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Abstract

An example of two disjoint special classes whose upper radicals coincide is presented. It is
shown that the left hereditary subradical of the hereditarily idempotent radical is right hereditary.
An example of a hereditary and principally left hereditary radical which is not left hereditary is
constructed.

1991 Mathematics subject classification (Amer. Math. Soc): 16 N 80.

All rings considered are associative. For the basic notions and results we
refer to [2, 4, 10, 11]. Let &> be any class of rings and =2 any class of prime
rings. We shall make use of the following notations:

y (a) - the semisimple class of the radical a;
fy 2? - the upper radical generated by the class SP;
Jz?& - the lower radical generated by the class &;

- the essential cover of the class g?\
- the subdirect closure of the class &\
- the class of all rings, which are isomorphic to accessible subrings

of rings in &;
y-p (£!) - the special class generated by the class =2;
A radical a is said to be hereditary (left hereditary, principally left hereditary)

if R € a and / being an ideal (left ideal, / = Rr for some r e R) of R implies
/ e a.

In this paper we give affirmative answers to the following questions:
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(1) Do there exist disjoint special classes M\ and M2 of prime rings with
<&Jtx =<%Jiii. [6, p. 191].

(2) Does left-hereditary imply right-hereditary for subradicals of the class of
hereditarily idempotent rings? [6, p. 193].

(3) Does there exist a hereditary principally left hereditary radical, which is
not left hereditary? [9, p. 155].

1. Examples of special classes

LEMMA 1.1. / / <? and £2 are classes of prime rings and 3? c yd(£>),
c y<C{&), then

PROOF. Clearly, y{<%yp{£!)) is a weakly special class. Hence £?c(&>) c
y(fyyp(£)) missis/dpy) c ye&ypig)). But yp0>) =gs{a?c{&)),
[8, Theorem 6]. Since S>{<%S'p(p)) = yd(yP(&)) and S'(<&S'p(P)) =

ydiSsi^c^))) c yd
c y(tyyp (^)). Analogously, y{<%yp (.2)) c

Hence S'('&S'p(P)) = y(^yp{B)) and

THEOREM 1.1. Let C be an algebraic closure of the field Q of rational num-
bers, A = C[xu xi,...] be the C-algebra of polynomials over C in commuting
indeterminates X\, x2 • •., I be the C-ideal of A generated by the polynomial
xl + x\-\, and B - A/1. Then:

(i)

PROOF. For n = 2 let An be the subalgebra of A generated by the elements
JCI, x2,..., xn. Put /„ = / n An, Bn = An/In = (An + I)/1 C B and y, =
xt + I e B for all i = 1,2, . . . .

We claim that A e yd(B). Let O ^ / e A. Clearly / e An for some n > 2.
Let <P : A ->• B be a C-homomorphism such that </>(A:n+1) = j i , (/)(xn+2) — yi,
(j>{Xi) = yi+2, (j){Xj) = yj for all 1 < i < n, j = n + 3, n + 4 , . . . . Obviously,
(/>(/) # 0. Hence A e yd(B).

Further we claim that B e yd(A). Obviously, x\ + x\ — 1 is an irreducible
polynomial in C[x\, x2, •..]. Hence for n > 2, /„ is a prime ideal of An and
£„ is an integral domain. Thus by Hilbert's Nullstellensatz Bn is Jacobson
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semisimple and for every maximal C-ideal M of Bn, Bn/M is isomorphic to
C. Let 0 ^ g € B. Clearly, g s Bn for some n > 2. Hence g & M for some
maximal C-ideal M of Bn. Let c\,C2,...,cn be the images of the elements
yi, yi, • • • > yn under the isomorphism Bn/M = C. Clearly, c\ + c\ — 1 = 0 .
Define the C-endomorphism </> of A by the rule </>(*,) = c,, </>(x,) = Xj_n for
all 1 < i < n, j = n + 1, n + 2 , . . . . Obviously, </>(/) = 0. Hence there
exists a surjective homomorphism rfr : B —>• A such that \/r(g) ^ 0. Therefore
B e ^^ (A) . The foregoing and Lemma 1.1 show that <%yv{A) = &yp(B).

Suppose now that 0 ^ D e <?p(A) D yp(B). Since J^jp(A) = &s{s/c(A))
and c5^(fl) = £s{s?c{B)), it follows that the ring D has essential ideals £/
and V with [/ e &/c(A) and V e s/c{B). Clearly 0 ^ ( / n V e #/c(A) n
#/c(B). Hence the rings A and B have isomorphic accessible subrings R and
S, respectively. Let (f> : S ->• R be an isomorphism between the rings S
and R. Obviously, the isomorphism </> can be extended to an isomorphism
<t> : Qd(S) -+ Qci(R) of quotient fields of 5 and R. By [3, Lemma 4.2],
QAS) = Qd(B) and Qcl{R) = Qcl{A). Thus B £ </>(B) c gd(A) and
/? = 0(5) c (/>(B). Hence /? is an accessible subring of <p(B). Now by [3,
Lemma 4.2] there exists an integer m > 1 such that for all r e 7?, A e </>(#)
and every integer t > 1, we have rmh' € R. But R C. A and A is a unique
factorization domain. Hence <t>(B) c A, Further since <p(Q) — Q, it follows
that 0(C) = C. Let / = </>(yi) and g = (/>Cy2).

(a) /2 + g2_i= 0 .

Let d : A ->• A be the C-derivation of A defined by d{xx) = 1, J(x,) = 0 for
all / > 2. Further let deg(/z) be the degree of the polynomial h & A with respect
to the variable JCI. Since <p(C) — C and yu y2 & C, it follows that f, g g C.
Without loss of generality we can assume that deg(/) > 1. Now we have

0 = d(f2 + g2 - 1) = 2fd(f) + 2gd(g)

and
(b) fd{f) + gd(g) = 0.

By (a) it follows that the polynomials / and g have no non-constant common
divisor. Hence the polynomial / divides the polynomial d(g) and the polynomial
g divides the polynomial d{f). Thus

deg(/) < deg(d(g)) < deg(g) < deg(d(/)) < deg(/)

and we have a contradiction. Therefore yp(A) D yp(B) = {0}.
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2. Left hereditary radicals

THEOREM 2.1. Let M be the class of all simple von Neumann regular rings
with identity, B be the lower Baer radical and a — J£ [M U 8]. Then:

(i) a is hereditary and principally left hereditary;
(ii) a is not left hereditary.

PROOF. Let / be an ideal of an a-radical ring A. Suppose that / ^ a{I). It
is well known that a (I) is an ideal of A [1]. Let M be an ideal of A maximal
with respect to the property M f) I = « ( / ) . Without loss of generality we can
assume that M = 0. Thus a ( / ) = 0. Since B(A) D I c « ( / ) = 0, it follows
that B(A) = 0. Further, since a - _£? [M U B], it follows that the ring A has an
accessible subring B which is a non-zero simple regular ring with an identity e.
By [3, Lemma 4.3], e is a central idempotent of the ring A and B = eA. Hence
B is a non-zero ideal of A. Therefore B D / # 0. Since B is a simple ring, it
follows that B c / . Thus B c. a(I) = 0 holds, a contradiction. Hence / e a
and so a is a hereditary radical.

Let 0 ^ A e a and a e A. Suppose that u(Aa) ^ Aa. Let N be an ideal
of the ring A maximal with respect to the property N n Aa c a(Aa). Without
loss of generality we can assume that N = 0. Since B(A) D Aa c a(Aa), it
follows that B(A) = 0. Further, since a = JSf [M U B], A has an accessible
subring D which is a non-zero simple regular ring with an identity v. By [3,
Lemma 4.3] it follows that v is a central idempotent of A and D = vA. Clearly
D C\ Aa ^ 0, D C\ Aa — {x e Aa \ xv — x — vx] = Ava = (vA)va = Dva
and D n Aa is an ideal of Aa. Since va e D and D is a regular ring, it follows
that Dva = Du for some idempotent u e D. Then Du = uDu + (v — u)Du.
Clearly, u Du is a simple regular ring with an identity u and (v — u)Du = B(Du).
Hence Du e a and D n Aa e a(Aa) holds, contradicting the relation N = 0.
Therefore Aa e a and so a is principally left hereditary.

Let A be a simple regular non-artinian ring with identity and M be a maximal
left ideal of A. By [3, Theorem 1] M is a simple ring. Suppose that M e a.
Then M must be a simple regular ring with identity. Let e be an identity of M.
Then Ae = (Ae)e c Me c Ae and Ae — Me — M. Since M is a maximal
left ideal of A, it follows that A(l — e) is a minimal left ideal of A. Hence the
socle, Soc (A), of A is non-zero. But Soc (A) is an ideal of A, so, since A is
simple, A = Soc (A). Further since the ring A has an identity, it follows that
A is a finite direct sum of minimal left ideals. Hence the ring A is artinian, a
contradiction. Therefore M & a. Clearly A € a. Hence the radical a is not left

https://doi.org/10.1017/S1446788700035527 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700035527


318 K. I. Beidar [5]

hereditary.

Recall that a ring A is said to be strongly regular if for every a e R there
exists x ^ R with a — xa2 (see [5]). By [8, Theorem 3.5], a strongly regular
ring is a regular ring, all of whose idempotents are central. Let us denote by A*
the ring A with an identity adjoined.

THEOREM 2.2. For a radical a. the following conditions are equivalent:
(i) a is a left hereditary subradical of the class of all hereditarily idempotent

rings:
(ii) a is a right hereditary subradical of the class of all hereditarily idempotent

rings;
(iii) every a-radical ring A is a strongly regular ring.

PROOF, (i) implies (iii). Let A e a. Observe that for every a e A, L = A$a
is a left ideal of A and M = Za + Ana2 is a left ideal of L, where Z is the ring
of integers. Thus M e a and consequently M2 — M. This means that a = xa2

for some x e A9. Hence a — xa2 — x(xa2)a = (x2a)a2. Since y = x2a e A
and a = ya2, A is a strongly regular ring.

(iii) implies (i). Let A e a and L be a left ideal of A. Further let a e L.
Since A is a strongly regular ring, it follows that Aa = Ae for some central
idempotent e e A. Hence Ae is an ideal of A and A = Ae®A{\— e). Therefore
Ae & a and a € Ae c a{L) which means that a is a left hereditary radical.

Symmetric arguments show that (ii) implies (iii) and (iii) implies (ii).
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