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We herein report an experimental study to explore the effects of impact inertia, film
thickness and viscosity on the dynamics of shape deformation of a drop impacting a
liquid film. We have identified that the spreading dynamics shows a weak dependence
on impact inertia, but strongly depends on the film thickness. For a thick film, the
liquid surface deforms and absorbs part of the impact energy, and hence inhibits
spreading of the drop. For a thin film, the drop motion is restricted by the bottom
solid substrate, promoting spreading. The periodicity of the capillary controlled shape
oscillation, on the other hand, is found to be independent of impact inertia and film
thickness. The damping of the shape oscillation shows strong dependence on the film
thickness, in that the oscillation decays faster for smaller film thicknesses, due to the
enhanced viscous loss.
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1. Introduction
Drop impact on surfaces is critical in many technological and environmental

systems, in which the impact is often associated with heat and mass transfer between
the drop and the impacted surface. Since the interfacial transport of heat and mass
can significantly depend on the contact area, the post-impact evolution of the drop
shape has been of substantial research interest over decades (Roisman, Rioboo &
Tropea 2002; Clanet et al. 2004; Yarin 2006; Son & Kim 2009; Eggers et al. 2010;
Tran et al. 2011; Josserand & Thoroddsen 2016; Wildeman et al. 2016). These large
volume of previous work, most of which were performed for drop impact on solid
surfaces, has shown that the drop dynamics after impact can be broadly divided into
two stages: the spreading stage, during which the drop impacts and spreads, converting
kinetic energy to surface energy with the attendant viscous dissipation, until it reaches
the state of maximum deformation; and the rebounding stage, during which the drop
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retracts, rebounds and oscillates, converting between surface and kinetic energies,
while dissipating the total energy through viscous loss. The evolution dynamics of
the drop shape during the impact process is mainly characterized by the spreading
of the drop and the subsequent oscillation behaviour. The drop deformation during
spreading and shape oscillation modulates various aspects including the heat and mass
transfer efficiency, accumulation of the liquid film and secondary breakup leading to
production of satellite droplets.

The spreading behaviour of a drop impacting on and merging with a solid surface
has been studied extensively in the literature (Davidson 2002; Roisman et al. 2002;
Clanet et al. 2004; Yarin 2006; Son & Kim 2009; Vadillo et al. 2009; Eggers et al.
2010; Tran et al. 2011; Josserand & Thoroddsen 2016; Wildeman et al. 2016). The
spreading is generally characterized by the parameter known as the ‘spreading factor’,
defined as the maximum spreading drop radius, Rmax, normalized by the initial drop
radius R: β = Rmax/R. A significant number of studies have focused on developing a
universal scaling of the spreading factor as a function of the relevant non-dimensional
parameters, in order to capture the relative importance of the inertial, capillary and
viscous effects at different impact conditions. In the viscous regime, in which kinetic
energy is lost mostly through viscous dissipation, the spreading factor depends on both
the Weber number (We = 2ρU2R/σ ) and the Reynolds number (Re = 2UR/ν), with
β ∼ Re1/5f (WeRe−2/5) (Eggers et al. 2010). On the other hand, in the inertial regime,
in which the kinetic energy is mostly converted to surface energy, the spreading factor
is found to be independent of viscosity, β∼We1/4 (Clanet et al. 2004). Here, U is the
impact velocity and ρ, σ , ν are respectively the density, surface tension and kinematic
viscosity of the liquid. There are other factors, such as the wettability and roughness
of the impacted solid surface, which may affect the spreading behaviour substantially
and consequently are included in more detailed scaling for the spreading factor. Those
are summarized by Yarin (2006), Tran et al. (2011) and Josserand & Thoroddsen
(2016).

Although the spreading dynamics for drops impacted on solid surfaces is well
studied, it is fundamentally different from impacts on liquid surfaces. When a drop
impacts on a solid surface, the latter serves as a stagnation plane that limits the
drop motion, resulting in spreading of the deformed drop along the solid surface
and consequently conversion of the impact kinetic energy into surface energy and
dissipation. On the other hand, when a drop impacts on a liquid surface, the liquid
surface can also deform and adapt to the impact. The resistant force from the
impacted liquid surface is weaker and thus results in reduced spreading, compared
to that of impacts on solid surfaces. Furthermore, since the deformation of the liquid
surface takes the shape of a crater, the extent of the drop spreading is also limited.
As a consequence of these cumulative effects, the spreading factor is expected to be
smaller for impacts on liquid surfaces and different spreading dynamics is expected.
Despite its striking difference from impact on a solid surface, the spreading dynamics
for drop impact on a liquid film is relatively less explored. A number of studies
on drop impact on a liquid film (Cossali, Coghe & Marengo 1997; Rieber & Frohn
1999; Davidson 2002; Josserand & Zaleski 2003; Rioboo et al. 2003; Roisman, van
Hinsberg & Tropea 2008; Lagubeau et al. 2010; Gao & Li 2015; Geppert et al. 2017;
Marcotte et al. 2019; Saha et al. 2019) focused on high Weber number impacts, which
cause the drop to merge with the film, and subsequently the large deformation of the
combined surface leads to crown formation and splashing. However, the spreading
dynamics of the drop on the liquid surface can only be observed for an impact that
does not result in immediate merging, and the drop maintains its separate existence
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FIGURE 1. (Colour online) Schematic of (a) the experimental set-up, the impact process
for (b) a deep pool and (c) a shallow pool.

during the spreading process. This non-coalescing impact can be achieved for an
impact with low We, which fails to drain the interfacial gas layer that separates the
drop from the liquid surface, subsequently causing the drop to bounce (Pan & Law
2007; Tang et al. 2016). Furthermore, the low We impacts are widely used for ink-jet
printing and 3D printing (Schiaffino & Sonin 1997), and known for characteristically
different drop deformation owing to a stronger effect of surface tension (Wildeman
et al. 2016). Thus, in this work, we focus on the spreading of the drop before
bouncing from a liquid surface at low We.

The dynamics of shape oscillation of a drop upon impact has been studied in
the general context of its primary mode, corresponding frequency and viscous
damping (Reid 1960; Miller & Scriven 1968; Prosperetti 1980; Trinh & Wang
1982; Tsamopoulos & Brown 1983; Lundgren & Mansour 1988; Basaran, Scott &
Byers 1989; Basaran 1992; Becker, Hiller & Kowalewski 1991, 1994; Schiaffino &
Sonin 1997; Mashayek & Ashgriz 1998; Trinh, Thiessen & Holt 1998; van Dam &
Le Clerc 2004). However, most of these studies have focused on freely oscillating
drops, such that the effects of large initial deformations due to external disturbances
are less explored (Miller & Scriven 1968; Trinh & Wang 1982; Basaran et al. 1989;
Schiaffino & Sonin 1997; Trinh et al. 1998; van Dam & Le Clerc 2004). Furthermore,
for impacts on liquid surfaces, oscillation of the drop during the rebounding process
is constrained by the presence of the liquid surface, which itself can also deform and
oscillate. Characteristics of such oscillating drops have not been adequately explored.

In light of the state of understanding of the subject phenomena, we present herein
an experimental and mechanistic study to characterize the dynamics of spreading and
oscillation of drops impacting on liquid surfaces. We have quantified the spreading
factor, and the amplitude, time scale and viscous decay of the shape oscillation for
drops impacting liquid surfaces. We have categorically identified the effects of the
impact speed and film thickness on these variables for various liquids covering a large
range of viscosities.

2. Experimental set-up
In our experiment, the drop was generated by pushing the liquid through a vertically

mounted needle at a low speed using a syringe pump. When the drop attains a
critical size, it detaches from the needle and falls on the liquid film, which rests
in a cubic glass chamber with a cross-section of 25 mm × 25 mm and a height
of 10 mm. The thickness of the liquid film was modulated by adding or removing
liquid from the chamber, while the impact speed was modulated by changing the
vertical distance between the needle tip and the film. The needle used for these
experiments has a diameter of 0.25 mm, which generates drops roughly 1.6 mm in
diameter. Recognizing that the dynamics of spreading and oscillation of the drop is
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Liquids n-Tetradecane Silicone oil Silicone oil Silicone oil Silicone oil
C14 S1.5 S05 S20 S100

ρ, Density (kg m−3) 763 853 913 950 966
σ , Surface tension (mN m−1) 26.6 18 20 20 20
ν, Kinematic viscosity (cSt) 3.6 1.5 5 20 100

TABLE 1. Properties for the liquids tested.

best characterized in the horizontal plane, the top view of the impact process was
accessed through a mirror inclined at 33◦ to the vertical axis (shown in figure 1a).
The reflected view of the impact process was then captured at 15 037 frames per
second (fps) by a high-speed camera (Phantom V7.3, Vision Research) connected
to a 50 mm Nikon lens, a 2× tele-convertor and a 120 mm extension bellow to
achieve the required image resolution. The optical system was carefully calibrated to
account for the distortion created by the inclination. The liquid film was illuminated
from the bottom through a diffuser using an Olympus ILP-2 light source. The impact
velocity and instantaneous drop radius during the impact were measured from the
high-speed images. The liquid film thickness was measured from side view images
from a separate camera. Liquids with a wide range of viscosities, listed in table 1,
were used in this study.

3. Global dynamics
A drop impacting a liquid film can result in two global outcomes, namely, merging,

in which the gas layer trapped between the drop and the film interfaces breaks down,
causing the drop to merge with the liquid film; and bouncing, in which the gas layer
remains intact throughout the impact process, and hence separates the drop from the
liquid film. The transition from bouncing to merging outcomes in a parameter space
has been examined and scaled for a large number of liquids in our earlier works
(Tang et al. 2018, 2019). Recognizing that the spreading and shape oscillation of the
drop can only be studied for impacts in which the drop remains separated from the
film, this study focuses on the We range where bouncing occurs. Furthermore, it is
also noted that, for a given impact velocity (or We), if the normalized film thickness,
H∗, is smaller than a critical value, h∗p,max, the impact process is affected by the solid
substrate at the bottom of the liquid film (Tang et al. 2018). Here, h∗p,max is defined
as the normalized maximum penetration depth a drop can attain at a given We when
impacting a pool with a large thickness (figure 1b). The impact condition can thus be
broadly divided into two limits: deep pool (H∗> h∗p,max), where the impact is free from
the effects of the bottom substrate (figure 1b); and shallow pool (H∗ < h∗p,max), where
the impact is strongly affected by the bottom substrate (figure 1c). In this study, we
have analysed the spreading behaviour and the shape oscillation of the impacted drop
for both the shallow pool and deep pool limits.

The spreading and oscillation dynamics has been identified through a sequence of
high-speed top view images. A typical impact event is shown in figure 2(a), in which
the snapshots are selected at irregular time intervals to reflect the key events during
the drop deformation process. A few morphological characteristics can be observed
from these images. As the drop impacts and subsequently spreads over the liquid
film, surface waves are generated on both the drop and the liquid film surfaces. The
surface wave on the liquid film propagates radially outward and does not reflect back
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FIGURE 2. (Colour online) Dynamics of drop impact on a liquid film observed from top
view. (a) Top view snapshots (C14, We = 11.29, H∗ = 3.37). The initial drop radius R
and instantaneous radius RS(t) are measured. (b) Dimple formation time normalized by
capillary time scale for all liquids. (c) Time evolution of Rs(t)/R measured from top view
images. The important time scales and magnitudes are tracked for further analysis.

from the chamber wall, within the duration of experimental observation. On the other
hand, the peripheral wave originated at the bottom half of the drop surface propagates
longitudinally towards the top half and subsequently degenerates to a point at the north
pole, creating features of kink and dimple (figure 2a). The time taken for the wave to
propagate to the north pole to create the dimple, tdimple, is approximately 3.26 ms for
C14 and is almost constant for all the impact conditions studied (figure 2b). This time
scale is approximately 0.4 of the period for free drop oscillation, i.e. tdimple/τcap≈ 0.4,
where τcap is the capillary time scale τcap = 2π

√
(ρR3)/(8σ) ≈ 8.43 ms. Ideally, we

expect this ratio to be 0.5 assuming that the waves are initiated at the south pole of
the drop, and propagate half of the angular wavelength, i.e. 180◦, to create the dimple
at the north pole. However, in reality, the initial disturbance that creates the surface
wave takes place across a finite area around the south pole, and as such reduces the
angular distance travelled (<180◦), thus the travel time for the wave to reach the north
pole. Nevertheless, a near constant tdimple/τcap across various impact speeds indicates
that the formation of the dimple is a characteristic of the drop capillarity. Furthermore,
agreements among different liquids show that viscosity also has a weak influence in
determining the time scale for the dimple formation (figure 2b).

The high-speed images shown in figure 2(a) were further analysed to characterize
the drop shape deformation, by tracking the instantaneous normalized horizontal radius
of the drop as it went through different stages of the impact process (figure 2c). At
the spreading stage, the drop spreads over the liquid film until it reaches a maximum
spreading radius Rmax. At the rebounding stage, the drop undergoes about three cycles
of oscillations before it completely leaves the liquid surface. Next, we analyse the
behaviour of these two stages for all liquids tested and hence identify the effects
of We, H∗ and viscosity. The important time periods and amplitudes are marked in
figure 2(c), which will be discussed in subsequent analyses.
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FIGURE 3. (Colour online) Spreading factor (β) as a function of H∗ and We. (a) Value
of β as a function of H∗ for all liquids with 8.5 < We < 9.75. SP: shallow pool. DP:
deep pool. Scaling is given by (4.2) with βDP = 1.23 and h∗p,max = 1.5. (b) Value of β
as a function of We for S05. (c) Value of β as a function of We in the deep pool
regime for all liquids tested. Red filled circle: current data. Dashed and solid lines:
scaling of β ∼ We0.066. All the other symbols: impact on solid surface adapted from
Clanet et al. (2004), Tran et al. (2012) and Wildeman et al. (2016). Clanet-H2O-SHP:
experiments with water drop impacting super-hydrophobic surface (Clanet et al. 2004);
Clanet-H2O-HP: experiments with water drop impacting hydrophilic surface (Clanet et al.
2004); Tran-FC72-FB: experiments with FC72 drop impacting a super-heated surface
inducing film boiling (Tran et al. 2012); Tran-H2O-FB: experiments with water drop
impacting a super-heated surface inducing film boiling (Tran et al. 2012). Wildeman-SM:
simulation of drop impact on surfaces using slip and no-slip conditions (Wildeman et al.
2016). (d) Value of β2

SP as a function of We at different H∗ for all liquids tested.

4. Spreading dynamics
4.1. Experimental observation

First, we discuss the experimental results for the spreading factor, β = Rmax/R,
measured with a range of H∗ and We. Figure 3(a) shows β as a function of H∗

for similar values of We, 8.5 < We < 9.75, for all liquids. The data from different
liquids are represented by different colours and symbols, while the shallow and
deep pool limits are distinguished by the open and filled symbols, respectively. It
is seen that in the shallow pool limit, the spreading factor decreases with H∗ and
asymptotically attains a constant value at the deep pool limit. As shown in the
schematic in figure 1(b), for the deep pool, i.e. H∗ > h∗p,max, the drop and liquid
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interface remain far from the bottom substrate such that the drop deformation is
independent of H∗. On the other hand, for the same We in the shallow pool, i.e.
H∗ < h∗p,max, the film deformation is restricted by the bottom substrate, and as such
the drop deformation is enhanced (figure 1c). Furthermore, the deformation of the
liquid surface not only converts part of the drop kinetic energy away, but it also
forms a crater that limits the spreading of the drop. As H∗, and thus H∗ − h∗p,max
decreases, the drop deformation increases due to the combination of the increased
resistance from the bottom substrate and the reduced liquid film deformation.

Figure 3(b) shows the effect of We on drop spreading by comparing β as a function
of We for both the deep and shallow pool limits for S05 (other liquids also show
similar behaviour). Since the impact inertia and surface tension are respectively the
driving and restoring forces for the drop spreading, we observe monotonic increase
in β with their ratio, i.e. We. The scatter of the data in the shallow pool limit comes
from the strong influence of the film thickness, as shown in figure 3(a). This effect,
however, is not present in the deep pool limit and hence the data are significantly less
scattered. The dependence of β on We for the deep pool is observed consistently for
all the liquids with a range of viscosities (figure 3c). It also shows that various liquids
follow the scaling of βDP ∼We0.066, demonstrating a weak effect of We on spreading
in the deep pool limit. Moreover, overlap of the data from various liquids with a
range of viscosities also suggests a weak effect of viscosity on the spreading factor.
These results imply that the impact kinetic energy is mostly used for the deformation
of the liquid film, rendering the drop deformation weaker. The spreading factors
are further compared with those for drop impacts on solid surfaces in the similar
We range reported in the literature (Clanet et al. 2004; Tran et al. 2012; Wildeman
et al. 2016) (figure 3c). It is seen that for small We(<3), β from impacts on solid
surfaces and deep pools follow a similar, albeit weak, dependence on We, while for
moderate to high We(>3), impacts on solid surfaces show a sharper increase in β

with We. It is also noted that for all We ranges, β for impacts on deep pools is
significantly smaller than that on solid surfaces. Such a drastic difference is expected
since drop impacts on liquid surfaces are fundamentally different from those on solid
surfaces, in that the former involve impacts on a deformable surface which can adapt
to the impact; while for the latter, the drop motion is restricted by the impacted
rigid surface, whose properties including roughness and wettability come into play.
Moreover, impacts on the liquid surfaces, especially in the deep pool limit, not only
cause significant deformation of the liquid surface (figure 1b), but also induce motion
in the liquid film, both of which absorb substantial impact kinetic energy, and hence
limit the effective kinetic energy left for the drop to deform. The cumulative effect
causes the spreading factor smaller for the impact on liquid surfaces.

4.2. Scaling analysis
We next perform a scaling analysis to assess the effects of We and H∗ on the spreading
factor in both limits of a deep pool and a shallow pool. Considering an energy balance
between before the impact and at the maximum spreading, where the kinetic energy of
the drop can be neglected, we can write (KE)D,0 = (KE)F + (1SE)D + (1SE)F + Eφ .
Here, (KE)D,0 = (4/3)πR3ρU2 is the kinetic energy of the drop before impact;
(KE)F is the kinetic energy of the liquid film induced by the impact, which is
(3/4)(KE)D,0, as shown in previous studies (Tran et al. 2013; Tang et al. 2016,
2018); (1SE)D and (1SE)F are the changes in the surface energy due to changes
in the drop and film shapes respectively; and Eφ is the energy loss due to
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viscous dissipation. For the deep pool (H∗ > h∗p,max), where we assume that the
deformation of the liquid film takes the shape of a cylindrical well, as shown in
figure 1(b), such that the surface energies scale as (1SE)F ≈ 2πRmax,DPhp,maxσ and
(1SE)D ≈ 4πR2

max,DPσ . The boundary layer thickness normalized by drop diameter
at the time of maximum deformation, can be estimated by the momentum diffusion
thickness, Lb/2R ≈ √νtm/2R =√

(π/4)Oh(tm/τcap), where Lb is the boundary layer
thickness (Roisman 2009; Visser et al. 2015; Wildeman et al. 2016). The normalized
time taken by the drop to reach the maximum deformation (tm/τcap) in the current
study is less than 0.5. Since the Ohnesorge numbers (Oh= ν√ρ/σR) for the liquids
reported here are less than 0.01, we expect the viscous dissipation to be confined
to a thin boundary layer (Lb/2R< 0.06) and hence, it is neglected, i.e. Eφ ≈ 0. The
collapse of β for all liquids (figure 3c) also supports this assumption. Substituting
these expressions in the energy balance, for the deep pool, we find

We
12
≈ h∗p,maxβDP + 2β2

DP, (4.1)

where βDP = (Rmax,DP/R) is the spreading factor in the deep pool limit. As expected,
βDP is independent of H∗ since the impact is not affected by the bottom substrate,
which is consistent with the data in figure 3(a). Our previous experimental data (Tang
et al. 2018) on transition between bouncing and merging states for a drop impact on
a deep pool, showed that the normalized penetration depth (h∗p,max), for a wide range
of liquids, is linearly dependent on We, i.e. h∗p,max ∼ We. If we assume βDP ∼ Wen,
the scaling dependence of (4.1) can be rewritten as We/12∼We1+n + 2We2n. For the
right-hand side to match the linear dependence on We of the left-hand side, n must
be negligible. In other words, we expect β to show a very weak dependence on We
in the deep pool limit, which agrees with the exponent of 0.066 shown in figure 3(c).

In the shallow pool limit (H∗ < h∗p,max), however, the deformation of the film
((1SE)F), is restricted by the bottom substrate, and the drop spreading ((1SE)D)
is enhanced, as illustrated in figure 1(c). Following figure 1(c) for an arbitrary film
thickness H, the reduction in the deformed film surface energy with respect to a deep
pool can be expressed as δ(1SE)F ≈ 2π(Rmax,SP(hp,max − H))σ , while the increase
in the deformed drop surface energy with respect to deep pool can be expressed as
δ(1SE)D ≈ 4π(R2

max,SP − R2
max,DP)σ . Subsequently, comparing the deep and shallow

pool limits and assuming that the reduction in the surface energy of the film leads
to the increase in the surface energy of the drop, i.e. δ(1SE)F = δ(1SE)D, for the
shallow pool limit we find

β2
SP − β2

DP ≈
βDP

2
(h∗p,max −H∗), (4.2)

where βSP = Rmax,SP/R is the drop deformation in the shallow pool limit. Note that
the spreading factor for the shallow pool limit approaches that for the deep pool limit
(βSP→ βDP) as the film thickness approaches the transition boundary (H∗→ h∗p,max).
Substituting βDP from (4.1) into (4.2) gives

β2
SP ≈

We
24
−H∗βDP, (4.3)

which leads to βSP ∼
√

We at the limit of vanishing film thickness. To test the
scaling for the shallow pool limit with the experiment, in figure 3(d) we plot the
experimentally measured β2

SP as a function of We for various H∗ for all liquids tested,
which shows a linear dependence. We also see that the value of βSP progressively
decreases with H∗ for a given We. Both of these support the scaling expressed
in (4.3).
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FIGURE 4. (Colour online) Time scale of the drop shape oscillation. Time period between
peaks 1T1, normalized by damped capillary time scale as a function of (a) H∗ and (b) We.
Time period between valleys 1T2, normalized by damped capillary time scale τcap,d as a
function of (c) H∗ and (d) We. The 1Ti are defined in figure 2(c).

5. Oscillation dynamics
5.1. Oscillation time scale

The oscillation dynamics of the drop shape beyond the initial spreading (figure 2c)
resembles a damped oscillator. To analyse this behaviour, we use the reference of a
freely oscillating drop, whose oscillation time scale τcap and frequency ωcap for an
inviscid liquid are given by ωcap= 2π/τcap=

√
(8σ)/(ρR3) (Lifshitz & Landau 1959).

For a real fluid, however, the oscillation is affected by viscous dissipation resulting in
a damped oscillation frequency: ωcap,d = ωcap

√
(1− ε2)= 2π/τcap,d. Here, τcap,d is the

time scale for the damped oscillation and ε is the damping ratio: ε = η/ωcap, where
η ≈ 8ν/R2 is the damping coefficient. The damping ratio can thus be further related
to the Ohnesorge number: ε= 2

√
2Oh.

Now, we compare the time periods between consecutive peaks and valleys of the
observed damped oscillation with the theoretical values. In figure 4(a,c), the time
periods normalized by the damped capillary time scale τcap,d are plotted as a function
of H∗, where the closed and open symbols represent 1T1 and 1T2 respectively
(defined in figure 2c) and symbols and colours represent different liquids. We observe
no significant variations for different H∗, which indicates that neither the deformation
of the liquid surface nor the resistance from the solid substrate affects the oscillation
frequency. Furthermore, the normalized periods not only are independent of We
(figure 4b,d), they also assume a mean value around unity. This signifies that the
frequencies of the post-impact oscillations are primarily controlled by capillarity and
viscosity, and are not affected by the impact inertia.

5.2. Viscous decay
While the kinetic and surface energies are periodically interchanged during the
oscillation, part of the total energy is continuously dissipated through viscous loss
and, as such, the maximum radius progressively decays after each cycle. This
decay can be quantified by the ratio between the second (R2) and first, which is
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FIGURE 5. (Colour online) Viscous decay of drop oscillation. (a–d) Ratio of second
peak to first peak in observed oscillations as a function of H∗, for (a) deep pool and (c)
shallow pool. Ratio of second peak to first peak in observed oscillations as a function
of We, for (b) deep pool and (d) shallow pool. (e) Logarithmic decrements as a function
of ηtcap,d. Error bar shows the scatter in the data. The line shows the linear function
for a system with linear damping. ( f ) Overdamping behaviour of S100. Line: theoretical
prediction based on equation: R(t)/Rs − 1≈ A exp((−ε+√ε2 − 1)ωcapt) for A= 1. Circle:
experimental data.

the maximum radius (Rmax, defined in figure 2c), which is plotted against H∗ in
figures 5(a) and 5(c) for all the liquids. We observe a strong dependence of the
viscous decay on the film thickness. Specifically, in the shallow pool limit, the decay
becomes weaker with increasing film thickness (figure 5a), until it asymptotically
attains an almost constant value in the deep pool limit (figure 5c). For small film
thicknesses, the drop spreads over the bottom substrate, which leads to a strong flow
gradient inside the drop, and hence stronger viscous dissipation and damping in the
oscillation. As the film thickness increases, the drop deformation, thus dissipation,
weakens. At the deep pool limit, the effect of the film thickness vanishes, and the
dissipation is only induced by the internal motion of the weakly deformed drop
which is independent of the film thickness, resulting in an almost constant decay
with respect to H∗. Figure 5(b) shows that the viscous decay for the deep pool limit
is mostly independent of We except for the high-viscosity liquids such as S20, for
which the decay slightly increases with We. The analysis of nonlinear oscillation
of a freely oscillating viscous drop (Basaran 1992) shows that viscous damping
increases with both the viscosity (Oh) and the initial deformation (β), where the
latter is larger for higher We, as shown in the previous section. In the shallow pool
limit, since the initial deformation caused by the spreading (β) is even higher, the
positive dependence of the viscous decay on We is more prominent (figure 5d). To
quantify the viscous decay, we examined the logarithm of the ratio of neighbouring
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peaks, namely the logarithmic decrement, defined as δdecay = ln[(Rmax − R)/(R2 − R)].
For a linearly damped oscillation, the logarithmic decrement can be expressed as
δdecay ∼ ητcap,d. In figure 5(e), we compared the measured δdecay with ητcap,d for the
deep pool limit, which shows qualitative agreement, i.e. the decay increases with
increasing viscosity. The expected linear dependence is not observed because of
the nonlinear viscous damping. To accurately predict the nonlinear viscous damping
behaviour, a detailed solution of the flow field in the drop is required and cannot be
obtained by a simple model. The large scatter in δdecay for a single liquid comes from
the weak dependence of decay on We.

Theoretically, an oscillating system loses its periodicity and displays aperiodic
behaviour if the damping is too large, triggering the over-damping phenomenon.
Following the linear damping model discussed above, over-damping happens when
the damping ratio is larger than unity, i.e. ε > 1, or Oh > 0.35, for a damped
oscillating drop. In our experiments, the viscosity of S100 is significantly larger
than other liquids and satisfies the over-damping condition (Oh = 0.88 > 0.35). The
shape oscillations after the initial spreading stage are indeed significantly damped for
S100 (figure 5f ) with no periodic behaviour. Using the theoretical solution for the
over-damped system R(t)/Rs − 1≈ A exp((−ε +√ε2 − 1)ωcapt), the behaviour of the
drop radius can be well predicted, as shown in figure 5( f ).

6. Conclusion
In summary, we have investigated the spreading and oscillation dynamics when

drops of different We and viscosities bounce upon impacting liquid surfaces of various
film thicknesses. The spreading dynamics, characterized by the spreading factor, has
negligible dependence on the film thickness in the deep pool regime as the drop
kinetic energy is primarily converted to surface energy of the significantly deformed
film surface. On the other hand, in the shallow pool regime, the spreading factor
decreases with H∗ and increases with We, since the film deformation is inhibited and
drop deformation is promoted by the bottom substrate. The viscous effect has little
influence on the spreading dynamics. The oscillation time scale follows that of a
freely oscillating drop with no dependence on We and H∗. The viscous decay of the
oscillation is not affected by We and H∗ in the deep pool regime. However, in the
shallow pool regime, the decay decreases with H∗ and increases with We, owing to
enhanced viscous loss due to the higher degree of drop deformation. Over-damping
behaviour is observed and predicted for S100 with a viscosity beyond the critical
value.
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