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Abstract

We prove a central limit theorem for the sequence of random compositions of a two-color
randomly reinforced urn. As a consequence, we are able to show that the distribution of
the urn limit composition has no point masses.
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1. Introduction

Consider an urn initially containing x balls of color black and y balls of color white, with x

and y nonnegative real numbers such that x+y > 0. The urn is sequentially sampled: whenever
the color of the sampled ball is black, the ball is replaced in the urn together with a random
number of black balls, generated at that instant from a distribution µ with nonnegative bounded
support; whenever the sampled ball is white, the ball is replaced in the urn together with a
random number of balls, generated at that instant from a distribution ν with nonnegative bounded
support. This is an informal description of the randomly reinforced urn (RRU) introduced in [13]
and studied in [1], [2], [4], [7]–[10] under various assumptions concerning the reinforcement
distributions µ and ν. The urn has an interesting potential for applications since it describes a
general model for reinforcement learning (see [2] and [7]); in clinical trials, it implements an
optimal response adaptive design (see [5], [9], [11], and [14]).

The focus of this paper is on the asymptotic behavior of the sequence {Zn} describing the
random proportions of black balls in the urn along the sampling sequence; in [13] it was proved
that the sequence {Zn} converges almost surely to a random limit Z∞ ∈ [0, 1].

When µ = ν, an RRU is a special case of the generalized Pólya urn studied by Crimaldi
in [3]; for the sequence of random proportions {Zn} generated by her urn, Crimaldi proved a
central limit theorem by showing almost-sure conditional convergence to a Gaussian kernel of
the sequence {√n(Zn − Z∞)}. Crimaldi’s result does not hold for a general RRU; in this paper
we extend it to cover the case of an RRU with reinforcement distributions µ and ν having the
same mean. When the means of µ and ν are different, the limit proportion Z∞ of an RRU is
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a point mass either in 1 or in 0, according to the reinforcement distribution having the larger
mean, as proved with different arguments in [2], [7], and [13].

A nice implication of our RRU central limit theorem is that we are now able to prove that
the distribution of the limit proportion Z∞ has no point masses in [0, 1], when the means of
the reinforcement distributions are the same. This gives a new drive to the problem concerning
the absolute continuity of the distribution of the limit proportion of a generalized Pólya urn,
considered, for instance, in [15].

The paper is organized as follows. In the next section we will formally introduce the RRU
model along with the notation used in the paper. The main results of the paper are stated in
Section 3, and the proofs appear in Section 4. A remark on the absolute continuity of the
distribution of Z∞ concludes the paper.

2. Model description and notation

On a rich enough probability space (�, A, P), define two independent infinite sequences
of random elements, {Un} and {(Vn, Wn)}; {Un} is a sequence of independent and identically
distributed (i.i.d.) random variables uniformly distributed on [0, 1], while {(Vn, Wn)} is a
sequence of i.i.d. bivariate random vectors with components uniformly distributed on [0, 1].
Given two probability distributions µ and ν on [0, β], with β > 0, indicate their quantile
functions with qµ and qν , respectively. Then, define an infinite sequence {(RX(n), RY (n))} of
bivariate random vectors by setting, for all n,

RX(n) = qµ(Vn) and RY (n) = qν(Wn).

Note that, whereas the sequences {(RX(n), RY (n))} and {Un} are independent, the random
variables RX(n) and RY (n) might be dependent; however, for every n, their distributions are
µ and ν, respectively. We indicate with mµ and mν , and with σ 2

µ and σ 2
ν the means and

the variances of two random variables RX and RY having probability distributions µ and ν,
respectively.

We are now ready to introduce a process whose law is that of an RRU, as defined in [13].
Let x and y be two nonnegative real numbers such that x + y > 0. Set X0 = x and Y0 = y,
and, for n = 0, 1, 2, . . . , let

Xn+1 = Xn + RX(n + 1)δn+1, Yn+1 = Yn + RY (n + 1)(1 − δn+1), (1)

where the variable δn+1 is the indicator of the event {Un+1 ≤ Xn(Xn + Yn)
−1}. The law of

{(Xn, Yn)} is that of the stochastic process counting, along the sampling sequence, the number
of black and white balls present in an RRU with initial composition (x, y) and reinforcement
distributions equal to µ and ν, respectively.

For n = 0, 1, 2, . . . , let

Zn = Xn

Xn + Yn

;

Zn represents the proportion of black balls in the urn before the (n+1)th ball is sampled from it.
In [13] it was proved that {Zn} is eventually a bounded submartingale or supermartingale,
according to the mean of µ being larger or smaller than that of ν. Hence, for n growing to ∞,
Zn converges almost surely, and in Lp, 1 ≤ p ≤ ∞, to a random variable Z∞ ∈ [0, 1].
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For n = 1, 2, . . . , let Rn = δnRX(n) + (1 − δn)RY (n) be the urn reinforcement, when the
urn is sampled for the nth time, and set

QX
n−1 = RX(n)∑n

i=1 Ri

, QY
n−1 = RY (n)∑n

i=1 Ri

,

Qn−1 = Rn∑n
i=1 Ri

= δnQ
X
n−1 + (1 − δn)Q

Y
n−1,

with QX
n−1 = QY

n−1 = Qn−1 = 1 if Ri = 0 for all i = 1, . . . , n. For shortness, we will write
Dn for the random number Xn + Yn, interpreted as the size of the urn before it is sampled for
the (n + 1)th time. Clearly, D0 = x + y while Dn+1 = Dn + Rn+1 for n = 0, 1, 2, . . . .

Finally, let An = σ(U1, . . . , Un, (V1, W1), . . . , (Vn, Wn)) and consider the filtration {An}; for
n = 1, 2, . . . , we indicate with Mn and An the two terms given by Doob’s semimartingale
decomposition of Zn, i.e.

Zn = Z0 + Mn + An,

where {Mn} is a zero-mean martingale with respect to {An}, while {An} is previsible with
respect to {An}. Theorem 2 of [13] shows that {An} is eventually increasing or decreasing.

3. Main results

For every set A ∈ A, every ω ∈ �, and n = 1, 2, . . . , define

Kn(ω, A) = P(
√

n(Zn − Z∞) ∈ A | An)(ω),

i.e. Kn is a version of the conditional distribution of
√

n(Zn − Z∞) given An. When the
reinforcement distributions of an RRU are the same, i.e. µ = ν, and µ is different from the
point mass at 0, Corollary 4.1 of [3] shows that, for almost every ω ∈ �, the sequence of
probability distributions {Kn(ω, ·)} converges weakly to the Gaussian distribution

N(0, hZ∞(ω)(1 − Z∞(ω))),

where

h =
∫ β

0 k2µ(dk)

(
∫ β

0 kµ(dk))2
.

The next theorem extends this central limit result to a general RRU with reinforcement distri-
butions µ and ν having the same mean.

Theorem 1. Assume that mµ = mν = m > 0. Let

H = m−2
(

Z∞
∫ β

0
k2ν(dk) + (1 − Z∞)

∫ β

0
k2µ(dk)

)
.

Then, for almost every ω ∈ �, the sequence of probability distributions {Kn(ω, ·)} converges
weakly to the Gaussian distribution

N(0, H(ω)Z∞(ω)(1 − Z∞(ω))).
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Note that, in Theorem 1, provided that the initial urn composition (x, y) is such that
min(x, y) > 0, the variance H(ω)Z∞(ω)(1 − Z∞(ω)) is strictly positive for almost every
ω ∈ �, as guaranteed by Theorem 3.2 of [9]; hence, the limit distribution of Kn is absolutely
continuous. Indeed, May and Flournoy [9] proved that equality of the means of the reinforce-
ment distributions implies that P(Z∞ = 0) = P(Z∞ = 1) = 0. In the particular case when
µ = ν, the distribution of Z∞ has no point masses at all; this has been shown in [10]. As
a consequence of Theorem 1, we are now able to prove that this is also true with the sole
assumption that the means of µ and ν are the same.

Theorem 2. If min(x, y) > 0 and mµ = mν = m > 0, the distribution of Z∞ has no point
masses. That is, P(Z∞ = p) = 0 for all p ∈ [0, 1].

When mµ �= mν , the distribution of Z∞ is the point mass at 1 or at 0, according to whether
mµ is larger or smaller than mν ; this has been proved in [2], [7], and [13] under the assumption
that the supports of µ and ν are bounded away from 0. Within the framework of the present
paper, we are able to show that the result holds more generally when the supports of µ and ν

are contained in the interval [0, β].
Theorem 3. Assume that mµ > mν . Then P(Z∞ = 1) = 1.

4. Proofs and auxiliary results

The proof of Theorem 1 will make use of a few auxiliary results, which we state and prove
as Lemmas 1–7, below.

From now on, given a sequence {ξn} of random variables, we will denote by �ξn+1 the
increments (ξn+1 − ξn). Moreover, given any two sequences {an} and {bn} of real numbers, we
will use the symbol an � bn to denote that an/bn → 1 as n → ∞.

Lemma 1. Let R and D be two random variables defined on (�, A, P) with values in BR =
[0, β] and BD = [0, ∞), respectively, and let G be a sub-sigma-field of A such that R is
independent of G while D is measurable with respect to G. Let h be a measurable real-valued
function defined on BR × BD and such that h(·, t) is convex for all t ∈ BD . Then, for almost
every ω ∈ �,

h(E(R), D(ω)) ≤ E(h(R, D) | G)(ω) ≤
(

E(R)

β
h(β, D(ω)) + β − E(R)

β
h(0, D(ω))

)
.

The above inequalities are reversed if h(·, t) is concave for all t ∈ BD .

Proof. If π is the probability distribution of R,

E(h(R, D) | G)(ω) =
∫ β

0
h(x, D(ω))π(dx)

for almost every ω ∈ �. The left-hand inequality is now an instance of Jensen’s inequality.
The right-hand inequality follows after noticing that

h(x, t) ≤ x
h(β, t)

β
+ β − x

β
h(0, t)

for all (x, t) ∈ BR × BD , since h(·, t) is convex.
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As a consequence of the previous lemma, we can bound the increments �An of the com-
pensator process {An}. First note that, for all n = 0, 1, 2, . . . ,

�An+1 = E(�Zn+1 | An) = Zn(1 − Zn)A
∗
n+1

almost surely, where

A∗
n+1 = E

(
RX(n + 1)/Dn

1 + RX(n + 1)/Dn

− RY (n + 1)/Dn

1 + RY (n + 1)/Dn

∣∣∣∣ An

)
. (2)

Lemma 2. If mµ > mν , for almost every ω ∈ �, there is an a > 0 such that

A∗
n+1(ω) ≥ a

Dn(ω)

eventually. If mµ = mν = m > 0, for n = 0, 1, 2, . . . and almost every ω ∈ �,

|A∗
n+1(ω)| ≤ m(β − m)

(β + Dn(ω))(m + Dn(ω))
= O

(
1

D2
n(ω)

)
.

Proof. Note that h(x, t) = x/(x + t) is a concave bounded function of x ≥ 0 for any fixed
t ≥ 0. For n = 0, 1, 2, . . . ,

A∗
n+1 = E(h(RX(n + 1), Dn) − h(RY (n + 1), Dn) | An);

hence, by applying Lemma 1 we obtain

A∗
n+1 ≥ mµ

β + Dn

− mν

mν + Dn

= Dn(mµ − mν) − mν(β − mµ)

(mν + Dn)(β + Dn)

and

A∗
n+1 ≤ mµ

mµ + Dn

− mν

β + Dn

= Dn(mµ − mν) + mµ(β − mν)

(mµ + Dn)(β + Dn)

on a set of probability 1. The thesis is now a consequence of the fact that limn→∞ Dn = ∞
almost surely (see, e.g. [9, Proposition 2.3, Proposition 2.4]).

Indeed, when mµ = mν = m > 0, two educational cases emerge by inspection of A∗
n+1 in

the light of Lemma 1. The first case is when µ is the point mass at m; then A∗
n+1 ≥ 0 for all

n = 0, 1, 2, . . . and the process {Zn} is a bounded submartingale. At the other extreme, let µ be
the distribution of the random variable βζ , with ζ distributed according to a Bernoulli (m/β);
then A∗

n+1 ≤ 0 for all n = 0, 1, 2, . . . and the process {Zn} is a bounded supermartingale.
In [9, Lemma A.1(iii)] it was proved that limn→∞ Dn/n = m almost surely when mµ =

mν = m > 0. The next lemma improves our general understanding of the growth speed of the
urn size Dn.

Lemma 3. Assume that min(mµ, mν) > 0. For all c, α ≥ 0, there are two constants 0 < a1 <

a2 < ∞ such that
a1

nα
≤ E

(
1

(c + Dn)α

)
≤ a2

nα
(3)

eventually. Moreover, if mµ = mν = m > 0 then

E

(
1

(c + Dn)α

)
∼ 1

(c + D0 + mn)α
.
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Proof. It is trivial to prove the lemma when the supports of µ and ν are both bounded away
from 0; this is the case, for instance, when µ and ν are both point masses at real numbers different
from 0. For the general case, set σ 2 = min(σ 2

µ, σ 2
ν ) and assume that max(σ 2

µ, σ 2
ν ) > 0; without

loss of generality, we also assume that mµ ≥ mν > 0.
The left-hand inequality in (3) follows from Jensen’s inequality:

E

(
1

(c + Dn)α

)
≥ 1

(c + E(Dn))α
≥ 1

(c + D0 + nmµ)α
.

To prove the right-hand inequality, we consider the following two cases.
Case 1: σ > 0. For n = 1, 2, . . . and i = 1, . . . , n, set

Lni = δi(RX(i) − mµ) + (1 − δi)(RY (i) − mν)
√

n
√

Zi−1σ 2
µ + (1 − Zi−1)σ 2

ν

≤ Ri − mν√
nσ

. (4)

Then we can show that {Lni, Fni = Ai , n = 1, 2, . . . , i = 1, . . . , n} is a martingale difference
array such that, for all n = 1, 2, . . . , and i = 1, . . . , n,

|Lni| ≤ β

σ
√

n
,

while
n∑

i=1

E(L2
ni | Fn i−1) = 1

with probability 1.
Let Sn = ∑n

i=1 Lni. Then, by the large deviations result [18, Theorem 1] for martingales
and (4), we obtain

lim sup
n→∞

P(
∑n

i=1 Ri ≤ nmν − σn5/8)

�(−n1/8)
≤ lim

n→∞
P(Sn ≤ −n1/8)

�(−n1/8)
= 1,

where � indicates the standard normal distribution. Since

�(−x) ≤ exp(−x2/2)

x
√

2π
for all x > 0,

we obtain

P

( n∑
i=1

Ri ≤ nmν − σn5/8
)

≤ exp(−n1/4/2)

n1/8 eventually. (5)

For n = 1, 2, . . . , set Fn = {∑n
i=1 Ri ≤ nmν − σn5/8}; then

E

(
1

(c + Dn)α

)
= 1

(c + D0)α
E

(
1

(1 + ∑n
i=1 Ri/(c + D0))α

; Fn

)

+ E

(
1

(c + D0 + ∑n
i=1 Ri)α

; Fc
n

)

≤ P(Fn)

(c + D0)α
+ 1

(c + D0 + nmν − σn5/8)α

≤ 1

(c + D0 + nmν)α

((
c + D0 + mν

c + D0

)α

nα P(Fn) + 1

(1 + o(1))α

)
.
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Hence, by (5),

lim sup
n→∞

E(1/(c + Dn)
α)

1/(c + D0 + mY n)α
≤ 1,

and this completes the proof of this case.
Case 2: σ = 0. Assume that σ 2

µ > 0 (the case σ 2
ν > 0 is analogous). Hence, ν is the point

mass at mν > 0. Let {R̃Y (n)} be a sequence of i.i.d. random variables, independent of {An}
and such that each variable R̃Y (n), when multiplied by mµ/mν , has probability distribution
equal to µ. For n = 1, 2, . . . , define

τX
n = inf

{
k :

k∑
i=1

δi ≥ n

}
, τY

n = inf

{
k :

k∑
i=1

(1 − δi) ≥ n

}
.

By Jensen’s inequality and [9, Proposition 2.4], we then have

E

(
1

(c + Dn)α

)
= E

(
E

(
1

(c + Dn)α

∣∣∣∣
n∑

i=1

δi = k; An

))

= E

(
E

(
1

(c + D0 + ∑k
i=1 RX(τi) + (n − k)mν)α

∣∣∣∣
n∑

i=1

δi = k; An

))

≤ E

(
E

(
1

(c + D0 + ∑k
i=1 RX(τX

i ) + ∑n−k
i=1 R̃Y (τY

i ))α

∣∣∣∣
n∑

i=1

δi = k; An

))

= E

(
1

(c + D0 + ∑n
i=1(δiRX(i) + (1 − δi)R̃Y (i)))α

)
.

Since min(σ 2
µ, var(R̃Y )) = (mν/mµ)2σ 2

µ > 0, case 1 applied to a coupled RRU with the same
initial composition and reinforcements equal to RX(n)whenever δ(n) = 1, and R̃Y (n)whenever
δn = 0, yields the thesis.

Lemma 4. Assume that mµ = mν = m > 0. Then

E

(∑
k>0

√
k|�Ak|

)
< ∞.

Proof. Lemma 3 and Lemma 2 yield

∑
k>0

√
k E(|�Ak|) ≤ K1

∑
k>0

√
k E

(
1

(m + Dk)2

)
≤ K2

∑
k>0

k−3/2 < ∞

for suitable constants K1, K2 > 0.

Lemma 5. We have

E

( ∞∑
k=0

k2Q4
k

)
< ∞, E

( ∞∑
k=0

k2(QX
k )4

)
< ∞, E

( ∞∑
k=0

k2(QY
k )4

)
< ∞.

Proof. For all x > 0 and 0 ≤ a ≤ b,(
a

b

)4

≤
(

a + x

b + x

)4

,
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if 0/0 is set equal to 1. Then, for k = 0, 1, . . . ,

Q4
k =

(
Rk+1∑k+1
i=1 Ri

)4

≤
(

Rk+1 + 1 + D0

1 + Dk+1

)4

≤ (1 + D0 + β)4
(

1

1 + Dk

)4

. (6)

It follows from Lemma 3 with α = 4 that

∞∑
k=0

k2 E(Q4
k) ≤ K

∑
k>0

k−2 < ∞

for a suitable constant K > 0. Hence, E(
∑

k>0 k2Q4
k) < ∞. The proof is similar for QX and

QY : replace Rk+1 with RX(k + 1) or RY (k + 1), respectively, in the numerator of the first two
terms of (6).

The next lemma is an auxiliary result which will be used for proving the almost-sure
convergence of random series.

Lemma 6. Let {ak}, {bk}, and {ck} be three infinite sequences of real, nonnegative numbers
such that bk and ck are eventually strictly positive, bk ∼ ck , and

∑
k ak/bk < ∞. Then∑

k>n

ak

bk

∼
∑
k>n

ak

ck

as n → ∞.

Proof. For lack of a reference, we prove the lemma. For a fixed 0 < ε ≤ 1
2 , let n0 be large

enough that bk and ck are strictly positive and (1 − ε)bk ≤ ck ≤ (1 + ε)bk for k > n0. Then,
for n ≥ n0,

(1 − 2ε)
∑
k>n

ak

bk

≤
∑
k>n

ak

(1 + ε)bk

≤
∑
k>n

ak

ck

≤
∑
k>n

ak

(1 − ε)bk

≤ (1 + 2ε)
∑
k>n

ak

bk

.

Finally, we need a general fact about the convergence of random sequences; for lack of a
better reference, see [16, Lemma 3.2].

Lemma 7. Let {ξn} be a sequence of real random variables adapted to the filtration {An}. If
P(ξ1 < ∞) = 1 and∑

n

E(ξn+1 | An) < ∞ and
∑
n

E(ξ2
n+1 | An) < ∞

almost surely, then
∑

n ξn converges almost surely.

We can now demonstrate a proposition that will act as a cornerstone for the proof of the
main result of the paper.

Proposition 1. Assume that mµ = mν = m > 0, and let

HX = m−2 E(R2
X), HY = m−2E(R2

Y ).

Then
lim

n→∞ n
∑
k>n

(QX
k )2 = HX, lim

n→∞ n
∑
k>n

(QY
k )2 = HY

on a set of probability 1.

https://doi.org/10.1239/aap/1253281065 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1253281065


A CLT for a randomly reinforced urn 837

Proof. We prove that limn→∞ n
∑

k>n(Q
X
k )2 = HX almost surely by an argument similar

to that used to prove Corollary 4.1 of [3]. The proof that limn→∞ n
∑

k>n(Q
Y
k )2 = HY almost

surely is similar and will be omitted. Let ρ = E(R2
X). The series

∑
n

n−1(R2
X(n + 1) − ρ)

converges almost surely, since it is a series of zero-mean independent random variables with
variances bounded by n−2β4. This fact and Abel’s theorem imply that

lim
n→∞ n

∑
k>n

k−2(R2
X(k + 1) − ρ) = 0

on a set of probability 1. Then

lim
n→∞ n

∑
k>n

k−2R2
X(k + 1) = ρ (7)

on a set of probability 1, since limn→∞ n
∑

k>n k−2 = 1.
From [9, Lemma A.1(iii)], it follows that limk→∞(mk)−1 ∑k

i=1 Ri = 1 almost surely and,
thus,

(QX
k )2

∼ m−2k−2R2
X(k + 1)

on a set of probability 1. Therefore, Lemma 6 implies that

n
∑
k≥n

(QX
k )2

∼ m−2n
∑
k≥n

k−2R2
X(k + 1)

almost surely; however, (7) shows that the right-hand term converges almost surely to m−2ρ =
HX as n → ∞. This concludes the proof of the proposition.

Proof of Theorem 1. For n = 0, 1, 2, . . . , set

Gn =
∑
k>n

√
k|�Ak| ≥ 0 and Wn = E(Gn | An).

Because of Lemma 4, the process {Gn} converges monotonically to 0 almost surely and in L1,
as n goes to ∞. Hence, the process {Wn}, being a nonnegative supermartingale, converges to 0
almost surely and in L1, as n goes to ∞. Since, for n = 1, 2, . . . ,

E(
√

n|A∞ − An| | An) ≤ E

(∑
k>n

√
k|�Ak|

∣∣∣∣ An

)
= E(Gn | An)

almost surely, we obtain, for all t > 0,

P(
√

n|A∞ − An| > t | An) ≤ E(
√

n|A∞ − An| | An)

t
≤ E(Gn | An)

t

on a set of probability 1; therefore, L(
√

n|A∞ − An| | An)(ω) weakly converges to the mass
function at 0 for almost every ω ∈ �. Proving the theorem is thus equivalent to showing that,
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for almost every ω ∈ �, L(
√

n(Mn − M∞) | An)(ω) weakly converges to a N (0, H(ω)),
where

H(ω) = H(ω)Z∞(ω)(1 − Z∞(ω)).

Since {Mn} is a martingale, this follows from [3, Proposition 2.2] once we show that

E
(

sup
k

√
k|�Mk|

)
< ∞ (8a)

and

lim
n→∞ n

∑
k>n

(�Mk)
2 = H almost surely. (8b)

Proof of (8a). Since √
k|�Mk| ≤ √

k|�Ak| + √
k|�Zk|

and
E
(

sup
k

√
k|�Ak|

)
≤

∑
k

√
k E(|�Ak|),

from Lemma 4 we obtain

E
(

sup
k

√
k|�Mk|

)
< ∞ ⇐⇒ E

(
sup
k

√
k|�Zk|

)
< ∞.

Note that, for n = 0, 1, 2, . . . , δn+1RX(n + 1) = δn+1Rn+1 and

Zn − Zn+1 = Xn

Dn

− Xn+1

Dn+1

= 1

DnDn+1
(XnDn+1 − Xn+1Dn)

= 1

DnDn+1
(Xn(Dn + Rn+1) − (Xn + δn+1RX(n + 1))Dn)

= 1

DnDn+1
(XnRn+1 − δn+1RX(n + 1)Dn)

= 1

DnDn+1
(XnRn+1 − δn+1Rn+1Dn)

= Rn+1

Dn+1
(Zn − δn+1)

= Qn

∑n+1
i=1 Ri

Dn+1
(Zn − δn+1), (9)

which yields |�Zn| ≤ Qn. Hence, E(supk

√
k|�Zk|)4 ≤ E(

∑
k k2Q4

k) < ∞ by Lemma 5.
Since (E supk

√
k|�Zk|)4 ≤ E(supk

√
k|�Zk|)4 < ∞, this proves (8a).

Proof of (8b). We split the proof into four steps.
Step 1. We show that

lim
n→∞ n

∑
k>n

(�Mk)
2 = H almost surely ⇐⇒ lim

n→∞ n
∑
k>n

(�Zk)
2 = H almost surely.
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Lemma 4 shows that E(
∑

k>0

√
k|�Ak|) < ∞ almost surely; hence,

E

(∑
k>0

k|�Ak|2
)

< ∞

almost surely and this implies that limn→∞
∑

k>n k|�Ak|2 = 0 on a set of probability 1.
However, n|�Ak|2 ≤ k|�Ak|2 for k > n = 1, 2, . . . , and, thus,

lim
n→∞ n

∑
k>n

|�Ak|2 = 0 almost surely. (10)

For n = 1, 2, . . . , ∑
k≥0

k2Q4
k ≥

(√
n
(

sup
k>n

Qk

))4
,

and, thus, Lemma 5 implies that P(supn

√
n(supk>n Qk) = ∞) = 0, which in turn implies,

through (9), that P(supn

√
n(supk>n �Zk) = ∞) = 0. Hence,

lim
n→∞

∣∣∣∣n ∑
k>n

�Zk�Ak

∣∣∣∣ ≤
∣∣∣sup

n

√
n sup

k>n

�Zk

∣∣∣ lim
n→∞

√
n

∑
k>n

|�Ak| = 0 (11)

almost surely, where the last equality follows, once again, from Lemma 4. Since, for n =
1, 2, . . . ,

(�Mn)
2 = (�Zn − �An)

2 = (�Zn)
2 + (�An)

2 − 2�Zn�An, (12)

(10) and (11) imply that

lim
n→∞ n

∑
k>n

((�Mn)
2 − (�Zn)

2) = lim
n→∞ n

∑
k>n

((�An)
2 − 2�Zn�An) = 0

on a set of probability 1. This concludes the proof of the first step.
For the next three steps, we follow the arguments in [3, Theorem 1.1] armed with the results

provided by Proposition 1 and Lemma 5.
Step 2. We show that

lim
n→∞ n

∑
k>n

(�Zk)
2 = H almost surely

⇐⇒ lim
n→∞ n

∑
k>n

(Zk − δk+1)
2Q2

k = H almost surely.

Lemma 7 and (12) imply the almost-sure convergence of
∑

n(�Zn)
2. Thus, from (9) and

Lemma 6, we obtain

∑
k>n

(�Zk+1)
2 =

∑
k>n

(Zk − δk+1)
2 R2

k+1

D2
k+1

∼
∑
k>n

(Zk − δk+1)
2Q2

k

as n grows to ∞; this completes the proof of the second step.
Step 3. We show that the almost-sure convergence of

m∑
k=0

k(δk+1 − Zk)(1 − Zk)
2(QX

k )2 (13)
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and
m∑

k=0

k(δk+1 − Zk)Z
2
k (Q

Y
k )2 (14)

as m grows to ∞ implies that limn→∞ n
∑

k>n(Zk − δk+1)
2Q2

k = H almost surely.
Because of Abel’s theorem, the almost-sure convergence of the series (13) and (14) implies

that
lim

n→∞ n
∑
k>n

(δk+1 − Zk)(1 − Zk)
2(QX

k )2 = 0,

lim
n→∞ n

∑
k>n

(δk+1 − Zk)Z
2
k (Q

Y
k )2 = 0,

(15)

on a set of probability 1. Now, from Proposition 1 and the almost-sure convergence of the
sequence {Zn} to Z∞, we obtain

lim
n→∞ n

∑
k>n

Zk(1 − Zk)
2(QX

k )2 = HXZ∞(1 − Z∞)2,

lim
n→∞ n

∑
k>n

(1 − Zk)Z
2
k (Q

Y
k )2 = HY (1 − Z∞)Z2∞,

(16)

on a set of probability 1. Equations (15)–(16) yield

lim
n→∞ n

∑
k>n

δk+1(1 − Zk)
2(QX

k )2 = HXZ∞(1 − Z∞)2,

lim
n→∞ n

∑
k>n

(1 − δk+1)Z
2
k (Q

Y
k )2 = HY (1 − Z∞)Z2∞,

almost surely. Since, for all k ≥ 0, Qk = δk+1Q
X
k + (1 − δk+1)Q

Y
k and δk+1(1 − δk+1) = 0,

we have

lim
n→∞ n

∑
k>n

(Zk − δk+1)
2Q2

k

= lim
n→∞ n

∑
k>n

(δk+1(1 − Z2
k )(Q

X
k )2 + (1 − δk+1)Z

2
k (Q

Y
k )2)

= HXZ∞(1 − Z∞)2 + HY (1 − Z∞)Z2∞
= H

on a set of probability 1.
Step 4. We prove the almost-sure convergence of the series

∞∑
k=0

k(δk+1 − Zk)(1 − Zk)
2(QX

k )2;

the proof of the almost-sure convergence of
∑∞

k=0 k(δk+1 − Zk)Z
2
k (Q

Y
k )2 is similar.

For n = 0, 1, 2, . . . , RX(n + 1) is independent of σ(δn+1, An) and, thus,

E

(
n(δn+1 − Zn)(1 − Zn)

2 R2
X(n + 1)

(Dn − D0)2

∣∣∣∣ An

)
= 0.
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Hence,

| E(n(δn+1 − Zn)(1 − Zn)
2(QX

n )2 | An)|

=
∣∣∣∣E

(
n(δn+1 − Zn)(1 − Zn)

2
(

(QX
n )2 − R2

X(n + 1)

(Dn − D0)2

) ∣∣∣∣ An

)∣∣∣∣
≤ E

(
n|δn+1 − Zn|(1 − Zn)

2R2
X(n + 1)

(
1

(Dn − D0)2 − 1

(Dn+1 − D0)2

) ∣∣∣∣ An

)

≤ nβ2 E

(
1

(Dn − D0)2 − 1

(Dn+1 − D0)2

∣∣∣∣ An

)

≤ 2nβ3 1

(Dn − D0)3 ;

the last inequality holds because

(
1

Dn − D0

)2

−
(

1

Dn+1 − D0

)2

= (Dn+1 − D0)
2 − (Dn − D0)

2

(Dn − D0)2(Dn+1 − D0)2

≤ 2(Dn+1 − D0)Rn+1

(Dn − D0)2(Dn+1 − D0)2

≤ 2β

(Dn − D0)3 .

However, limn→∞ Dn/n = m almost surely, as proved in [9, Lemma A.1(iii)]; thus,∑
n

n E((δn+1 − Zn)(1 − Zn)
2(QX

n )2 | An) < ∞

on a set of probability 1.
Next note that, as in [3, Equation (16)],

E

(∑
n

n2 E

(
(δn+1 − Zn)

2(1 − Zn)
4(QX

n )4
∣∣∣∣ An

))
≤ E

(∑
n

n2(QX
n )4

)
< ∞

because of Lemma 5. Therefore, Lemma 7 implies that series (13) converges on a set of
probability 1; this concludes the proof of the fourth step and that of the theorem.

Proof of Theorem 2. Recall that if π and π ′ are probability distributions on R, the discrep-
ancy metric dD between π ′ and π is defined as

dD(π ′, π) = sup
closed balls B

|π ′(B) − π(B)|;

this metric metrizes the weak convergence of a sequence of probability distributions {πn} to
π , when the limiting probability distribution π is absolutely continuous with respect to the
Lebesgue measure on R (see, e.g. [6]).

The definition of Z∞, Theorem 3.2 of [9], and Theorem 1 imply the existence of �′ ∈ A
such that P(�′) = 1, and, for all ω ∈ �′,

lim
n→∞ Zn(ω) = Z∞(ω) (17a)
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and

lim
n→∞ dD((Kn)(ω), N (0, H(ω))) = 0, (17b)

where H(ω) = H(ω)Z∞(ω)(1 − Z∞(ω)).
By way of contradiction, assume that there is a p ∈ (0, 1) such that P(Z∞ = p) > 0 (for

p ∈ {0, 1}, see [9, Theorem 3.2]). Since

lim
n→∞ P(Z∞ = p | An) = 1{p}(Z∞)

almost surely, there is a set F ∈ A, F ⊆ {Z∞ = p} ∩ �′, such that P(F ) > 0 and, for all
ω ∈ F ,

lim
n→∞ P(Z∞ = p | An)(ω) = 1. (18)

Fix ω ∈ F . For n = 1, 2, . . . , set xn = √
n(Zn(ω) − p) and consider the closed ball

Bn = {xn}. Then, for n = 1, 2, . . . ,

dD(Kn(ω), N (0, H(ω))) ≥ |Kn(ω)(Bn) − N (0, H(ω))(Bn)| = Kn(ω)(Bn);
however, limn→∞ Kn(ω)(Bn) = 1 because of (18), and this contradicts (17b).

Remark 1. The same argument also works to show that the distribution of the limit composition
V of the generalized Pólya urns treated in [3] has no point masses, whenever we can prove that,
for the considered urn model, P(V = 0) = P(V = 1) = 0 and the conditions of Theorem 1.1
of [3] are satisfied.

Proof of Theorem 3. Assume that mν > 0. Otherwise, it is trivial to prove that P(Z∞ =
1) = 1.

We will work through a coupling argument that considers two randomly reinforced urns with
the same initial composition (x, y). Compositions of the first urn are described by the process
{(Xn, Yn)} defined in (1); the composition process {(X̃n, Ỹn)} of the second urn is defined by

X̃n+1 = X̃n + RX(n + 1)̃δn+1,

Ỹn+1 = Ỹn + R̃Y (n + 1)(1 − δ̃n+1),
(19)

where, for n = 0, 1, 2, . . . , R̃Y (n + 1) = RY (n + 1) + (mµ − mν) and δ̃n+1 is the indicator of
the event {Un+1 ≤ X̃n(X̃n + Ỹn)

−1}. The two urns are coupled because the random sequences
{Un} and {(Vn, Wn)} defining their dynamics through (1) and (19) are the same.

Note that mµ = E(RX(n + 1)) = E(R̃Y (n + 1)); hence, Theorem 2 implies that the
distribution of Z̃∞ has no point masses and, in particular,

P(Z̃∞ = 0) = 0.

By induction on n we show that X̃n ≤ Xn and that Ỹn ≥ Yn. For n = 0, the claim is obvious
because the two urns have the same initial composition. Assume that the claim is true for n.
Then

Zn − Z̃n = Xn

Xn + Yn

− X̃n

X̃n + Ỹn

= XnỸn − X̃nYn

(Xn + Yn)(X̃n + Ỹn)
≥ 0, (20)
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which implies that δn+1 ≥ δ̃n+1. Hence,

Xn+1 − X̃n+1 = (Xn − X̃n) + RX(n + 1)(δn+1 − δ̃n+1) ≥ 0

and

Ỹn+1 − Yn+1 = (Ỹn − Yn) + RY (n + 1)(δn+1 − δ̃n+1) + (mµ − mν)(1 − δ̃n+1)

≥ 0.

Therefore, (20) holds for all n; hence, P(Z∞ = 0) ≤ P(Z̃∞ = 0) = 0.
It remains to prove that P(Z∞ ∈ (0, 1)) = 0. To obtain this, we can use the same argument

as in [13, Theorem 5], once it has been proved that [13, Equation (11) in the proof of Lemma 4]
holds without the assumption of boundedness away from 0 for the supports of the reinforcement
distributions. Defining A∗

n as in (2), this is tantamount to showing that

lim
n→∞

n∑
k=1

A∗
k = +∞ (21)

on a set of probability 1. However, when mµ > mν , Lemma 2 shows that, for almost every
ω ∈ �, there is an a > 0 such that A∗

n(ω) ≥ a/(D0 + nβ) eventually; hence, (21) is true.

5. A final remark on absolute continuity

Having proved that the distribution of the limit proportion Z∞ of an RRU has no point
masses, when min(x, y) > 0 and the means of the reinforcement distributions µ and ν are the
same, the next obvious question concerns its absolute continuity with respect to the Lebesgue
measure. Theorem 2 implies that P(Z∞ ∈ S) = 0 for all countable sets S in [0, 1]. The next
step would be to show that if S is a Lebesgue null set then P(Z∞ ∈ S) = 0. Unfortunately,
the idea developed in the proof of Theorem 2 cannot be further exploited to produce such a
result. In any case, if the closed balls Bn appearing in the proof are replaced with the ‘holes’ of
a porous set (for the link between σ -porous sets and measures, see [12] and [20]), it is possible
to show that

P(Z∞ ∈ S) = 0

for all σ -porous sets S in [0, 1]. Unfortunately, this is not enough to prove that the distribution
of Z∞ is absolutely continuous; indeed, T -measures are singular with respect to the Lebesgue
measure, but they attribute 0-measure to any σ -porous set (see, e.g. [17] and [19]).
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