼ 2N−1K0

log n
, (16)

and for any positive t1, t2, . . . , tN ,

lim
n→∞ P

(
log Zni

log n
≤ ti , i = 1, . . . , N

∣∣∣∣ Zn1 > 0

)
= G(t1, . . . , tN )

= 1 − 1

1 + max(0, min1≤l≤N(tl − l))
.

(17)
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The proof of the theorem is divided into several stages.
Let

T = min{n ≥ 0 : Xn = 0}.

According to [7, Theorem 1], if conditions (14) and (15) hold then for a positive constant c,

P(Xn > 0) = P(T > n) ∼ c√
n

as n → ∞. (18)

Set Sn := ∑n−1
k=0 Xk and An = max0≤k≤n−1 Xk , so that ST and AT denote the total number

ever born of type 0 particles and the maximal generation size of type 0 particles, respectively.

Lemma 5. (See [1].) If conditions (14) and (15) hold then there exists a constant K0 ∈ (0, ∞)

such that

P(ST > x) ∼ P(AT > x) ∼ K0

log x
as x → ∞. (19)

In fact, the representation (19) has been proved in [1] under conditions (14) and (15) only
for the case when the probability generating functions of ξ

(n)
0 , n = 0, 1, . . . are linear-fractional

with probability 1. However, this restriction is easily removed using the results established later
on for the general case in [2] and [7].

Now let ‖Yn‖ = Yn1 + · · · + YnN , ζ
(n)
k = ξ

(n−1)
k1 + · · · + ξ

(n−1)
kN , and

Lnj =
n∑

l=1

Ylj =
n∑

l=1

Xl−1∑
k=1

ξ
(l−1)
kj , Bnj = max

1≤l≤n
Ylj ,

Ln =
n∑

l=1

‖Yl‖ =
n∑

l=1

Xl−1∑
k=1

ζ
(l−1)
k , Bn = max

1≤l≤n
‖Yl‖.

In particular, LT is the total number of child particles of types 1, . . . , N produced by type 0
particles during the evolution of the process.

Lemma 6. If conditions (14) and (15) hold and P(�1 > 0) = 1, then

P(BT > x) ∼ P(LT > x) ∼ K0

log x
as x → ∞. (20)

If conditions (15) and (14) hold and P(θj > 0) = 1 for some j ∈ {1, . . . , N}, then

P(BTj > x) ∼ P(LTj > x) ∼ K0

log x
as x → ∞. (21)

Proof. For any ε ∈ (0, 1), we have

P(AT > x) ≤ P(BT > x1−ε) + P(AT > x; BT ≤ x1−ε).
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Let Tx = min{k : Xk > x}. Then

P(AT > x; BT ≤ x1−ε) ≤
∞∑
l=1

P(Tx = l; ‖Yl+1‖ ≤ x1−ε)

=
∞∑
l=1

P

(
Tx = l;

Xl∑
k=1

ζ
(l)
k ≤ x1−ε

)

≤ P(AT > x)P

( [x]∑
k=1

ζ
(0)
k ≤ x1−ε

)
.

Since P(�1 > 0) = 1 and �1 = E[ζ (0)
k | e], k = 1, 2, . . . ,, we obtain by the law of large

numbers,

lim
x→∞ P

(
1

x�1

[x]∑
k=1

ζ
(0)
k ≤ 1

xε�1

∣∣∣∣ e

)
= 0 P-almost surely.

Thus,

lim sup
x→∞

P

( [x]∑
k=1

ζ
(0)
k ≤ x1−ε

)
≤ E

[
lim sup

x→∞
P

( [x]∑
k=1

ζ
(0)
k ≤ x1−ε

∣∣∣∣ e

)]
= 0.

As a result, for any δ > 0 and all x ≥ x0(δ), we obtain

(1 − δ)P(AT > x) ≤ P(BT > x1−ε). (22)

To deduce an estimate for P(BT > x) from above, we write

P(BT > x) ≤ P(AT > x1−ε) + P(BT > x; AT ≤ x1−ε). (23)

Furthermore, letting T̂x = min{k : ‖Yk‖ > x}, we have

P(BT > x; AT ≤ x1−ε) ≤ P(T > xε/2) +
∑

1≤l≤xε/2

P(T̂x = l; AT ≤ x1−ε).

By the Markov inequality, we have∑
1≤l≤xε/2

P(T̂x = l; AT ≤ x1−ε) ≤
∑

1≤l≤xε/2

P(Xl−1 ≤ x1−ε; ‖Yl‖ > x)

≤ xε/2
P

([x1−ε]∑
k=1

ζ
(0)
k > x

)

≤ x−ε/2
E[‖Y1‖].

Hence, recalling (18), we obtain P(BT > x; AT ≤ x1−ε) = O(x−ε/4) implying, in view of
(23),

P(BT > x) ≤ P(AT > x1−ε) + O(x−ε/4). (24)

Combining (22) and (24) and first letting x → ∞ and then ε → 0 we justify, by Lemma 5, the
equivalence

P(BT > x) ∼ P(AT > x) ∼ K0

log x
.
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Finally,

P(BT > x) ≤ P(LT > x) ≤ P(T BT > x) ≤ P(BT > x1−ε) + P(T > xε),

and applying (18) and Lemma 5 proves the first equivalence in (20).
One may check (21) by similar arguments.

Corollary 1. If conditions (14) and (15) hold and P(θ1 > 0) = 1, then

F(n) := E

[
1 − exp

{
−

N∑
i=1

LTiQ
(i,N)
n (0)

}]
∼ 2N−1K0

log n
as n → ∞.

Proof. Clearly,

LT1Q
(1,N)
n (0) ≤

N∑
i=1

LTiQ
(i,N)
n (0) ≤ LT

N∑
i=1

Q(i,N)
n (0)

and, by (6),
N∑

i=1

Q(i,N)
n (0) ∼ Q(1,N)

n (0) ∼ c1n
−1/2(N−1)

.

To conclude the proof it remains to observe that

E[1 − e−λLT ] ∼ E[1 − e−λLT1 ] ∼ K0

log(1/λ)
as λ → +0 (25)

due to Lemma 6, and the Tauberian theorem [4, Chapter XIII.5, Theorem 4] applied, for instance,
to the right-hand side of

λ−1E[1 − e−λLT ] =
∫ ∞

0
P (LT > x)e−λx dx,

and to use the inequalities

E[1 − exp{−LT1Q
(1,N)
n (0)}] ≤ F(n) ≤ E

[
1 − exp

{
−LT

N∑
i=1

Q(i,N)
n (0)

}]
.

Proof of Theorem 2. We first check (16). Note that each particle of type i of generation n

has either a parent of type 0 (of generation n − 1), or an ancestor of generation k, 1 ≤ k < n

whose parent is of type 0; recall that the number of particles of type i of generation k having a
parent of type 0 is denoted by Yki . By a decomposition of Zni based on this fact and using the
branching property, we obtain

E[1 − s
Zn1
1 · · · sZnN

N ] = E

[
1 −

n∏
k=1

N∏
i=1

(H
(i,N)
n−k (s))Yki

]
= E[1 − eR(n;s)], (26)

where H
(i,N)
0 (s) = si by convention, and

R(n; s) =
n∑

k=1

N∑
i=1

Yki log H
(i,N)
n−k (s).

In particular,

P(Zn �= 0) = E[1 − eR(n;0); T ≤ √
n] + O(P(T >

√
n)).
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Since log(1 − x) ∼ −x as x → +0 and for k ≤ √
n as n → ∞,

Q(i,N)
n (0) = 1 − H(i,N)

n (0) ≤ Q
(i,N)
n−k (0) ≤ Q

(i,N)

n−√
n
(0) = (1 + o(1))Q(i,N)

n (0),

we obtain

E[eR(n;0); T ≤ √
n] = E

[
exp

{
−(1 + o(1))

N∑
i=1

LniQ
(i,N)
n (0)

}
; T ≤ √

n

]

= E

[
exp

{
−(1 + o(1))

N∑
i=1

LTiQ
(i,N)
n (0)

}
; T ≤ √

n

]

= E

[
exp

{
−(1 + o(1))

N∑
i=1

LTiQ
(i,N)
n (0)

}]
− O(P(T >

√
n)).

Thus,

P(Zn �= 0) = E

[
1 − exp

{
−(1 + o(1))

N∑
i=1

LTiQ
(i,N)
n (0)

}]
+ O(P(T >

√
n)), (27)

and (16) follows from Corollary 1 and (18).
Now we prove (17). Recall that we always take X0 = 1, Z0 = 0.
Consider first the N = 1 case. Writing for simplicity Yk = Yk1, Zn = Zn1, s = s1, and

Hn(s) = H
(1,1)
n (s) = E[sZn | Z0 = 1], we have

E[sZn | Zn > 0] = E[sZn ] − E(Zn = 0)

P(Zn > 0)
= 1 − E[1 − sZn ]

P(Zn > 0)
,

and by (26),

E[1 − sZn ] = E

[
1 − exp

{ n∑
k=1

Yk log Hn−k(s)

}]
.

By the criticality condition, 1 − Hn(0) ∼ (b1n)−1. Thus, if s = e−λ/(b1n
t ) then

1 − s ∼ λ

b1nt
∼ 1 − H[nt /λ](0),

where [x] denotes the integral part of x. Hence, it follows that for any t > 1 as n → ∞,

1 − Hn(e
λ/nt

) ∼ 1 − Hn(H[nt /λ](0)) = 1 − Hn+[nt /λ](0) ∼ λ

b1nt
.

Similar to the previous estimates for the survival probability of the (N + 1)-type branching
process (recall that (X0, Z0) = (1, 0)), we obtain

E

[
1 − exp

{
− λZn

b1nt

}]
∼ E[1 − exp{−λcn−tLT1}] ∼ K0

t log n
.

Since P(Zn > 0) ∼ K0/ log n, it follows that for any fixed t > 1 and λ > 0,

lim
n→∞ E

[
exp

{
− λZn

b1nt

} ∣∣∣∣ Zn > 0

]
= 1 − 1

t
.
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This implies that the conditional law of Zn/(b1n
t ) given Zn > 0 converges to the law of a

random variable X with P (X = 0) = 1 − t−1 and P (X = +∞) = t−1. Therefore, for any
t > 1,

G(t) = lim
n→∞ P(n−tZn ≤ b1 | Zn > 0)

= lim
n→∞ P

(
log Zn

log n
≤ t

∣∣∣∣ Zn > 0

)

= 1 − 1

t
. (28)

Since limt↓1 G(t) = 0, we may write (28), for any t > 0, as

lim
n→∞ P

(
log Zn

log n
≤ t

∣∣∣∣ Zn > 0

)
= 1 − 1

1 + max(0, t − 1)
(29)

as desired.
Now, we consider the N ≥ 2 case and use the equality

E[sZn1
1 · · · sZnN

N |Zn1 > 0] = E[1 − s
Zn2
2 · · · sZnN

N 1{Zn1=0}]
P(Zn1 > 0)

− E[1 − s
Zn1
1 · · · sZnN

N ]
P(Zn1 > 0)

. (30)

We study each term on the right-hand side of (30) separately. By (26) and log(1 − x) ∼ −x

as x → +0, we see that as n → ∞,

E[1 − s
Zn1
1 · · · sZnN

N ] = E[1 − exp{−(1 + o(1))RN(n, s)}],
where

RN(n, s) :=
n∑

k=1

N∑
i=1

YkiQ
(i,N)
n−k (s).

Now let t1, . . . , tN be a tuple of positive numbers satisfying (7). From Lemma 2, it follows
that, for 1 − sl = n−tl , l = 1, . . . , N ,

Q(i,N)
n (s) 	 n− mini≤l≤N(tl−l+i) = n−i−mini≤l≤N(tl−l). (31)

Since
min

1≤i≤N
min

i≤l≤N
(tl − l + i) = min

1≤l≤N
(tl − l + 1) ≥ 1,

by our conditions, we have as n → ∞,

Q(i,N)
n (s) � Q(1,N)

n (s) 	 n− min1≤l≤N(tl−l+1).

Thus, there exist constants Cj , j = 1, 2, 3, 4 such that on the set T ≤ √
n the estimates

C1LT1Q
(1,N)
n (s) ≤ RN(n, s) ≤

n∑
k=1

N∑
i=1

YkiQ
(i,N)
n−k (s) ≤ C2LT

N∑
i=1

Q(i,N)
n (s)

are valid for all sufficiently large n. This, in turn, implies that

C3LT1n
− min1≤l≤N(tl−l+1) ≤ RN(n, s) ≤ C4n

− min1≤l≤N(tl−l+1)LT.
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Using the estimates above and (25) for the selected t1, . . . , tN as n → ∞, we obtain

E[1 − exp{−RN(n, s)}; T ≤ √
n] =

(
1

log n

)(
(1 + o(1))K0

1 + min1≤l≤N(tl − l)

)
+ O(P(T >

√
n)),

which leads, on account of (18), to

lim
n→∞(log n)E[1 − s

Zn1
1 · · · sZnN

N ] = K0

1 + min1≤l≤N(tl − l)
. (32)

Thus,

lim
n→∞

E[1 − s
Zn1
1 · · · sZnN

N ]
P(Zn1 > 0)

= 1

1 + min1≤l≤N(tl − l)
< 1.

Furthermore,

E[1 − s
Zn2
2 · · · sZnN

N 1{Zn1=0}] = E

[
1 − exp

{ n∑
k=1

N∑
i=1

Yki log H
(i,N)
n−k (0, s2)

}]
.

By the definition of H
(i,N)
n (s), (31), and the choice of si , i = 2, . . . , N , we have

1 − H(i,N)
n (0, s2) = 1 − H(i,N)

n (s) = Q(i,N)
n (s) 	 n− mini≤l≤N(tl−l+i) = o(n−1).

Besides, by Lemma 3,

1 − H(1,N)
n (0, s2) = Q(1,N)

n (0, s2) ∼ c1n
−1 as n → ∞.

Hence, it follows that on the set T ≤ √
n,

T −1∑
k=0

N∑
i=1

Yki log H
(i,N)
n−k (0, s2) = −(1 + o(1))

T −1∑
k=0

N∑
i=1

YkiQ
(i,N)
n−k (0, s2)

= −(1 + o(1))

N∑
i=1

LTiQ
(i,N)
n (0, s2)

and, moreover,

Q(1,N)
n (0, s2)LT1 ≤

N∑
i=1

LTiQ
(i,N)
n (0, s2) ≤ C2Q

(1,N)
n (0, s2)LT.

Now, using the same line of arguments as earlier, one may show that

lim
n→∞ E[1 − s

Zn2
2 · · · sZnN

N 1{Zn1=0}] log n = K0,

implying that, by (16) with N = 1,

lim
n→∞

E[1 − s
Zn2
2 · · · sZnN

N 1{Zn1=0}]
P(Zn1 > 0)

= 1.
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As a result, given (7), we have

G(t1, . . . , tN ) = lim
n→∞ E[sZn1

1 · · · sZnN

N | Zn1 > 0] = 1 − 1

1 + min1≤l≤N(tl − l)
.

Since limmin1≤l≤N(tl−l)↓0 G(t1, . . . , tN ) = 0, by the same arguments used to derive (28) and
(29), we conclude that

lim
n→∞ E[sZn1

1 · · · sZnN

N | Zn1 > 0] = 1 − 1

1 + max(0, min1≤l≤N(tl − l))

for all positive t1, . . . , tN , completing the proof of Theorem 2.

4. The case of three types

It follows from (6) that for a strongly critical N -type decomposable branching process in a
constant environment

P (Zn �= 0 | Z0 = e1) ∼ P (Zn1 + · · · + Zn,N−1 = 0, ZnN > 0 | Z0 = e1).

Thus, given the condition {Zn �= 0}, we observe in the limit as n → ∞ only type N particles.
This is not the case for the strongly critical (N + 1)-type decomposable branching process in a
random environment. We justify this claim by considering a strongly critical branching process
with three types and prove the following statement.

Theorem 3. Let N = 2. If Assumption 2 holds then

lim
n→∞ P

(
log Zn1

log n
≤ t1,

log Zn2

log n
≤ t2

∣∣∣∣ Zn �= 0, X0 = 1, Z0 = 0
)

= A(t1, t2), (33)

where

A(t1, t2) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 if t1 ∈ [0, ∞), 0 ≤ t2 ≤ 1,

1 − 1

t2
if t1 ∈ [0, ∞), 1 < t2 < 2,

1
2 if 0 ≤ t1 < 1, t2 ≥ 2,

1 − 1

2

1

(1 + min(t1 − 1, t2 − 2))
if t1 ≥ 1, t2 ≥ 2

Remark 1. Since the survival probability of particles of type 0 up to moment n is of the order
n−1/2, particles of this type are absent in the limit.

Remark 2. Since limmin(t1,t2−1)↓0 A(t1, t2) = 0, we have in Theorem 3 a complete description
of the limiting distribution for the left-hand side of (33).

Proof of Theorem 3. We have

E[sZn1
1 s

Zn2
2 | Zn �= 0] = 1 − E[1 − s

Zn1
1 s

Zn2
2 ]

P(Zn �= 0)
,

where

E[1 − s
Zn1
1 s

Zn2
2 ] = E

[
1 − exp

{ n∑
k=1

2∑
i=1

Yki log H
(i,N)
n−k (s)

}]
.
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Now let 1 − si = n−ti . If t1 ≥ 1 and t2 ≥ 2, then by (16) (with N = 2) and (32), we have

A(t1, t2) = 1 − lim
n→∞

E[1 − s
Zn1
1 s

Zn2
2 ]

P(Zn �= 0)
= 1 − 1

2

1

1 + min(t1 − 1, t2 − 2)
,

proving Theorem 3 for min(t1 − 1, t2 − 2) ≥ 0. Observe that

lim
min(t1−1,t2−2)↓0

A(t1, t2) = 1

2
,

and, therefore, contrary to the P(Zn1 > 0) case we need to analyze in more detail the case of
positive t1, t2 meeting the condition min(t1 − 1, t2 − 2) < 0.

The same as in the proof of Theorem 2, it is necessary to obtain estimates from above and
below for

R2(n, s) =
n∑

k=1

2∑
i=1

YkiQ
(i,2)
n−k (s)

given T ≤ √
n. Observe that in view of Lemma 4 and the representation

Q(2,2)
n (s2) = 1 − H(2,2)

n (s2) 	 1

nt2 + n
,

we have

1 − H(1,2)
n (s1, s2) + 1 − H(2,2)

n (s2) 	 1 − H(1,2)
n (s1, s2) = Q(1,2)

n (s1, s2).

This, in turn, yields for T ≤ √
n,

C1Q
(1,2)
n (s1, s2)LT1 ≤ R2(n, s) ≤ C2Q

(1,2)
n (s1, s2)LT.

From this estimate, (25), and Lemma 4, we obtain

E[1 − s
Zn1
1 s

Zn2
2 ] ∼ K0

C(t1, t2)
log n as n → ∞,

where

C(t1, t2) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
2 if t1 ∈ (0, ∞), 0 < t2 ≤ 1,
t2

2
if t1 ∈ (0, ∞), 1 < t2 < 2,

1 if 0 < t1 < 1, t2 ≥ 2,

1 + min(t1 − 1, t2 − 2) if t1 ≥ 1, t2 ≥ 2.

Since P(Zn �= 0) ∼ 2K0(log n)−1 for N = 2, we conclude that for positive t1 and t2,

lim
n→∞ E[sZn1

1 s
Zn2
2 | Zn �= 0, X0 = 1, Z0 = 0] = 1 − lim

n→∞
E[1 − s

Zn1
1 s

Zn2
2 ]

P(Zn �= 0)

= 1 − 1

2C(t1, t2)

= A(t1, t2).

Hence, the statement of Theorem 3 follows in an ordinary way.
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