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An Introduction to Diagrammatic Soergel
Bimodules

Amit Hazi1

6.1 Motivation

Let g be a semisimple Lie algebra over C, with a Cartan subalgebra h and
Borel subalgebra b. The Cartan subalgebra h gives rise to a root system Φ⊂ h∗,
and the choice of Borel subalgebra corresponds to a selection of simple roots
Σ and positive roots Φ+ inside Φ. The root system Φ induces a Weyl group
W generated by the set S of reflections in the simple roots Σ. (We will later
generalize this situation in Definition 6.3.) Inside h∗ we also have

Λ = {λ ∈ h∗ : 〈α∨,λ 〉 ∈ Z for all α ∈ Σ} (6.1.1)

⊂

Λ
+ = {λ ∈ h∗ : 〈α∨,λ 〉 ∈ Z>0 for all α ∈ Σ}. (6.1.2)

Finally let Ug denote the universal enveloping algebra of g. We will consider
g-modules and Ug-modules interchangeably. A standard reference for all the
facts about g-modules in this section is [11].

For each λ ∈Λ, define the Verma module M(λ ) =Ug⊗UbCλ . (Here Ub de-
notes the universal enveloping algebra of b, while Cλ denotes the 1-dimensional

b-module given by b→ h
λ−→C.) Each Verma module M(λ ) has a unique simple

quotient L(λ ), which is the unique simple weight module of highest weight λ .
The simple module L(λ ) is finite dimensional if and only if λ ∈ Λ+.

The category Ug-mod of all Ug-modules is too large to be useful. Instead
we restrict our attention to a smaller category which contains Verma modules
and highest weight simple modules.

Definition 6.1 Let λ ∈ Λ+, and write Ug-modUh-ss for the category of
g-modules which are semisimple as h-modules. (In other words, Ug-modUh-ss

1 Supported by the Royal Commission for the Exhibition of 1851.
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6 An Introduction to Diagrammatic Soergel Bimodules 213

is the category of weight modules.) We define Oλ to be the minimal full sub-
category of Ug-modUh-ss that contains M(λ ) and is closed under submodules,
quotients and extensions.

It is obvious that Oλ is an abelian category. It is somewhat less obvious that
Oλ is in fact a finite abelian category, with finite length objects, finitely many
isomorphism classes of simple objects and finite-dimensional Hom-spaces.

Remark The above definition of Oλ is non-standard. Most treatments (e.g.
[11]) first define the BGG category O which contains all Verma modules and
all highest weight simple modules. Then Oλ is defined for arbitrary λ ∈ h∗ as
a subcategory of O with a certain prescribed action of the centre Zg of Ug. In
general Oλ is a union of blocks of O, and when λ ∈ Λ+, one can show that Oλ

is the block containing L(λ ).

Example 6.2 Suppose g= sl2. The corresponding root system Φ is of Dynkin
type A1, with Weyl group W = {1,s}. Within h∗ there are obvious identifica-
tions Λ ∼= Z and Λ+ ∼= Z>0. Let n ∈ Z>0. The indecomposable objects in On

are L(n), L(−n−2) = M(−n−2), M(n) = P(n) and P(−n−2). The structures
of the last two modules are given by the exact sequences

0 L(−n−2) M(n) L(n) 0,

0 M(n) P(−n−2) M(−n−2) 0.

Let ρ = 1
2 ∑α∈Φ+ α be the half-sum of the positive roots. For w ∈W and

λ ∈ h∗, we define the following shift

w ·λ = w(λ +ρ)−ρ (6.1.3)

of the usual Weyl group action, called the dot action. The dot action parametrizes
several sets of modules in Oλ .

Theorem 6.1 There are bijections

{simple modules in Oλ} 3 L(w ·λ )

w ∈W {Verma modules in Oλ} 3M(w ·λ )

{indecomposable projective objects in Oλ} 3 P(w ·λ ).

Here P(w ·λ ) denotes the projective cover of L(w ·λ ) in Oλ .
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214 Amit Hazi

We can say a little more about the structure of the indecomposable projective
objects.

Proposition 6.2 For w ∈W there is a sequence of submodules

0 = P0 < P1 < · · ·< Pn = P(w ·λ )

such that Pn/Pn−1
∼= M(w ·λ ), and for each 1 6 i < n, there is some wi ∈W

with `(wi)< `(w) such that Pi/Pi−1
∼= M(wi ·λ ).

In particular, from the case w = 1 we conclude that P(λ ) = M(λ ).
Since Oλ is a finite abelian category, it is equivalent to the category of finite-

dimensional right modules over some finite-dimensional algebra. In fact, it can
be shown that this algebra is not dependent on λ !

Theorem 6.3 There is a finite-dimensional algebra A such that for any
λ ∈ Λ+, Oλ 'modfd−A.

It is evident that the algebra A is only well defined up to Morita equivalence.
A natural problem is to find a concrete presentation of A. Since A is Morita
equivalent to

EndOλ

Ç⊕
w∈W

P(w ·λ )
å

,

this problem is equivalent (in some sense) to understanding projective objects
and morphisms between them. Counter-intuitively, it is more effective to in-
vestigate functors acting on the category of projective objects and morphisms
(i.e. natural transformations) between them.

Proposition 6.4 For each s∈ S there is an exact self-adjoint functor θs :Oλ −→
Oλ with the following properties:

1 θs preserves projective objects;
2 if w ∈W with `(ws)> `(w) there is an exact sequence

0→M(w ·λ )→ θs(M(w ·λ ))∼= θs(M(ws ·λ ))→M(ws ·λ )→ 0;

3 if st · · ·u is a reduced expression for some w ∈W in terms of simple
reflections in S, then P(w ·λ ) is a direct summand of θsθt · · ·θu(M(λ )).

Since M(λ ) is itself projective, every natural transformation

θsθt · · ·θu −→ θs′θt ′ · · ·θu′

for reduced expressions st · · ·u and s′t ′ · · ·u′ induces a homomorphism

θsθt · · ·θu(M(λ ))−→ θs′θt ′ · · ·θu′(M(λ ))
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6 An Introduction to Diagrammatic Soergel Bimodules 215

of projective objects. In fact, it can be shown that every homomorphism be-
tween such projective objects is induced in this way [11, Theorem 10.7]. So to
find a concrete presentation of the algebra A, it is enough to describe

Hom(θsθt · · ·θu,θs′ ,θt ′ · · ·θu′),

the space of all natural transformations between the functors θsθt · · ·θu and
θs′θt ′ · · ·θu′ .

Theorem 6.5 ([15, 17]) There are C[h]-C[h] bimodules {Bs}s∈S such that for
any reduced expressions st · · ·u and s′t ′ · · ·u′, there is an isomorphism

Hom(θsθt · · ·θu,θs′ ,θt ′ · · ·θu′)∼=
C⊗Hom(Bs⊗Bt ⊗·· ·⊗Bu,Bs′ ⊗Bt ′ ⊗·· ·⊗Bu′)⊗C,

where all tensor products are over C[h] and C denotes the coinvariant algebra
C[h]/C[h]C[h]W+ , i.e. the quotient of C[h] by the ideal generated by positive
degree W-invariants. (Here we are using the fact that the space of bimodule
homomorphisms between two bimodules is itself a bimodule.)

The bimodules {Bs}s∈S (and more generally any direct summand of a tensor
product of such bimodules) are today called (classical) Soergel bimodules, and
can be used to give a presentation of A as follows. Fix a reduced expression for
each w ∈W . Then A is Morita equivalent to⊕

w,w′∈W
w=st···u

w′=s′t ′···u′

C⊗Hom(Bs⊗Bt ⊗·· ·⊗Bu,Bs′ ⊗Bt ′ ⊗·· ·⊗Bu′)⊗C,

where st · · ·u and s′t ′ · · ·u′ are the fixed reduced expressions for w and w′.

6.2 The Diagrammatic Category D of Soergel Bimodules

It is an amazing fact that Soergel bimodules make sense for arbitrary Coxeter
groups, not just Weyl groups. This suggests that we should define “category
Oλ” for arbitrary Coxeter groups in terms of Soergel bimodules.

Theorem 6.6 ([13], [5, 6, 9]) The monoidal category of Soergel bimodules has
an explicit diagrammatic presentation.

Equivalently, the finite-dimensional algebra A above has a presentation as
a diagram algebra. In this context, a diagrammatic presentation means a pre-
sentation of a (strict) monoidal category using string diagrams. The essence of
this approach is summarized in Table 6.1. In short, a morphism in a monoidal
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category corresponds to a diagram or a linear combination of diagrams. The
sequence of colours of the edges which meet the bottom and top of the diagram
give the domain and codomain of the corresponding morphism respectively.
Vertical concatenation of diagrams corresponds to composition of morphisms,
while horizontal concatenation corresponds to the tensor product of
morphisms.

There are several advantages of the diagrammatic approach to Soergel bi-
modules over classical Soergel bimodules. In general, presenting a monoidal
category diagrammatically makes bifunctoriality of the tensor product visually
obvious through rectilinear isotopy of diagrams. Informally, we say that two
diagrams are equivalent up to rectilinear isotopy if we can deform one diagram
into the other by continuously moving vertices and stretching or shrinking
edges, without moving edges or vertices past other edges and without intro-
ducing “caps” or “cups” in any edges. (See the left-hand sides of (6.2.1) for
pictures of cap/cup diagrams. For a more formal description of rectilinear iso-
topy, see [10, (7.5)–(7.8)].) In the specific case of Soergel bimodules, there are
several other “visually intuitive” relations which we will see later. More im-
portantly, classical Soergel bimodules sometimes behave poorly over fields of
positive characteristic, while diagrammatic Soergel bimodules remain well be-
haved. For applications to modular representation theory it is therefore best to
work in the diagrammatic category.

From now on, we generalize from the setting of semisimple Lie algebras
and assume that (W,S) is an arbitrary Coxeter system. In other words, W is a
group with a presentation

W = 〈S | ∀s, t ∈ S, (st)mst = 1〉

for certain positive integers mst , with mst = mts and mss = 1 for all s, t ∈ S.
The natural replacement for the Cartan subalgebra in this setting is called a
realization.

Definition 6.3 Let k be an integral domain. A realization of (W,S) over k
consists of a free, finite rank k-module h along with subsets {α∨s : s ∈ S} ⊂ h

and {αs : s ∈ S} ⊂ h∗ = Hom(h,k) such that

(i) 〈α∨s ,αs〉= 2 for all s ∈ S;

(ii) the assignment

s(λ ) = λ −〈α∨s ,λ 〉αs

for all s ∈ S and λ ∈ h∗ defines a representation of W on h∗;

(iii) the technical condition [9, (3.3)] is satisfied.
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Example 6.4

1 Let g be a complex semisimple Lie algebra, and let b be a choice of Borel
subalgebra. The Cartan subalgebra h with the usual simple roots and coroots
is a C-realization of the Weyl group W .

2 Let k be an algebraically closed field of characteristic p > 0, and let G be a
semisimple algebraic group over k with maximal torus T and cocharacter
group X(T ) = Hom(Gm,T ). The space h= k⊗Z X(T ), with the images of
the usual roots and coroots, is a k-realization of the Weyl group W .

We will use the data of a realization to construct the category ‹DBS below,
the first step towards our goal of defining the diagrammatic category D of So-
ergel bimodules. As the construction of ‹DBS is entirely diagrammatic, it will
be useful to identify the set S of simple generators with a set of colours for the
purposes of drawing string diagrams. In the diagrams below, we will colour the
generator s black and the generator t grey.

Definition 6.5 (‹DBS : generators) Let h be a k-realization of (W,S). Set
R = Sym(h∗), the symmetric algebra of h∗, with degh∗ = 2. The category ‹DBS

is the k-linear graded strict monoidal category defined as follows.

• The objects of ‹DBS are the formal (tensor) products of form
Bs⊗Bt ⊗·· ·⊗Bu for s, t, . . . ,u ∈ S.

• The morphisms in ‹DBS are generated (under k-linear combinations,
compositions and tensor products) by the following elementary morphisms.

– For each homogeneous f ∈ R, there is a morphism

f : 1−→ 1

f

of degree deg( f ).
– For each s ∈ S there are morphisms

dots : Bs −→ 1, dots : 1−→ Bs

of degree 1 and

forks : Bs⊗Bs −→ Bs, forks : Bs −→ Bs⊗Bs

of degree −1.
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6 An Introduction to Diagrammatic Soergel Bimodules 219

– For each pair (s, t) ∈ S×S with s 6= t and mst < ∞, there is a morphism

braidst : Bs⊗Bt ⊗Bs⊗·· ·⊗Bs︸ ︷︷ ︸
mst

−→ Bt ⊗Bs⊗Bt ⊗·· ·⊗Bt︸ ︷︷ ︸
mst

· · ·

· · ·

when mst is odd, or

braidst : Bs⊗Bt ⊗Bs⊗·· ·⊗Bt︸ ︷︷ ︸
mst

−→ Bt ⊗Bs⊗Bt ⊗·· ·⊗Bs︸ ︷︷ ︸
mst

· · ·

· · ·

when mst is even, of degree 0.

These morphisms are subject to a number of relations, which can be found
in [1, §2.2], or (in a slightly different form) [9, (5.1)–(5.12)].

For convenience we will also use the following shorthand

caps = dots ◦ forks : Bs⊗Bs→ 1,

=

cups = forks ◦dots : 1→ Bs⊗Bs.

= (6.2.1)

In an entirely standard way, we change our point of view slightly so that
we allow grade shifts of objects in ‹DBS but only consider homogeneous (i.e.
degree 0) morphisms.

Definition 6.6 The diagrammatic category of Bott–Samelson bimodules is the
k-linear monoidal category DBS defined as follows.

• The objects of DBS are the formal symbols B(m), for B ∈ Obj‹DBS and
m ∈ Z, with tensor product B(m)⊗B′(n) = (B⊗B′)(m+n).

• The morphisms in DBS are given by

HomDBS(B(m),B′(n)) = Homn−m‹DBS
(B,B′),

with composition and tensor product defined via ‹DBS.

Objects in DBS are called (diagrammatic) Bott–Samelson bimodules. As we
will see below, Bott–Samelson bimodules are the prototypical Soergel bimod-
ules, from which all others are constructed.
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Definition 6.7 The diagrammatic category D of Soergel bimodules is the
Karoubi envelope of DBS. In other words D is the closure of DBS with respect
to all finite direct sums and all direct summands of objects and morphisms
in DBS.

Objects in D are called (diagrammatic) Soergel bimodules. It can be shown
that under some mild conditions on the realization h, D is a Krull–Schmidt
category, i.e. every Soergel bimodule decomposes uniquely into a direct sum
of indecomposable Soergel bimodules [9, Lemma 6.25]. The indecomposable
Soergel bimodules then play the same role in D as the indecomposable pro-
jective objects in Oλ . As one might expect these objects are highly dependent
on characteristic, since idempotent decompositions of the identity in the en-
domorphism algebra of a Bott–Samelson bimodule are usually characteristic-
dependent.

6.3 Some Diagrammatic Relations

In this section we will investigate a subset of the relations which define ‹DBS.

Polynomial Relations

Regions labelled by polynomials add and multiply in the usual way, i.e. for any
f ,g ∈ R we have

f + g = f +g , f ⊗ g = f g ,

f ◦ g = f g .

(6.3.1)

(Here we use dashed circles for emphasis around a single diagram without
strings, e.g. the left-hand side of the first equation consists of a sum of two
diagrams, while the right-hand side is a single diagram.)

For each s ∈ S we also have

= αs , (6.3.2)

f − s( f ) = ∂s( f ) , (6.3.3)

where ∂s( f ) = α−1
s ( f − s( f )).
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6 An Introduction to Diagrammatic Soergel Bimodules 221

One-colour Relations

For each s ∈ S we have

= = , = = , (6.3.4)

= = , (6.3.5)

= 0. (6.3.6)

These relations give all the relations defining ‹DBS in a few special cases.

Definition 6.8 (‹DBS: relations (no finite dihedral parabolics)) Suppose (W,S)
is a Coxeter system with no finite dihedral parabolic subgroups (i.e. mst = ∞

whenever s 6= t). Then (6.3.1)–(6.3.6) is a full list of relations defining ‹DBS.

Thus we have defined enough relations to understand Soergel bimodules for
the smallest Lie algebra sl2

(
W = {1,s}

)
.

Other Diagrammatic Relations

In general, the definition of ‹DBS requires more diagrammatic relations than
(6.3.1)–(6.3.6). Perhaps unsurprisingly, the remaining relations all involve the
morphism braidst , which only exists when mst < ∞. They come in two flavours,
depending on how many colours of strings appear in the diagrams.

The two-colour relations are defined for all distinct s, t ∈ S such that mst <∞,
i.e. whenever braidst exists. The most important of these, the Jones–Wenzl re-
lation, is closely related to the Temperley–Lieb algebra.

The three-colour relations are defined for all distinct s, t,u ∈ S which gener-
ate a finite parabolic subgroup. These relations involve three different kinds of
braids, but no other generating morphisms. The form of the relation also only
depends on the Coxeter type of the resulting parabolic subgroup. The most
complicated forms (in types A3, B3 and H3) are sometimes called the Zamolod-
chikov relations.
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6.4 Some Consequences and Applications

Proposition 6.7 Any two diagrams which are isotopic correspond to equal
morphisms in ‹DBS. In other words, we may freely deform the edges of any
diagram without changing the morphism in ‹DBS.

Proof (Sketch) We first must show that the zig-zag relations hold, i.e.

= = . (6.4.1)

This ultimately follows by first applying (6.3.5) and then applying (6.3.4) twice:

= = =

and similarly for the second equality.
Next we must show that dots and forks twist to their barred counterparts, i.e.

= = (6.4.2)

and

= = . (6.4.3)

Proving (6.4.2) involves only one application of (6.3.4):

= =

and similarly for the second equality. The proof of (6.4.3) is almost identical to
that of (6.4.1):

= = =

and similarly for the second equality.

https://doi.org/10.1017/9781009093750.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781009093750.008


6 An Introduction to Diagrammatic Soergel Bimodules 223

Since we already have the zig-zag relations, this also means that the barred
counterparts of these two relations also hold, i.e. the vertical flips of equations
(6.4.2) and (6.4.3) also hold. For s, t ∈ S with mst < ∞, the corresponding equa-
tion for the braid morphism braidst is already a relation in ‹DBS [1, §2.2(7)].
These twisting relations are enough to ensure that any isotopy of string di-
agrams is a relation in ‹DBS. For more discussion on this, see [6, Proposi-
tion 3.2].

Lemma 6.8 For s ∈ S we have an idempotent decomposition

=
1
2

αs

+
1
2

αs

Proof First, we show that each of the terms on the right-hand side are idempo-
tents:

αs

1
2

1
2

αs

=

1
2
(−αs)

1
2

αs

+

1
2
(2)

1
2

αs

=
1
2

αs

Next, we verify the decomposition by applying relations (6.3.3)–(6.3.5):

1
2

αs

+
1
2

αs

=
1
2

αs

+
1
2 αs

=
1
2

αs

+
1
2

−αs

+
1
2
(2)

=

From this lemma we immediately obtain the following (cf. the natural iso-
morphism θsθs

∼= θs⊕θs).

Theorem 6.9 Suppose W = {1,s} and h is a 1-dimensional realization of W
over a field k with chark 6= 2. Then the split Grothendieck ring [D] of D (i.e. the
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ring of isomorphism classes of objects of D) is isomorphic to the following:

[D]−→H(S2) = Z[v±1][bs]/(b
2
s − (v+ v−1)bs)

[1(1)] 7−→ v

[Bs] 7−→ bs.

Remark There is a generalization of Theorem 6.9 to all Coxeter systems
known as Soergel’s categorification theorem. It states that (under mild assump-
tions on the realization h) the split Grothendieck ring [D] is isomorphic to the
Iwahori–Hecke algebra H(W ). In the setting of classical Soergel bimodules,
this result was proven by Soergel in [17, Satz 1.10] for suitably ‘nice’ realiza-
tions, and in the diagrammatic setting it was proven more generally by Elias–
Williamson [9, Corollary 6.27].

We conclude with some applications and references.

1 The original motivating application for Soergel was the Kazhdan–Lusztig
conjectures, which describe the characters of the simple modules of Oλ in
terms of Kazhdan–Lusztig polynomials. This was originally proven in the
1980s by Beilinson–Bernstein [2] (and independently by
Brylinski–Kashiwara [4]) using highly geometric techniques. In the 1990s
Soergel suggested an alternative proof based on decomposing
Bs⊗Bt ⊗·· ·⊗Bu into a direct sum of indecomposable Soergel bimodules
[15]. Soergel’s proof was substantially more algebraic, but relied crucially
on an important geometric result called the Decomposition Theorem. In [8]
Elias–Williamson removed this dependence to produce an entirely algebraic
proof (for a more readable introduction, see also [7, 18]).

2 A similar character-theoretic conjecture in modular representation theory is
Lusztig’s conjecture, which describes the characters of simple modules for a
semisimple algebraic group G over a field of characteristic p > 0. Soergel
showed that Soergel bimodules for the Weyl group in characteristic p give
an analogous description of “modular category O” [16], a subquotient of the
category of rational G-modules. In the celebrated paper [19] Williamson
used this framework to show that Lusztig’s conjecture is in fact false, except
when p is extremely large!

3 Soergel’s categorification theorem provides another way to think about the
above results wholly within the context of Soergel bimodules. To be more
precise, Soergel showed in [15] that the Kazhdan–Lusztig conjectures hold
if and only if a statement known as Soergel’s conjecture holds. Soergel’s
conjecture states that the indecomposable Soergel bimodules correspond to
the Kazhdan–Lusztig basis of the corresponding Hecke algebra. This is
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difficult to prove because the Kazhdan–Lusztig basis is defined
‘combinatorially’ with no reference to the morphisms in D.
Elias–Williamson [8] proved Soergel’s conjecture algebraically in
characteristic 0, while Williamson [19] found counterexamples to Soergel’s
conjecture in positive characteristic. These counterexamples suggest
defining the p-canonical basis or p-Kazhdan–Lusztig basis to be the basis of
the Hecke algebra corresponding to the indecomposable Soergel bimodules
in characteristic p [12]. Unlike the ordinary Kazhdan–Lusztig basis, the
p-Kazhdan–Lusztig basis is not combinatorial and requires understanding of
the morphisms in D in general.

4 Achar et al. have shown that the p-Kazhdan–Lusztig basis for the
corresponding affine Weyl group in characteristic p gives the characters of
tilting modules (another class of G-modules parametrized by highest weight)
[1]. This fits in with a conjectured categorical equivalence involving the
functors {θs} in characteristic p [14], similar to Theorem 6.5. In type A these
decompositions also give the simple characters of the symmetric group.
More recently the author (together with Chris Bowman and Anton Cox) has
given an alternative, more direct proof of the symmetric group result [3].
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