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Abstract

A natural number n is called multiperfect or k-perfect for integer k ≥ 2 if σ(n) = kn, where σ(n) is the
sum of the positive divisors of n. In this paper, we establish a theorem on odd multiperfect numbers
analogous to Euler’s theorem on odd perfect numbers. We describe the divisibility of the Euler part
of odd multiperfect numbers and characterise the forms of odd perfect numbers n = παM2 such that
π ≡ α (mod 8), where πα is the Euler factor of n. We also present some examples to show the nonexistence
of odd perfect numbers of certain forms.
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1. Introduction

Let n be a positive integer and σ(n) be the sum of the positive divisors of n. We say
that n is perfect if σ(n) = 2n and that n is multiperfect or k-perfect if σ(n) = kn for
some integer k ≥ 2. For example, 6 is a perfect number and 120 is a 3-perfect number.
One can refer to Flammencamp [4] or Hagis and McDaniel [5] for a survey of perfect
and multiperfect numbers.

Even perfect numbers were completely classified by Euclid and Euler, but odd
perfect numbers remain utterly mysterious: no odd k-perfect numbers are known
for any k ≥ 2. But it is known that an odd perfect number must satisfy various
conditions. One of the important structural results on odd perfect numbers is due
to Euler, who showed that if n is perfect then n = παM2, where π is prime, (π, M) = 1
and π ≡ α ≡ 1 (mod 4). We call πα the Euler factor. Euler’s theorem was extended by
Broughan and Zhou recently to 4-perfect numbers, and then to 2k-perfect numbers [1].
In this paper, we will establish a precise result on odd k-perfect numbers. It turns out
that an odd k-perfect number n has the form n = pe1

1 pe2
2 · · · p

es
s M2, (pi, M) = 1, where

the odd primes pi and odd positive integers e j satisfy some congruence restrictions.
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(See Theorem 2.2 for details.) We call Π := pe1
1 pe2

2 · · · p
es
s the Euler part of the

k-perfect number n analogous to the Euler factor of odd perfect numbers.
It is interesting to study the Euler part of k-perfect numbers. It turns out that the

properties of the Euler part of k-perfect numbers can be used to prove the nonexistence
of odd k-perfect numbers of certain forms. For instance, Starni [11] recently proved
that if an odd perfect number n has the form n = πα32βQ2β with (3, Q) = 1, then
32β | σ(πα). As a corollary, he showed that if π ≡ 1 (mod 12) and α ≡ 1 or 9 (mod 12),
then there do not exist odd perfect numbers n = πα32βM2. This result was extended to
odd 2k-perfect numbers by Broughan and Zhou in [1]. We will show that the prime 3
can be replaced by any Fermat prime under suitable conditions (see Corollary 3.2).

An early result of Starni [10] on odd perfect numbers is that there is no odd
perfect number decomposable into primes, all congruent to 1 (mod 4), if n = παM2 and
π . α (mod 8). In Section 3, we will characterise the forms of odd perfect numbers for
which π ≡ α (mod 8). As a consequence, we extend Starni’s results.

2. Structure of multiperfect numbers

Recently, Broughan and Zhou [1] generalised Euler’s structure theorem on odd
perfect numbers to odd 4-perfect numbers, and then to odd 2k-perfect numbers. To
prove the structural result of odd 4-perfect numbers, they employed the following
theorem, which is of independent interest.

T (Broughan and Zhou [1, Theorem 2.2]). For all odd primes p, powers j ≥ 1
and odd exponents e > 0,

2 j ‖ σ(pe) if and only if 2 j+1 ‖ (p + 1)(e + 1).

This theorem was proved by discussing many cases and constructing some
polynomials. Here we will give a simple proof. More generally, we have the following
theorem.

T 2.1. Let p be a prime and e be a positive integer. Let ν2(m) be the highest
power of 2 dividing the integer m. Then

ν2(σ(pe)) =

ν2(p + 1) + ν2

(e + 1
2

)
if p > 2 and e ≡ 1 (mod 2),

0 otherwise.
(2.1)

ν2(σ(pe) − 1) =


0 if p > 2 and e ≡ 1 (mod 2),

ν2(p + 1) + ν2

( e
2

)
if p > 2 and e ≡ 0 (mod 2),

1 if p = 2.

(2.2)

P. It is obvious that σ(pe) = 1 + p + · · · + pe ≡ 1 (mod 2) when p = 2 or when
p is odd and e is even. Now we assume that p and e are both odd. We
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write r = ν2((e + 1)/2) and (e + 1)/2 = 2r s for some odd integer s. Then

σ(pe) =
pe+1 − 1

p − 1
=

(p2)(e+1)/2 − 1
p − 1

=
(p2)2r s − 1

p − 1
= (p + 1)

(p2s)2r
− 1

p2 − 1

= (p + 1)((p2s)2r−1
+ 1)((p2s)2r−2

+ 1) · · · (p2s + 1)
p2s − 1
p2 − 1

.

Since p is odd,

(p2s)2r−i
+ 1 = (ps2r−i

)2 + 1 ≡ 2 (mod 4), 1 ≤ i ≤ r.

Note that
p2s − 1
p2 − 1

= 1 + p2 + p4 + · · · + (p2)s−1 ≡ s ≡ 1 (mod 2).

Therefore

ν2(σ(pe)) = ν2(p + 1) +

r∑
i=1

ν2((p2s)2r−i
+ 1) + ν2

( p2s − 1
p2 − 1

)
= ν2(p + 1) + r

= ν2(p + 1) + ν2

(e + 1
2

)
.

Formula (2.2) follows from (2.1) and the fact that

ν2(σ(pe) − 1) = ν2(pσ(pe−1)) = ν2(p) + ν2(σ(pe−1)).

This completes the proof of Theorem 2.1. �

We remark that Theorem 2.1 can be shown to follow from [9, Theorems 94 and 95].
As an application of Theorem 2.1, we will establish an explicit structure theorem

for odd k-perfect numbers.

T 2.2. Let n be odd and k-perfect with ν2(k) ≥ 1 and s be any integer satisfying
1 ≤ s ≤ ν2(k). Then n has the shape

n = pe1
1 pe2

2 · · · p
es
s M2, (2.3)

where M is a positive integer, the pi are primes with (pi, M) = 1, and the e j are odd
positive integers. If ν2(k) − s has a nonnegative partition

ν2(k) − s = a1 + a2 + · · · + as + b1 + b2 + · · · + bs, ai ≥ 0, b j ≥ 0, (2.4)

then the primes p1, . . . , ps satisfy

pi ≡ 2ai+1 − 1 (mod 2ai+2)
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and the exponents e1, . . . , es satisfy

e j ≡ 2b j+1 − 1 (mod 2b j+2).

Before proving the theorem, we give the definition of the Euler part of an odd k-
perfect number.

D 2.3. The Euler part of an odd k-perfect number n with the shape (2.3) is
denoted by

Π := pe1
1 pe2

2 · · · p
es
s .

R.

(i) Theorem 2.2 shows that if n1 is k1-perfect, n2 is k2-perfect and ν2(k1) = ν2(k2),
then n1 and n2 have the same shapes. Therefore we only consider 2k-perfect
numbers in many situations.

(ii) Note that there are ν2(k) shapes of an odd k-perfect number n since s can take
ν2(k) values and each s gives a shape of n as in (2.3).

P  T 2.2. Let n = pe1
1 pe2

2 · · · p
er
r be the standard factorisation of n. Since

n is k-perfect,
σ(n) = σ(pe1

1 )σ(pe2
2 ) · · · σ(per

r ) = kn.

Since ν2(k) ≥ 1, it follows from (2.1) of Theorem 2.1 that some ei must be odd. Without
loss of generality, we can assume that e1, . . . , es are odd and es+1, . . . , er are even. So

n = pe1
1 pe2

2 · · · p
es
s · p

es+1
s+1 pes+2

s+2 · · · p
er
r = pe1

1 pe2
2 · · · p

es
s M2,

where M2 = pes+1
s+1 · · · p

er
r . By Theorem 2.1,

ν2(k) = ν2(kn) = ν2(σ(n))

=

s∑
i=1

ν2(σ(pei
i )) +

r∑
j=s+1

ν2(σ(p
e j

j ))

=

s∑
i=1

(
ν2(pi + 1) + ν2

(ei + 1
2

))
= s +

s∑
i=1

(
ν2

( pi + 1
2

)
+ ν2

(ei + 1
2

))
.

Therefore

ν2(k) − s =

s∑
i=1

ν2

( pi + 1
2

)
+

s∑
i=1

ν2

(ei + 1
2

)
.

Given a nonnegative partition of ν2(k) − s such that

ν2(k) − s = a1 + a2 + · · · + as + b1 + b2 + · · · + bs, ai ≥ 0, b j ≥ 0,

we can take ν2((pi + 1)/2) = ai and ν2((ei + 1)/2) = bi, 1 ≤ i ≤ s. The desired
congruences for pi and ei follow immediately. This completes the proof of
Theorem 2.2. �
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We give two examples to recover Euler’s theorem on odd perfect numbers and
Broughan and Zhou’s structure theorem on odd 4-perfect numbers [1, Theorem 2.1].

E 2.4. Let n be an odd perfect number. Then ν2(2) = 1, s = 1, and n has the
unique form n = παM2 with π prime, α odd and (π, M) = 1. By (2.4) , a1 = b1 = 0. So
π ≡ α ≡ 1 (mod 4).

E 2.5. Let n be an odd 4-perfect number. Then ν2(4) = 2 and s = 1 or 2.

(1) If s = 1, then n = peM2. By (2.4), a1 = 1, b1 = 0 or a1 = 0, b1 = 1. Therefore
p ≡ 3 (mod 8), e ≡ 1 (mod 4) or p ≡ 1 (mod 4), e ≡ 3 (mod 8).

(2) If s = 2, then n = pe1
1 pe2

2 M2. By (2.4), a1 = a2 = b1 = b2 = 0. Therefore p1 ≡ p2 ≡

e1 ≡ e2 ≡ 1 (mod 4).

3. The Euler part of a 2k-perfect number

Based on a result of McDaniel [7], Starni [11] proved that if an odd perfect
number n has the form n = πα32βQ2β with (3, Q) = 1, then 32β | σ(πα). This result
was generalised to odd 2k-perfect numbers by Broughan and Zhou [2, Theorem 2.6].
Recall that Π is the Euler part of an odd k-perfect number. In the following theorem
we will prove necessary and sufficient conditions on the divisibility of σ(Π).

T 3.1. Let n = Πq2β ∏s
i=1 p2βi

i be an odd 2k-perfect number, where Π is the
Euler part of n, and q and the pi are distinct odd primes. Then

q2β | σ(Π) if and only if

2βi + 1 . 0 (mod ordq(pi)) if pi . 1 (mod q),

2βi + 1 . 0 (mod q) otherwise,

where ordq(m) is the order of m in the multiplicative group (Z/qZ)∗.

P. Since n is 2k-perfect,

2kn = 2kΠq2β
s∏

i=1

p2βi

i = σ(Π)σ(q2β)σ
( s∏

i=1

p2βi

i

)
= σ(n).

Therefore q2β | σ(Π) is equivalent to (q, σ(p2βi

i )) = 1, i = 1, . . . , s.
Note that if pi ≡ 1 (mod q), then

σ(p2βi

i ) ≡ 2βi + 1 (mod q).

Hence (q, σ(p2βi

i )) = 1 implies that 2βi + 1 . 0 (mod q).
If pi . 1 (mod q), then (q, σ(p2βi

i )) = 1 implies that p2βi+1
i . 1 (mod q). It follows

that 2βi + 1 . 0 (mod ordq(pi)). This completes the proof of Theorem 3.1. �

C 3.2. Let n = Πq2β ∏s
i=1 p2βi

i be an odd 2k-perfect number as in
Theorem 3.1. If q is a Fermat prime, that is, q = 22t

+ 1 for some integer t ≥ 0, and∏s
i=1(2βi + 1) . 0 (mod q), then q2β | σ(Π).
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P. Note that φ(q) = 22t
, where φ is the Euler function. Lagrange’s theorem

implies that ordq(pi) | φ(q). Hence ordq(pi) is a power of 2. The corollary follows
by Theorem 3.1 immediately. �

R. If n = παq2β ∏s
i=1 p2β

i is an odd perfect number with α ≡ π ≡ 1 (mod 4),
then it is known that β , 2 [6], β , 3 [5], β , 5, 12, 17, 24, 62 [8], and β ,
6, 8, 11, 14, 18 [2]. In [8] McDaniel and Hagis conjectured that there do not exist
such odd perfect numbers for any positive integer β. Corollary 3.2 can be used to
prove this conjecture in some special cases. For example, if q = 5, (2β + 1, 5) = 1,
π ≡ 1 (mod 20), α ≡ 13 (mod 20), then by Corollary 3.2, 5 | σ(πα), but σ(πα) ≡ 1 + α ≡
4 (mod 5). Therefore there do not exist such odd perfect numbers. In particular,
n = 411352β ∏s

i=1 p2β
i cannot be perfect for any β . 2 (mod 5) and odd primes pi.

Let n = πα
∏

i p2βi

i be an odd perfect number, πα with π ≡ α ≡ 1 (mod 4) being
Euler’s factor. Based on a result of Ewell [3], Starni [10] proved that π ≡ α (mod 8)
if each prime pi ≡ 1 (mod 4). In the following Theorem 3.3, we will extend Starni’s
results independently of Ewell’s result.

T 3.3. Let n = παM2 be an odd perfect number, with π prime, (π, M) = 1 and
π ≡ α ≡ 1 (mod 4). Then

σ(M2) ≡ 1 (mod 4) if and only if π ≡ α (mod 8), (3.1)

σ(M2) ≡ 3 (mod 4) if and only if π ≡ α + 4 (mod 8). (3.2)

In particular, if n = πα
∏

j q
2γ j

j with q j ≡ 3 (mod 4) then

π ≡ α (mod 8).

P. Using the fact that σ(παM2) = 2παM2 and M and α are odd, we find that

πα ≡ π ≡
σ(πα)

2
σ(M2) (mod 8). (3.3)

Note that π ≡ α ≡ 1 (mod 4) implies that π4 ≡ α4 ≡ 1 (mod 16). It follows that

σ(πα) = 1 + π + · · · + πα

= (1 + π + π2 + π3)(1 + π4 + π8 + · · · + πα−5) + πα−1(1 + π)

≡ (1 + π)(1 + π2)
α − 1

4
+ 1 + π (mod 16).

Hence
σ(πα)

2
≡ (1 + π2)

1 + π

2
α − 1

4
+

1 + π

2
≡

1 + π

2
1 + α

2
(mod 8).

Inserting this into (3.3),

π ≡
π + 1

2
α + 1

2
σ(M2) (mod 8).
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Since (1 + π)/2 is odd,

π(π + 1)
2

≡

(
π + 1

2

)2α + 1
2

σ(M2) ≡
α + 1

2
σ(M2) (mod 8).

It follows that
π(π + 1) ≡ (α + 1)σ(M2) (mod 16). (3.4)

If σ(M2) ≡ 1 (mod 8), then

π(π + 1) ≡ α + 1 (mod 16).

Recall that π ≡ α ≡ 1 (mod 4). It is easy to find that the solutions (π, α) (mod 16) are
(1, 1), (5, 13), (9, 9), (13, 5). In particular, we get

π ≡ α (mod 8).

Similar arguments show that the solutions to (3.4) are

(π, α) (mod 16) =


(1, 9); (5, 5); (9, 1); (13, 13) if σ(M2) ≡ 5 (mod 8),

(1, 5); (5, 9); (9, 13); (13, 1) if σ(M2) ≡ 3 (mod 8),

(1, 13); (5, 1); (9, 5); (13, 9) if σ(M2) ≡ 7 (mod 8).

This implies (3.1) and (3.2).
If we write M2 =

∏
i p2βi

i

∏
j q

2γ j

j where pi ≡ 1 (mod 4), q j ≡ 3 (mod 4), then

by (2.2) of Theorem 2.1, σ(q2γ j

j ) ≡ 1 (mod 4). Hence

σ(M2) =
∏

i

σ(p2βi

i )
∏

j

σ(q2γ j

j ) ≡
∏

i

(2βi + 1) (mod 4). (3.5)

Clearly, if βi = 0 for all i, that is M2 =
∏

j q
2γ j

j , then σ(M2) ≡ 1 (mod 4), and (3.1)
implies that π ≡ α (mod 8). �

R. By (3.2), (3.5) and (2.2) of Theorem 2.1, it is easy to see that π ≡ α +

4 (mod 8) if and only if the number of prime factors pe of M2 with pe ‖ M2,
p ≡ 1 (mod 4) and e ≡ 2 (mod 4) is odd.
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