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Abstract

In a recent article [K. H. Hofmann and F. G. Russo, ‘The probability that x and y commute in a compact
group’, Math. Proc. Cambridge Phil Soc., to appear] we calculated for a compact group G the probability
d(G) that two randomly selected elements x, y ∈G satisfy xy = yx, and we discussed the remarkable
consequences on the structure of G which follow from the assumption that d(G) is positive. In this
note we consider two natural numbers m and n and the probability dm,n(G) that for two randomly selected
elements x, y ∈G the relation xmyn = yn xm holds. The situation is more complicated whenever n, m > 1.
If G is a compact Lie group and if its identity component G0 is abelian, then it follows readily that dm,n(G)
is positive. We show here that the following condition suffices for the converse to hold in an arbitrary
compact group G: for any nonopen closed subgroup H of G, the sets {g ∈G : gk ∈ H} for both k = m and
k = n have Haar measure 0. Indeed, we show that if a compact group G satisfies this condition and if
dm,n(G) > 0, then the identity component of G is abelian.
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1. Introducing the problem

We fix a compact group G and numbers m, n ∈ {1, 2, 3, . . . }, and we let ν denote the
Haar measure of G. Define

Dm,n(G) = {(x, y) ∈G ×G : [xm, yn] = 1} and dm,n(G) = (ν × ν)(Dm,n(G)).

So let us say that G is k-straight for a natural number k whenever for a closed
nowhere dense subgroup H of G the set {g ∈G : gk ∈ H} has Haar measure 0. Every
compact group is 1-straight, and every finite group is n-straight for every n, but the
profinite group (Z/2Z)N is not 2-straight since the squaring map is constant, nor is
the Lie group R/Z o {1, −1} (the ‘continuous dihedral group’) 2-straight, since all
elements of R/Z × {−1} have order two.

We shall prove the following theorem.
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T 1.1 (The structure of compact groups in which xm and yn commute often).
Let G denote a compact group and assume that G is m- and n-straight. If dm,n(G) > 0,
then the identity component G0 of G is abelian. Moreover, dm,n(G) > 0 and G0 abelian
are equivalent conditions when G is a Lie group.

Our strategy to prove this theorem will be as follows. We define pn : G→G by
pn(x) = xn. The measures µ1 = pm(ν) and µ2 = pn(ν) are defined by µ1(B) = pm(ν)(B)
= ν(p−1

m (B)) for each Borel subset B of G, and analogously for µ2. Now write
D(G) = D1,1(G) and note that

Dm,n(G) = {(x, y) : [pm(x), pn(y)] = 1}

= (pm × pn)−1({(u, v) : [u, v] = 1}) = (pm × pn)−1(D(G)),

and thus

0 < (ν × ν)(Dm,n(G)) = (pm × pn)(ν × ν)(D(G))

= (pm(ν) × pn(ν))(D(G)) = (µ1 × µ2)(D(G)).

We propose a proof based, in the end, on this formula, but we shall have to draw
from Lie group theory and real analytic function theory among other things.

In the historical remarks of [8] we remind the reader that for a compact connected
nonabelian Lie group G the set Σ of pairs (x, y) ∈G ×G for which 〈x, y〉 is free and
dense in G has Haar measure 1 in G ×G and is dense (see, for example, [7, pp. 282–
283]). The set Σ, on the other hand, does not meet any of the sets Dm,n(G) above,
which therefore cannot have positive measure. That is, dm,n(G) = 0 for all positive
natural numbers m and n in this case. It is at this point that one might find a point
of contact of the topic of this paper with the topic of the ‘ubiquity’ of free subgroups
in compact groups, which has attracted considerable attention in the past (see, for
example, [1, 2, 5, 9]).

2. Actions and product measures

We recall some background material from [8]. Let (g, x) 7→ g · x : G × X→ X be a
continuous action α of a compact group G on a compact space X. All spaces in sight
are assumed to be Hausdorff. We specify a Borel probability measure P on G × X and
discuss the probability that a group element g ∈G fixes a phase space element x ∈ X
for a pair (g, x), randomly selected from G × X, that is, that g · x = x. We define

E = {(g, x) ∈G × X : g · x = x},

that is, E is the equaliser of the two functions α, prX : G × X→ X and is therefore a
closed subset of G × X.

Let Gx = {g ∈G : g · x = x} be the isotropy (or stability) group at x and let Xg =

{x ∈ X : g · x = x} be the set of points fixed under the action of g. We note that
Gg·x = gGxg−1. The function g 7→ g · x : G→G · x induces a continuous equivariant
bijection G/Gx→G · x which, due to the compactness of G, is a homeomorphism.
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D 2.1. We shall say that a Borel probability measure σ on G respects closed
subgroups if every closed subgroup H with σ(H) > 0 is open.

Recall that an open subgroup H of a topological group G, being the complement of
all the cosets gH for g < H, is closed and that it contains the identity component G0

of G. If G is compact, then H has finite index in G. Haar measure µ on a compact
group G respects closed subgroups.

We shall say that the group G acts automorphically on X if X is a compact group
and x 7→ g · x : X→ X is an automorphism for all g ∈G.

In [8] the following result was established.

P 2.2 (See [8, Proposition 2.6]). Let G and X be compact groups and
assume that G acts automorphically on X. Let µ and ν be normalised positive Borel
measures on G and X, respectively. Define

E = {(g, x) ∈G × X : g · x = x} ⊆G × X.

Assume that µ and ν respect closed subgroups and that X is a Lie group. Then the
following statements are equivalent.

(1) (µ × ν)(E) > 0.
(2) The subgroup F ≤ X of all elements with finite G-orbits is open and thus has

finite index in X.

The main application of this general situation will be the case of a compact group
G and the automorphic action of G on X = G via inner automorphisms:

(g, x) 7→ g · x = gxg−1 : G × X→ X.

The orbit G · x of x is the conjugacy class C(x) of x, and the isotropy group Gx of
the action at x is the centraliser Z(x,G) = {g ∈G : gx = xg} of x in G. The set E is
the set D(G) = {(x, y) ∈G ×G : [x, y] = 1}, and F is the union of all finite conjugacy
classes, the so-called FC-centre. In particular, F is a characteristic subgroup of G
whose elements have finite conjugacy classes. If G is a Lie group, then F is closed
in G. In passing we recall that a group agreeing with its FC-centre is called an FC-
group.

In this setting, Proposition 2.2 has the following consequence.

C 2.3 (See [8, Theorem 3.10]). Let G be a compact Lie group and F its
FC-centre. Further, let µ1 and µ2 be two Borel probability measures on G and set
P = µ1 × µ2 and D = {(g, h) ∈G ×G : [g, h] = 1}. Assume that µ1 and µ2 respect closed
subgroups. Then the following conditions are equivalent.

(1) P(D(G)) > 0.
(2) F is open in G.
(3) The characteristic abelian subgroup Z(F) is open in G.

Under these conditions, the centraliser Z(F,G) of F in G is open, and the finite group
Γ = G/Z(F,G) is finite and acts effectively on F with the same orbits as G under the
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well-defined action γ · x = gxg−1 for (γ, x) ∈ Γ × F, g ∈ γ. The isotropy group Γx at
x ∈ F is Z(x,G)/Z(F,G), and the set Fγ of fixed points under the action of γ is Z(g, F)
for any g ∈ γ.

3. Compact Lie groups and measures respecting closed subgroups

Recall that for a continuous function f : Y → Z between compact spaces and a Borel
measure λ on Y , the image measure f (λ) on Z is given by f (λ)(B) = λ( f −1(B)) for any
Borel subset B ⊆ Z.

On a smooth manifold Y we denote by Tp(Y) the tangent space at the point p ∈ Y .
We say that a smooth function f : Y → Z between two real smooth manifolds Y and Z
of the same dimension is regular at a point p if its derivative Dp f : Tp(Y)→ T f (p)(Z)
is invertible, that is, if det(Dp f ) , 0. The complement of the set of points at which f
is regular is called the singular set of f .

The singular set is the zero set of the smooth function ∆ : Y → R, ∆(p) = det(Dp f )
and thus is closed. If f is a real analytic function, then ∆ is a real-valued real analytic
function. Accordingly, it vanishes on a neighbourhood of a point p if and only if it
vanishes on the entire connected component of p in Y . Thus the singular set of a real
analytic function f is closed and nowhere dense except for possibly containing entire
components of Y .

L 3.1. Let H be a closed subgroup of a compact infinite Lie group G and let
f : G→G be a real analytic function whose singular set does not contain a connected
component of G. Assume that f (ν)(H) > 0 for the normalised Haar measure ν of G.
Then H is open. In particular, the measure µ = f (ν) respects closed subgroups.

P. We know that 0 < µ(H) = ν( f −1(H)) = ν({g ∈G : f (g) ∈ H}). We claim that this
implies that ν(H) > 0 which in turn will imply that H is open, as asserted.

Suppose that H fails to be open. Then H is a closed proper real analytic submanifold
of the real analytic manifold G. Since the singular set of f is nowhere dense, it follows
that f −1(H) is a closed nowhere dense real analytic subset of G. Haar measure on
G is a real analytic dim(G)-form on G. Therefore f (ν)(H) = ν( f −1(H)) = 0. This
contradiction proves the claim. �

As a next step we specialise f1 and f2 to power functions. For a number n ∈
{1, 2, 3, . . . } we define the power function pn : G→G by pn(g) = gn and f j to be pn j .
Therefore we need a precise understanding of the singularities of pn on a Lie group.
Clearly pn is a real analytic self-map of the not necessarily connected compact real
manifold G.

Firstly, let us say that a real analytic function f : G→G is totally singular at g ∈G if
f takes a constant value on a neighbourhood of g and therefore on the entire connected
component gG0 of g in G. This happens for f = p2 on G = T o {1, −1}, where T ' R/Z
is the torus group (see Example 5.2 below). Here p2 is totally singular at each point of
T × {−1}.
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Let exp : g→G be the exponential function of G and U an open neighbourhood
of 0 in g so small that exp | U : U → exp U is a diffeomorphism onto an open
neighbourhood of 1 in G. The function pn is singular (respectively, totally singular) at
g if and only if the function x 7→ ((exp x)g)n : U →G is singular (respectively, totally
singular) at 0. For the following we recall that each element g ∈G yields a canonical
Lie algebra automorphism Ad g : g→ g such that g(exp x)g−1 = exp(Ad g)x.

P 3.2 (The singularities of the power function). Let G be a compact Lie
group and n a natural number. Then the following statements are equivalent for an
element g ∈G.

(i) pn is singular at g ∈G.
(ii) At least one eigenvalue of Ad g is an nth root of unity different from 1.

Moreover, the following conditions are also equivalent.

(a) pn is totally singular in g ∈G.
(b) gn = 1 and every eigenvalue of Ad g is an nth root of unity different from 1.

P. From g(exp y)g−1 = exp(Ad g)y for all y ∈ g it follows by induction that

((exp x)g)n = (exp x)(exp(Ad g)x)(exp(Ad g)2x) · · · (exp(Ad g)n−1x)gn. (†)

For fixed g and n we may assume that U is so small that the Campbell–Hausdorff
multiplication ∗ is defined where needed for x ∈ U such that

(exp x)(exp(Ad g)x)(exp(Ad g)2x) · · · (exp(Ad g)n−1x)

= exp(x ∗ (Ad g)x ∗ (Ad g)2x ∗ · · · ∗ (Ad g)n−1x).

We note that

x ∗ (Ad g)x ∗ (Ad g)2x ∗ · · · ∗ (Ad g)n−1x

= (1 + Ad g + (Ad g)2 + · · · + (Ad g)n−1)x + r(x)

where r(x) ∈ g is a function r : U → g satisfying limx→0 ‖x‖−1 · r(x) = 0 for one norm,
hence all norms, on g. Such a function we shall call a remainder function. Thus for
x ∈ U,

pn((exp x)g)) = (exp(1 + Ad g + (Ad g)2 + · · · + (Ad g)n−1)x + r(x))gn.

Since exp is regular on U, and since right translation by gn is a diffeomorphism on G,
the function x 7→

(
(exp x)g

)n : U →G is regular at 0 if and only if

αg =

n−1∑
m=0

(Ad g)m : g→ g

is an isomorphism. Let λ be an eigenvalue of Ad g. Then λ , 0 since Ad g is an
automorphism of g. Using the semisimplicity of Ad g, which, due to the fact that G is
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compact,

ρ =

n−1∑
m=0

λm =

{
n if λ = 1
(λn − 1)/(λ − 1) if λ , 1,

is an eigenvalue of αg, and all eigenvalues ρ of αg are so obtained. Thus pn is singular
in g if and only if one of the eigenvalues ρ vanishes, and that is the case if and only if
λn = 1, λ , 1. This completes the proof of the equivalence of (i) and (ii).

Next we observe that (a) happens if and only if (exp x)g)n = 1 for all x ∈ g,
including, of course, x = 0. By (†) this is equivalent to gn = 1 and

(exp x) exp((Ad g)x) exp((Ad g)2x) · · · exp((Ad g)n−1x) = 1, ∀x ∈ g.

In particular, due to analyticity, this is equivalent to the fact that for all sufficiently
small x for which the required Campbell–Hausdorff products exist,

x ∗ (Ad g)x ∗ (Ad g)2x ∗ · · · ∗ (Ad g)n−1x = 0. (u)

By the Campbell–Hausdorff formalism, there is a zero-neighbourhood of g and a
remainder function r such that, for αg = 1 + Ad g + (Ad g)2 + · · · + (Ad g)n−1,

x ∗ (Ad g)x ∗ (Ad g)2x ∗ · · · ∗ (Ad g)n−1x = αg(x) + r(x), ∀x ∈ U.

Thus by (u) above, condition (a) is equivalent to

gn = 1 and there is a sufficiently small neighbourhood of 0 in g

and a remainder function r such that αg(x) + r(x) = 0, ∀x ∈ U. (a′)

Let 0 , y ∈ g. Setting x = t · y with t > 0, we have ‖x‖ = t · ‖y‖ and x ∈ U if t is
sufficiently small. Then (a′) implies 0 = α(t · x) + r(t · y) and thus 0 = αg(y) + (1/t) ·
r(t · y)→ αg(y) for t→ 0 by the definition of a remainder function. Hence αg = 0. In
view of the semisimplicity of Ad g, no eigenvalue of Ad g can then be 1, while gn − 1
implies that (Ad g)n = 1. Thus all eigenvalues of Ad g are nth roots of unity different
from 1. This establishes that (a) implies (b).

Conversely, assume (b) and let λ be an eigenvalue of Ad g. Then λ is an nth root of
unity and λ , 1. Then

1 + λ + λ2 + · · · + λn−1 =
λn − 1
λ − 1

= 0.

Since Ad g is semisimple (and thus diagonalisable over C) we conclude that αg = 0.
Then (a′) holds with r ≡ 0. Hence (a) and (b) are equivalent. �

Assume that the equivalent conditions (a) and (b) of Proposition 3.2 are satisfied
and assume, without essential loss of generality, that n is the order of the element g;
then 〈G ∪ {g}〉 = G0〈g〉 is an open subgroup of G which is isomorphic to the semi-
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direct product Gg = G0 oι Z/nZ where the morphism ι : Z/nZ→ Aut G0 is defined by
ι(m + nZ)(h) = gmhg−m. Recall that the multiplication on Gg is given by

(h, m + nZ)(h′, m′ + nZ) = (hgmh′g−m, m + m′ + nZ).

The power function pn is strongly singular in Gg in each point of G0 × {1 + nZ}. In this
sense these semidirect products (such as the continuous dihedral group T o {1, −1}) are
typical of the presence of totally singular points.

L 3.3. Let G be an infinite compact Lie group with normalised Haar measure ν,
and let n ∈ {2, 3, . . . }. Then the following conditions are equivalent.

(i) pn(ν) respects closed subgroups of G.
(ii) pn is nowhere totally singular.

P. Proposition 3.2 shows that pn is a real analytic self-map of G whose set of
singular points is contained in the union of the sets

S m = {g ∈G : det(Ad g − e2πim/n · id) = 0}, m = 1, 2, . . . , n − 1.

On each of the finitely many connected components G0c, c ∈G, the set S m ∩G0c
is a real algebraic variety and thus is a closed nowhere dense analytic subset or else
contains all of G0c. Hence (ii) is equivalent to

pn is a real analytic function whose singular set does not

contain a connected component of G. (ii′)

Then by Lemma 3.1, (ii′) implies (i).
Conversely, assume (i) and suppose that (ii) is false. Then we have a component G0c

such that pn(G0c) = {1} and so pn(ν)({1}) = ν(p−1
n {1}) ≥ ν(G0c) = ν(G0) = |G/G0| > 0.

Since pn(ν) respects closed subgroups by (ii), we conclude that {1} is open. Hence the
compact group G is discrete and thus finite. This is in contradiction to the hypothesis
that G is infinite. Hence (i) implies (ii) and the proof is complete. �

In the Introduction, we called a compact group k-straight for a natural number
k if the measure pk(ν) respects closed subgroups. For a compact Lie group G, by
Proposition 3.2 this is the same as saying that the power function pk is totally singular
at no g ∈G, and by Proposition 3.2, for a compact Lie group G, this is also equivalent
to the statement that no element g ∈G satisfies gk = 1 and every eigenvalue of Ad g is
a kth root of unity different from 1. With this notation we have the following theorem.

T 3.4. Let n1 and n2 be natural numbers and G a compact Lie group. Assume
that G is n j-straight for both j = 1 and j = 2. Then the following statements are
equivalent.

(1) The probability that for a randomly selected pair of elements x, y ∈G, the powers
xn1 and yn2 commute is positive.

(2) G0 is abelian.
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P. By Lemmas 3.1 and 3.3 we know that the measures µ1 = pn1 (ν) and µ2 = pn2 (ν)
respect closed subgroups of the Lie group G. Then Proposition 3.2(i) says that

(µ1 × µ2)({(x, z) ∈G ×G : [x, y] = 1}) > 0.

Now by Corollary 2.3, this is equivalent to

Z(F) is open. (2′)

Then G0, being contained in the abelian group Z(H), is commutative. Now assume (2).
Since G/G0 is finite for a compact Lie group and G0 is abelian each conjugacy class
of G0 is finite, that is, G0 ⊆ F, where F is the FC-centre of G. Hence F is open and so,
by Corollary 2.3, this implies (1). �

4. Consequences for arbitrary compact groups

For a compact group G we write N(G) for the set of all closed normal subgroups
N of G for which G/N is a Lie group. Then G � limN∈N(G) G/N (see [7, Lemma 9.1,
p. 448]). We shall now keep n1 and n2 fixed throughout the remainder of the section
and show that Theorem 3.4(1) implies the commutativity of the identity component Go

of an arbitrary compact group G provided that all Lie group quotients are n j-straight
for j = 1, 2.

First a general remark. We have G � limN∈N(G) G/N. For N ∈ N(G) and for a fixed
n = 1, 2, . . . we set

Dn1,n2 (G) = {(x, y) ∈G ×G : [xn1 , yn2 ] = 1},

Dn1,n2,N(G) = {(x, y) ∈G ×G : [xn1 , yn2 ] ∈ N}.

Obviously N ⊆ M implies that

Dn1,n2,N(G) ⊆ Dn1,n2,M(G); also Dn1,n2 (G) =
⋂

P∈N(G)

Dn1,n2,P(G). (#)

Now we define the generalised commutativity degree (depending on n1 and n2):

dn1,n2 (G) = (νG × νG)(Dn1,n2 (G)).

Note that with the quotient morphism πN : G→GN ,

Dn1,n2 (G/N) = {(xN, yN) ∈G/N ×G/N : [xn1 , yn2 ] ∈ N} = (πN × πN)(Dn1,n2,N(G)).

For a quotient map ρ : Γ→Ω of compact groups and a Borel set B ⊆Ω we have
νΓ(ρ−1(B)) = νΩ(B). Hence

dn1,n2 (G/N) = (νG × νG)(Dn1,n2,N(G)) ≥ (νG × νG)(Dn1,n2 (G)) = dn1,n2 (G).
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In particular, {dn1,n2 (G/N) : N ∈ N(G)} is a decreasing family of numbers in [0, 1] with
dn1,n2 (G) as a lower bound. So by the monotone convergence theorem of nets of real
numbers,

inf{dn1,n2 (G/N) : N ∈ N(G)} = lim
N∈N(G)

dn1,n2 (G/N).

P 4.1. We have dn1,n2 (G) = limN∈N(G) dn1,n2 (G/N).

P. In view of observation (#), this is a consequence of the outer regularity of Haar
measure. �

L 4.2. Let k be a natural number and G a k-straight compact group. If N is a
closed normal subgroup of G, then the quotient group G/N is k-straight.

P. Let H/N be an arbitrary closed subgroup of G/N with a closed subgroup H of
G and assume that νG/N(p−1

k (H/N)) > 0 for Haar measure νG/N of G/N. Now

p−1
k (H/N) = {gN ∈ H/N : (gN)k ∈ H/N}

= {g ∈G : gk ∈ H}N/N = p−1
k (H)N/N in G/N.

If gk ∈ H and n ∈ N, then (gn)k ∈ gkN ⊆ H. Thus p−1
k (H)N = p−1(H). Now

νG/N(p−1
k (H)/N) = νG(p−1

k (H)). Thus our assumption yields νG(p−1
n (H)) > 0. Since

G is k-straight, we conclude that H is open. But then H/N is open in G/N and so G/N
is k straight. �

We conclude with the proof of Theorem 1.1.

T 4.3 (Reformulation of Theorem 1.1). Let n1 and n2 be natural numbers and
G a compact group which is both n1- and n2-straight. Assume that the probability that
gn1

1 and gn2
2 commute for two randomly selected elements g1, g2 ∈G is positive. Then

G0 is abelian.

P. Let N ∈ N(G). By Lemma 4.2, G/N is both n1- and n2-straight. We know
0 < dn1,n2 (G) ≤ dn1,n2 (G/N). Thus from Theorem 3.4 for Lie groups we know that
(G/N)0 is abelian. On the other hand, (G/N)0 = G0N/N, and so [G0,G0] ⊆ N. Since
the intersection of all normal subgroups N such that G/N is a Lie group is singleton,
we obtain [G0,G0] = {1}. �

It may be useful to recall that G = G0D for some profinite group D such that G0 ∩ D
is normal in G. This follows from Dong Hoon Lee’s supplement theorem for compact
groups (see [7, Theorem 9.41]). However, the issue of commuting powers in the case
of a profinite group G is not discussed in this paper.

5. An example and some final comments

Finally, we record a relevant example even though it treats the simplest case that
n1 = n2 = 1. This example was not mentioned in [8]. First we prove the following
lemma.
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L 5.1. Let Gn, n = 1, 2, . . . , be a sequence of finite groups with the commutativity
degrees d(Gn) = dn. Then the product G =

∏∞
n=1 Gn has commutativity degree∏∞

n=1 dn = limn→∞ d1d2 · · · dn.

P. Define

En = D(G1) × · · · × D(Gn) ×G2
n+1 × · · · ⊆

∞∏
n=1

(Gn ×Gn) �G ×G.

Let P = ν × ν for Haar measure on G. Then P(En) = d1 · · · dn. If
∏∞

n=1 Gn ×Gn

is identified with G ×G, then
⋂∞

n=1 En = D(G). Since ν is σ-additive, so is P and
therefore P(

⋂∞
n=1 En) = limn→∞ d1 · · · dn. The assertion follows. �

The following example, among other things, illustrates Proposition 4.1.

E 5.2. Let G = (T o {1, −1})N. Then d(G) = 0 while G0 is abelian and not
open. Indeed, d(T o {1, −1}) = 1/4 by [8, Example 5.4]. Then, by Lemma 5.1 above,
d(G) = limn→∞ 1/4n = 0.

For the history of the general combinatorial issue of commuting elements in finite
and compact groups, see [3, 6, 10, 11]; for a more extensive list of references we refer
to [8, Section 6] where the history is discussed explicitly. Some recent developments
on the topic can also be found in [4, 12, 13].
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