ON INEQUALITIES OF HILBERT AND WIDDER

by DRAGOSLAV S. MITRINOVIĆ and JOSIP E. PEČARIĆ

(Received 14th November 1989)

A short proof of Chow's generalization of Widder's inequality and generalizations of some related Hardy's
results are given.
1980 Mathematics subject classification (1985 Revision): 26D15.

1. Let $a=\left(a_{0}, a_{1}, a_{2}, \ldots\right)$ be a nonnegative sequence. We use the notation

$$
A(x)=\sum a_{n} x^{n}, A^{*}(x)=\sum \frac{a_{n} x^{n}}{n!}, a(x)=e^{-x} A^{*}(x)
$$

where the summations run from 0 to $+\infty$.
Then

$$
\begin{gather*}
\sum \sum \frac{a_{m} a_{n}}{m+n+1} \leqq \pi \sum \sum \frac{(m+n)!}{m!n!} \frac{a_{m} a_{n}}{2^{m+n+1}}, \tag{1}\\
\int_{0}^{1} A^{2}(x) d x \leqq \pi \int_{0}^{+\infty} a^{2}(x) d x . \tag{2}
\end{gather*}
$$

These inequalities are equivalent, and they are known as Widder's inequalities. Note that (1) is stronger than the well-known Hilbert inequality (see [4]). G. H. Hardy [2] showed that (2) (and so (1)) can be obtained by using the same Hilbert inequality (see also [3, pp. 238-239]).

The following generalization of Widder's inequality is given by Y. C. Chow [1]:
Theorem 1. Let a and b be two nonnegative sequences, $p>1, p^{\prime}=p /(p-1)$. Then

$$
\begin{equation*}
\sum \sum \frac{a_{m} b_{n}}{m+n+1} \leqq(\pi / \sin (\pi / p))\left(\int_{0}^{+\infty} a^{p}(x) d x\right)^{1 / p}\left(\int_{0}^{+\infty} b^{p^{\prime}}(x) d x\right)^{1 / p^{\prime}} \tag{3}
\end{equation*}
$$

where $B(x), B^{*}(x)$ and $b(x)$ are defined like $A(x), A^{*}(x)$ and $a(x)$.

Here we shall show that (3) can also be proved by using Hilbert's inequality. Indeed, we have

$$
\begin{gathered}
A(x)=\int_{0}^{+\infty} e^{-t} A^{*}(x t) d t=\frac{1}{x} \int_{0}^{+\infty} e^{-u / x} A^{*}(u) d u \\
B(x)=\frac{1}{x} \int_{0}^{+\infty} e^{-u / x} B^{*}(u) d u
\end{gathered}
$$

and so

$$
\int_{0}^{1} A(x) B(x) d x=\int_{0}^{1} \frac{d x}{x^{2}} \int_{0}^{+\infty} e^{-u / x} A^{*}(u) d u \int_{0}^{+\infty} e^{-u / x} B^{*}(u) d u
$$

Putting $1 / x=t+1$, we have

$$
\begin{aligned}
\int_{0}^{1} A(x) B(x) d x & =\int_{0}^{+\infty} d t \int_{0}^{+\infty} e^{-t u} a(u) d u \int_{0}^{+\infty} e^{-t v} b(v) d v \\
& =\int_{0}^{+\infty} \int_{0}^{+\infty} \frac{a(u) b(v)}{u+v} d u d v \\
& \leqq(\pi / \sin (\pi / p))\left(\int_{0}^{+\infty} a^{p}(x) d x\right)^{1 / p}\left(\int_{0}^{+\infty} b^{p^{\prime}}(x) d x\right)^{1 / p^{\prime}} .
\end{aligned}
$$

The last inequality is the well-known Hilbert inequality.
2. Another generalization of (2) is given in [2]:

If $p>1$, then

$$
\begin{equation*}
\int_{0}^{1} z^{p-2} A^{p}(z) d z \leqq\left\{\Gamma\left(\frac{1}{p}\right)\right\}^{p+\infty} \int_{0}^{+\infty} z^{p-2} a^{p}(z) d z \tag{4}
\end{equation*}
$$

The following result, similar to Theorem 1, is a simple consequence of this result:

Theorem 2. Let the conditions of Theorem 1 be fulfilled. Then

$$
\begin{equation*}
\sum \sum \frac{a_{m} b_{n}}{m+n+1} \leqq(\pi / \sin (\pi / p))\left(\int_{0}^{+\infty} z^{p-2} a^{p}(z) d z\right)^{1 / p}\left(\int_{0}^{+\infty} z^{p^{\prime}-2} b^{p^{\prime}}(z) d z\right)^{1 / p^{\prime}} \tag{5}
\end{equation*}
$$

Proof. Apply Hölder's inequality to $\int_{0}^{1} A(z) B(z) d z$ written as $\int_{0}^{1} z^{-2}(z A(z))(z B(z)) d z$, and then use (4).
3. The following result is a generalization of Theorem 4 from [2]. (See also Theorem 353 from [3, p. 257].)

Theorem 3. Suppose that $K_{0}(x) \geqq 0$, that

$$
K_{1}(x, y)=\int_{0}^{+\infty} K_{0}(x t) K_{0}(y t) d t
$$

(so that K_{1} is symmetric and homogeneous of degree -1), and that

$$
K_{2}(x, y)=\int_{0}^{+\infty} K_{1}(x, t) K_{1}(y, t) d t
$$

Then, for positive sequences a and b,

$$
\begin{equation*}
\left(\sum \sum K_{2}(m, n) a_{m} b_{n}\right)^{2} \leqq J^{2}\left(\sum \sum K_{1}(m, n) a_{m} a_{n}\right)\left(\sum \sum K_{1}(m, n) b_{m} b_{n}\right) \tag{6}
\end{equation*}
$$

where the summations extend from 1 to $+\infty$ and

$$
J=\int_{0}^{+\infty} \frac{K_{1}(w, 1)}{\sqrt{w}} d w .
$$

Proof. The argument is similar to that used by Hardy. It is shown that

$$
\sum \sum K_{2}(m, n) a_{m} b_{n}=\int_{0}^{1} K_{1}(w, 1) \Omega(w) d w
$$

where

$$
\Omega(w)=\sum \sum K_{1}(m w, n) a_{m} b_{n}=\int_{0}^{+\infty} \phi_{a}(w t) \phi_{b}(t) d t
$$

and $\phi_{c}(t)=\sum c_{n} K_{0}(n t)(c=a, b)$. The final steps are the same as those in [2].
As in [2] we can give the following particular cases:

$$
\begin{equation*}
\sum \sum \frac{\log (m / n)}{m-n} a_{m} b_{n} \leqq \pi\left(\sum \sum \frac{a_{m} a_{n}}{m+n}\right)^{1 / 2}\left(\sum \sum \frac{b_{m} b_{n}}{m+n}\right)^{1 / 2} \tag{7}
\end{equation*}
$$

where the coefficient on the left-hand side is to be interpreted as $1 / n$ when $m=n$;

$$
\begin{equation*}
\sum \sum \frac{|\log (m / n)|}{\max (m, n)} a_{m} b_{n} \leqq 2\left(\sum \sum \frac{a_{m} a_{n}}{\max (m, n)}\right)^{1 / 2}\left(\sum \sum \frac{b_{m} b_{n}}{\max (m, n)}\right)^{1 / 2} \tag{8}
\end{equation*}
$$

Acknowledgement. The authors are grateful to the referee for useful suggestions.

REFERENCES

1. Y. C. Chow, On inequalities of Hilbert and Widder, J. London Math Soc. 14 (1939), 151-154.
2. G. H. Hardy, Remarks in addition to Dr Widder's note on inequalities, J. London Math. Soc. 4 (1929), 199-202.
3. G. H. Hardy, J. E. Littlewood and G. Polya, Inequalities (Cambridge, 1934).
4. D. V. Widder, An inequality related to one of Hilbert's, J. London Math. Soc. 4 (1929), 194-198.

Smiluaniceva 38
11000 Beograd
Yugoslavia

Faculty of Technology
Ive Lole Ribara 126 41000 Zagreb
Yugoslavia

