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Abstract

Let p(k) denote the partition function of k. For each k > 2, we describe a list of p(k) − 1
quasirandom properties that a k-uniform hypergraph can have. Our work connects previous notions
on linear hypergraph quasirandomness by Kohayakawa, Rödl, and Skokan, and by Conlon, Hàn,
Person, and Schacht, and the spectral approach of Friedman and Wigderson. For each of the
quasirandom properties that is described, we define the largest and the second largest eigenvalues.
We show that a hypergraph satisfies these quasirandom properties if and only if it has a large spectral
gap. This answers a question of Conlon, Hàn, Person, and Schacht. Our work can be viewed as a
partial extension to hypergraphs of the seminal spectral results of Chung, Graham, and Wilson for
graphs.

2010 Mathematics Subject Classification: 05C80 (primary); 05C50, 05C65 (secondary)

1. Introduction

The study of quasirandom or pseudorandom graphs was initiated by Thomason
[43, 44] and then refined by Chung et al. [15], resulting in a list of equivalent
(deterministic) properties of graph sequences which are inspired by G(n, p).
Beginning with these foundational papers on the subject [15, 43, 44], the last two
decades have seen an explosive growth in the study of quasirandom structures in
mathematics and computer science. For details on quasirandomness, we refer the
reader to a survey of Krivelevich and Sudakov [30] for graphs, and recent papers
of Gowers [23–25] for general quasirandom structures including hypergraphs.
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1.1. Previous results. The core of what Chung et al. [15] proved is that
several properties of graph sequences are equivalent. Two of them are Disc and
Count[All]. The first states that all sufficiently large vertex sets have the same
edge density as the original graph, and the second states that for all fixed graphs
F the number of copies of F is what one would expect in a random graph with
the same density.

A k-uniform hypergraph is a pair of finite sets (V (H), E(H)), where E(H) ⊆(V (H)
k

)
is a collection of k-subsets of V (H). For U ⊆ V (H), the induced subgraph

on U , denoted H [U ], is the hypergraph with vertex set U and edge set {e ∈
E(H) : e ⊆ U }. If F and G are hypergraphs, a labeled copy of F in H is an edge-
preserving injection V (F) → V (H); that is, an injection α : V (F) → V (H)
such that, if E is an edge of F , then {α(x) : x ∈ E} is an edge of H . A graph is a
2-uniform hypergraph.

Almost immediately after proving their theorem, Chung and Graham [8, 9, 12–
14] investigated generalizing the theorem to k-uniform hypergraphs. One initial
difficulty in generalizing quasirandomness to k > 2 is an observation by
Rödl that a construction of Erdős and Hajnal [18] shows that the hypergraph
generalizations of Disc and Count[All] are not equivalent. Motivated by
this, Chung and Graham [9, 12–14] investigated how to strengthen the property
Disc to make it equivalent to Count[All]. They found several properties
equivalent to Count[All]; the main property they use is related to the number
of even/odd subgraphs of a given hypergraph, which they called Deviation.
Simultaneously, Frankl and Rödl [20] also obtained a property stronger than
Disc which is equivalent to Count[All]. Subsequently, other properties
equivalent to Count[All] have been studied by several researchers [6, 23, 27,
29].

It remained open whether the simpler property Disc for k-uniform
hypergraphs is equivalent to counting some class of hypergraphs or counting
a single substructure. This is related to the weak hypergraph regularity
lemma [10, 20, 39]. Recently, Kohayakawa et al. [28] answered this question by
showing that Disc is equivalent to counting the family of linear hypergraphs,
where a hypergraph H is linear if every pair of distinct edges share at most one
vertex. Building on this, Conlon et al. [16] showed that Disc is equivalent to
counting a type of linear four cycle. These two results can be combined into the
following theorem.

THEOREM 1 (Kohayakawa–Nagle–Rödl–Schacht [28] and Conlon–Hàn–Person–
Schacht [16]). Let 0 < p < 1 be a fixed constant, and let H = {Hn}n→∞ be
a sequence of k-uniform hypergraphs such that |V (Hn)| = n and |E(Hn)| >
p
(n

k

)
+ o(nk). The following properties are equivalent.
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• Disc: For every U ⊆ V (Hn), |E(Hn[U ])| = p
(
|U |
k

)
+ o(nk).

• Count[linear]: For every fixed linear k-uniform hypergraph F with e
edges and f vertices, the number of labeled copies of F in Hn is pen f

+o(n f ).

• Cycle4: The number of labeled copies of C4 in Hn is at most p|E(C4)|n|V (C4)| +

o(n|V (C4)|), where C4 is a linear hypergraph defined precisely in Section 2.

Note that Conlon et al. [16] put the condition that |E(Hn)| > p
(n

k

)
+ o(nk) into

the statement of the properties that do not trivially imply it like Disc, and this is
equivalent to the way we have stated Theorem 1. Conlon et al. [16] have several
more properties including, induced subgraph counts and common neighborhood
sizes, but we consider the properties stated in Theorem 1 as the core properties.

1.2. Our results. Another graph property equivalent to Disc is Eig, which
states that, if µ1 and µ2 are the first and second largest (in absolute value)
eigenvalues of the adjacency matrix of the graph, respectively, then µ2 = o(µ1).
Neither Chung and Graham [9, 12–14] nor Kohayakawa et al. [29] provided a
generalization of Eig to hypergraphs. Later, Conlon et al. [16] asked whether
there exists a generalization of Eig to k-uniform hypergraphs which is equivalent
to Disc. The eigenvalue description of graph quasirandomness has proved to
be a very useful result to show that certain explicitly constructed graphs are
quasirandom (see [3, 4, 33, 41]).

This leads to our first main contribution. We define a generalization of Eig to
k-uniform hypergraphs and add it into the equivalences stated in Theorem 1. This
answers the aforementioned question of Conlon et al. [16].

Our second contribution is to generalize Theorem 1 to a slightly larger class
of hypergraphs. Let k > 2 be an integer, and let π be a proper partition of k, by
which we mean that π is an unordered list of at least two positive integers whose
sum is k. For the partition π of k given by k = k1+· · ·+kt , we will abuse notation
by saying that π = k1+· · ·+kt . For every proper partition π , we define properties
Expand[π ], Eig[π ], and Cycle4[π ], and show that they are equivalent.

DEFINITION. Let k > 2, and let π = k1 + · · · + kt be a proper partition of k.
A k-uniform hypergraph F is π -linear if there exists an ordering E1, . . . , Em of
the edges of F such that, for every i , there exists a partition of the vertices of Ei

into Ai,1, . . . , Ai,t such that, for 1 6 s 6 t , |Ai,s | = ks , and for every j < i , there
exists an s such that E j ∩ Ei ⊆ Ai,s .

Our hypergraph eigenvalues are based on definitions of Friedman and
Wigderson [21, 22] (see Section 3). In graphs, it is easier to study the
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eigenvalues of regular graphs (possibly with loops). A similar situation occurs
for hypergraphs, so Friedman and Wigderson [21, 22] focused almost exclusively
on the following notion of regular for hypergraphs.

DEFINITION. A k-uniform hypergraph with loops H consists of a finite set V (H)
and a collection E(H) of k-element multisets of elements from V (H). Informally,
every edge has size exactly k, but a vertex is allowed to be repeated inside of an
edge. A k-uniform hypergraph with loops H is d-coregular if, for every (k − 1)-
multiset S, there are exactly d edges which contain S.

The following is our main theorem.

THEOREM 2 (Main result). Let 0 < p < 1 be a fixed constant, and let H =
{Hn}n→∞ be a sequence of k-uniform hypergraphs with loops such that |V (Hn)| =

n and Hn is bpnc-coregular. Let π = k1+ · · · + kt be a proper partition of k. The
following properties are equivalent.

• Eig[π]: λ1,π (Hn) = pnk/2
+ o(nk/2) and λ2,π (Hn) = o(nk/2), where λ1,π (Hn)

and λ2,π (Hn) are the first and second largest eigenvalues of Hn with respect to
π , which are defined in Section 3.

• Expand[π]: For all Si ⊆
(V (Hn)

ki

)
where 1 6 i 6 t ,

e(S1, . . . , St) = p
t∏

i=1

|Si | + o(nk),

where e(S1, . . . , St) is the number of tuples (s1, . . . , st) such that s1 ∪ · · · ∪ st

is a hyperedge and si ∈ Si .

• Count[π -linear]: If F is an f -vertex, m-edge, k-uniform, π -linear
hypergraph, then the number of labeled copies of F in Hn is pmn f

+ o(n f ).

• Cycle4[π]: The number of labeled copies of Cπ,4 in Hn is at most
p|E(Cπ,4)|n|V (Cπ,4)| + o(n|V (Cπ,4)|), where Cπ,4 is the hypergraph four cycle of
type π defined in Section 2.

• Cycle4`[π]: The number of labeled copies of Cπ,4` in Hn is at most
p|E(Cπ,4`)|n|V (Cπ,4`)| + o(n|V (Cπ,4`)|), where Cπ,4` is the hypergraph cycle of
type π and length 4` defined in Section 2.

In fact, all implications above except Cycle4`[π] ⇒ Eig[π] are true with
the coregular condition replaced by the weaker condition that |E(Hn)| > p

(n
k

)
+

o(nk).
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REMARKS.

• In a companion paper [32], we prove that Cycle4`[π ] ⇒ Eig[π ] for all
sequences H = {Hn}n→∞, where Hn is a k-uniform hypergraph with loops,
|V (Hn)| = n, and |E(Hn)| > p

(n
k

)
+ o(nk).

• Following Chung et al. [15], our results extend to sequences which are
not defined for every n as follows. Let H = {Hnq }q→∞ be a sequence of
hypergraphs such that |V (Hnq )| = nq , nq < nq+1, and |E(Hnq )|> p

(nq
k

)
+o(nk

q),
where now the little-o expression means there exists a function f (q) such
that |E(Hnq )| > p

(nq
k

)
+ f (q) with limq→∞ f (q)n−k

q = 0. Similarly, when
we say that property P (which might include a little-o expression) implies a
property P ′, what we mean is that there exist functions f (q) and f ′(q) such
that P( f (q)) implies P ′( f ′(q)), where the notation P( f (q)) stands for the
property P with the little-o replaced by the function f (q).

• If π = 1 + · · · + 1, the partition of k into k ones, then the equivalences
Expand[π ] ⇔ Count[π -linear] ⇔ Cycle4[π ] of Theorem 2 constitute
Theorem 1. Therefore, the property Eig[1 + · · · + 1] is the spectral property
that is equivalent to the weak quasirandom properties studied by Kohayakawa
et al. [29] and Conlon et al. [16].

• If π ′ is a refinement of π , then clearly Count[π -linear]⇒ Count[π ′-linear],
and so, if {Hn}n→∞ is a sequence satisfying the properties in Theorem 2 for
π , it satisfies the properties for π ′. In a companion paper [34], we show the
converse: if π ′ is not a refinement of π , then Expand[π ] 6⇒ Expand[π ′], so
the property Expand[π ] is distinct for distinct π and arranged in a poset via
partition refinement.

The remainder of this paper is organized as follows. In Section 2, we define
the hypergraph cycles Cπ,4. Section 3 gives the formal definition of eigenvalues
with respect to π . Theorem 2 is proved by showing a chain of implications in the
order stated in the theorem; Section 4 proves Eig[π ]⇒ Expand[π ], Section 5
proves Expand[π ]⇒ Count[π -linear], and Section 6 shows that Cycle4`[π ]
⇒ Eig[π ] for d-coregular hypergraphs with loops. Throughout this paper, we
use the notation [n] = {1, . . . , n}.

2. Hypergraph cycles

In this section, we define the hypergraph cycles Cπ,2`. The hypergraph cycles
Cπ,2` are defined by first defining steps, then defining a path as a combination of
steps, and finally defining the cycle as a path with its endpoints identified.
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0

1

∅

A B2
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(b) S(3,2)

Figure 1: Steps with t = 2.

DEFINITION. Let Eπ = (1, . . . , 1) be the ordered partition of t into t parts. Define
the step of type Eπ , denoted SEπ , as follows. Let A be a vertex set of size 2t−1

where elements are labeled by binary strings of length t − 1, and let B2, . . . , Bt

be disjoint sets of size 2t−2 where elements are labeled by binary strings of length
t − 2. The vertex set of SEπ is the disjoint union A∪̇B2∪̇ · · · ∪̇Bt . Make {a, b2, . . . ,

bt} a hyperedge of SEπ if a ∈ A, b j ∈ B j , and the code for b j+1 is equal to the code
formed by removing the j th bit of the code for a.

For a general Eπ = (k1, . . . , kt), start with S(1,...,1) and enlarge each vertex into
the appropriate size; that is, a vertex in A is expanded into k1 vertices, and each
vertex in B j is expanded into k j vertices. More precisely, the vertex set of SEπ
is (A × [k1])∪̇(B2 × [k2])∪̇ · · · ∪̇(Bt × [kt ]), and, if {a, b2, . . . , bt} is an edge of
S(1,...,1), then {(a, 1), . . . , (a, k1), (b2, 1), . . . , (b2, k2), . . . , (bt , 1), . . . , (bt , kt)} is
a hyperedge of SEπ .

This defines the step of type Eπ , denoted SEπ . Let A(0) be the ordered tuple of
vertices of A in SEπ whose binary code ends with zero, and let A(1) be the ordered
tuple of vertices of A whose binary code ends with one, where vertices are listed
in lexicographic order within each A(i). These tuples A(0) and A(1) are the two
attach tuples of SEπ

Figure 1 shows the steps of type (1, 1) and type (3, 2). Notice that each step
has ‘length’ two if we consider the attach tuples as the ‘ends’ of a path.

Figure 2 shows two different drawings of the step of type Eπ = (1, 1, 1). Notice
that the attach tuples are easily visible in Figure 2(b), since the two attach tuples
are the codes in A ending with a zero and a one. The step of type Eπ = (k1, k2, k3)

is an enlarged version of Figure 2 similar to Figure 1(b).
In general, for arbitrary Eπ , the step SEπ can be drawn in two ways similar to

Figure 2. First, from the definition, a step is a k-partite hypergraph with parts A,
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Figure 2: Steps of type π = (1, 1, 1).

Figure 3: P(1,1,1),4.

B2, . . . , Bt , so it can be drawn similar to Figure 2(a). But the step can also be
drawn with the two attach tuples on separate ends of the picture like Figure 2(b).
Let M0 be the set of edges incident to vertices in the attach tuple A(0), and let M1

be the set of edges incident to vertices in A(1). Edges from M0 and M1 intersect
only in vertices in Bt because, if a0 ∈ A(0) and a1 ∈ A(1), then the code for a0 ends
in a zero and the code for a1 ends in a one, so only when deleting the last bit will
the codes possibly be the same. Therefore, the step SEπ can be viewed as a type of
length-two path in a hypergraph formed from a collection of k-partite edges M0

between A(0) and Bt and another collection of k-partite edges M1 between Bt and
A(1).

DEFINITION. Let ` > 1. The path of type Eπ of length 2`, denoted PEπ,2`, is the
hypergraph formed from ` copies of SEπ with successive attach tuples identified.
That is, let T1, . . . , T` be copies of SEπ , and let A(0)i and A(1)i be the attach tuples
of Ti . The hypergraph PEπ,2` is the hypergraph consisting of T1, . . . , T`, where
the vertices of A(1)i are identified with A(0)i+1 for every 1 6 i 6 ` − 1. (Recall
that, by definition, A(1)i and A(0)i+1 are tuples (that is ordered lists) of vertices, so
the identification of A(1)i and A(0)i+1 identifies the corresponding vertices in these
tuples.) The attach tuples of PEπ,2` are the tuples A(0)1 and A(1)` .
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In Figure 3, the path P(1,1,1),4 is drawn as two copies of S(1,1,1) with attach tuples
identified. The diamond, circle, and square vertices keep track of the parts A, B2,

B3. For a general P(k1,k2,k3),4, each diamond vertex is enlarged into k1 vertices, each
circle vertex is enlarged into k2 vertices, and each square vertex is enlarged into
k3 vertices. For a general Eπ , every step can be visualized as in Figure 2(b) as two
collections of k-partite edges M0 and M1 between A and Bt , so all paths PEπ,2` can
be visualized as in Figure 3 as a concatenation of steps.

DEFINITION. Let ` > 2. The cycle of type π and length 2`, denoted Cπ,2`, is
the hypergraph formed by picking any ordering Eπ of π and identifying the attach
tuples of PEπ,2`.

The definition of Cπ,2` is independent of the ordering Eπ ; a proof appears in [31].

DEFINITION. Let ` > 2. A walk of type Eπ and length 2` in a hypergraph H is
a function f : V (PEπ,2`) → V (H) that preserves edges. Informally, a walk is a
path where the vertices are not necessarily distinct. A circuit of type π of length
2` in a hypergraph H is a function f : V (Cπ,2`)→ V (H) that preserves edges.
Informally, a circuit is a cycle where the vertices are not necessarily distinct.

There are two alternative definitions of the cycle of length four. First, Conlon
et al. [16] defined a cycle of length four for π = 1 + · · · + 1 by an operation
called reflection. Our definition of C1+···+1,4 is equivalent to the definition in [16];
this can be seen by noticing that the bit strings in our definition keep track of the
vertex duplications which occur during reflection.

Finally, there is a concise direct definition of the cycle of type π and length
four which avoids the complexity of defining steps and paths. We will not use this
shorter definition in this paper, instead working with steps, paths, and walks, but
we include this short definition for completeness. Let D1, . . . , Dt be disjoint sets
of size 2t−1 whose elements are labeled by (t−1)-length binary strings. The vertex
set is D1∪̇ · · · ∪̇Dt . For d1 ∈ D1, . . . , dt ∈ Dt , make {d1, . . . , dt} a hyperedge if
there exists a binary string s of length t such that the code for di equals the code
formed by deleting the i th bit of s. The cycle for general π is formed by enlarging
this cycle appropriately. Figure 4 shows cycles drawn using this definition.

3. Hypergraph eigenvalues

This section contains the definition of the largest and second largest eigenvalues
of a hypergraph with respect to π , and it also contains some discussion and basic
facts about them.
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Figure 4: Alternate definition of the cycle of length four.

There have been three independently developed approaches to hypergraph
eigenvalues: a definition by Chung [11] and Lu and Peng [35, 36] using matrices,
an approach of Friedman and Wigderson [21, 22] and Cooper and Dutle [17], and
lastly the eigenvalues of the shadow graph [7, 19, 37, 38, 40]. The definitions of
Friedman and Wigderson [21, 22] are most suitable for our purposes, and we will
use their definitions as our starting point.

DEFINITION. Let V1, . . . , Vk be finite-dimensional vector spaces over R. A k-
linear map is a function φ : V1×· · ·×Vk → R such that, for each 1 6 i 6 k, φ is
linear in the i th coordinate. That is, for every fixed xi ∈ Vi , φ(x1, . . . , xi−1, ·, xi+1,

. . . , xn) is a linear map from Vi to R. A k-linear map φ : V k
→ R is symmetric if

for all permutations η of [k] and all x1, . . . , xk ∈ V , φ(x1, . . . , xk) = φ(xη(1), . . . ,
xη(k)).

DEFINITION. Let V1, . . . , Vk be finite-dimensional vector spaces over R, let Bi =

{bi,1, . . . , bi,dim(Vi )} be an orthonormal basis of Vi , and let φ : B1 × · · · × Bk → R
be any map. Extending φ linearly to V1 × · · · × Vk means that φ is extended to a
map V1 × · · · × Vk → R, where, for x1 ∈ V1, . . . , xk ∈ Vk ,

φ(x1, . . . , xk) =

dim(V1)∑
j1=1

· · ·

dim(Vk )∑
jk=1

〈
x1, b1, j1

〉
· · ·
〈
xk, bk, jk

〉
φ(b1, j1, . . . , bk, jk ). (1)

Note that extending φ in this way produces a k-linear map.

https://doi.org/10.1017/fms.2014.22 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2014.22


J. Lenz and D. Mubayi 10

DEFINITION (Friedman and Wigderson [21, 22]). Let H be a k-uniform
hypergraph with loops. The adjacency map of H is the symmetric k-linear
map τH : W k

→ R defined as follows, where W is the vector space over R of
dimension |V (H)|. First, for all v1, . . . , vk ∈ V (H), let

τH (ev1, . . . , evk ) =

{
1 {v1, . . . , vk} ∈ E(H),
0 otherwise,

where ev denotes the indicator vector of the vertex v, that is the vector which has a
one in coordinate v and zero in all other coordinates. We have defined the value of
τH when the inputs are standard basis vectors of W . Extend τH to all the domain
linearly.

DEFINITION. Let W1, . . . ,Wk be finite-dimensional vector spaces over R, let ‖·‖
denote the Euclidean 2-norm on Wi , and let φ : W1× · · ·×Wk → R be a k-linear
map. The spectral norm of φ is

‖φ‖ = sup
xi∈Wi
‖xi‖=1

|φ(x1, . . . , xk)|.

Before defining the first and second largest eigenvalues of H with respect to a
general partition π , we give the definitions when π = 1+ · · · + 1, that is π is the
partition into k ones.

DEFINITION. Let H be an n-vertex, k-uniform hypergraph, let W be the vector
space over R of dimension n, and let J : W k

→ R be the all-ones map. That is, if
ei1, . . . , eik are any standard basis vectors of W , then J (ei1, . . . , eik ) = 1, and J is
extended linearly to all of the domain as in (1).

The largest eigenvalue of H with respect to π = 1 + · · · + 1 is ‖τH‖, and the
second largest eigenvalue of H with respect to π = 1+· · ·+1 is ‖τH−

k!|E(H)|
nk J‖.

In order to extend this definition to general Eπ = (k1, . . . , kt), it is convenient to
use the language of tensor products.

DEFINITION. Let V and W be finite-dimensional vector spaces over R of
dimension n and m, respectively. The tensor product of V and W , written V ⊗W ,
is the vector space over R of dimension nm. A typical tensor a in V ⊗ W has
the form a =

∑dim(V )
i=1

∑dim(W )

j=1 αi, j(ei ⊗ e′j), where αi, j ∈ R, e1, . . . , edim(V ) is the
standard basis of V , and e′1, . . . , e′dim(W ) is the standard basis of W . The length of
a tensor is the length of the vector in the vector space V ⊗W . Thus the length of
a is

(∑dim(V )
i=1

∑dim(W )

j=1 α2
i, j

)1/2.
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We are now ready to define the map τEπ and then the first and second largest
eigenvalues of H with respect to π for a general π . In the definition, think of the
tensor product W⊗ki as a vector space of dimension |V (H)|ki indexed by ordered
ki -sets of vertices.

DEFINITION. Let W be a finite-dimensional vector space over R, let σ : W k
→ R

be any k-linear function, and let Eπ be a proper ordered partition of k, so Eπ = (k1,

. . . , kt) for some integers k1, . . . , kt with t > 2. Now define a t-linear function
σEπ : W⊗k1 × · · · × W⊗kt → R by first defining σEπ when the inputs are basis
vectors of W⊗ki and then extending linearly. For each i , Bi = {bi,1 ⊗ · · · ⊗ bi,ki :

bi, j is a standard basis vector of W } is a basis of W⊗ki , so, for each i , pick bi,1 ⊗

· · · ⊗ bi,ki ∈ Bi and define

σEπ (b1,1⊗· · ·⊗ b1,k1, . . . , bt,1⊗· · ·⊗ bt,kt ) = σ(b1,1, . . . , b1,k1, . . . , bt,1, . . . , bt,kt ).

Now extend σEπ linearly to all of the domain. σEπ will be t-linear since σ is k-linear.

DEFINITION. Let H be a k-uniform hypergraph with loops, and let τ = τH be
the (k-linear) adjacency map of H . Let π be any (unordered) partition of k and
let Eπ be any ordering of π . The largest and second largest eigenvalues of H with
respect to π , denoted λ1,π (H) and λ2,π (H), are defined as

λ1,π (H) := ‖τEπ‖ and λ2,π (H) :=
∥∥∥∥τEπ − k!|E(H)|

nk
JEπ

∥∥∥∥ .
Both λ1,π (H) and λ2,π (H) are well defined since, for any two orderings Eπ and
Eπ ′ of π , τEπ = τEπ ′ and JEπ = JEπ ′ since both τ and J are symmetric maps.

REMARKS.

• For a graph G (k = 2 and π = 1+ 1), λ1,1+1(G) equals the largest eigenvalue
in absolute value of the adjacency matrix A of G since both are equal to
sup{|x T Ax | : ‖x‖ = 1}. Additionally, if G is d-regular, then λ2,1+1(G) equals
the second largest eigenvalue of A in absolute value. Indeed, if G is a d-regular
graph, then 2|E(H)|/n2

= d/n, so λ2,1+1(G) = ‖τG − (d/n)J‖. The bilinear
map τG − (d/n)J corresponds to the matrix A − (d/n)J , where J is now the
all-ones matrix. The largest eigenvalue of A − (d/n)J in absolute value is the
second largest eigenvalue of A in absolute value, and this equals the spectral
norm of the respective map.

• For any k-uniform hypergraph H , λ1,1+···+1(H) exactly matches the definition
of Friedman and Wigderson [21, 22]. [21, 22] did not define the second
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largest eigenvalue for all hypergraphs. For d-coregular hypergraphs with loops,
[21, 22] defined the second largest eigenvalue, and it exactly corresponds to our
definition of λ2,1+···+1(H), where k!|E(H)|/nk

= d/n (recall that H has loops,
which is why nk appears in the denominator instead of the falling factorial).
For the random hypergraph G(k)(n, p), [21, 22] also defined a second largest
eigenvalue with respect to density p as the spectral norm of τG(n,p) − pJ .
While different from our definition, p = (1 + o(1))k!|E(G(n, p))|/nk , so the
definitions are similar.

• If H is a k-uniform, d-coregular hypergraph with loops, Friedman and
Wigderson [21, 22] proved several facts about λ1,1+···+1(H) and λ2,1+···+1(H).
First, λ1,1+···+1(H) = dn(k−2)/2, and the supremum is achieved by the all-
ones vectors scaled to unit length. They also proved several facts about
λ2,1+···+1(H), including upper and lower bounds, an expander mixing lemma
which we generalize to all π in Theorem 3, and the asymptotic value of
λ2,1+···+1(G(n, p)).

4. Eig[π ] ⇒ Expand[π ]

In this section, we prove a generalization of the graph expander mixing lemma
which relates spectral and expansion properties of graphs. The graph version was
first discovered independently by Alon and Milman [2] and Tanner [42]. For
background on graph expansion and eigenvalues, see [1, 5, 26]. The following
theorem extends the hypergraph expander mixing lemma of Friedman and
Wigderson [21, 22], which applied for π = 1 + · · · + 1. The theorem is stated
for ordered partitions Eπ , but trivially gives the same result for any ordering Eπ of
a partition π .

THEOREM 3 (Hypergraph expander mixing lemma). Let H be an n-vertex,
k-uniform hypergraph with loops. Let Eπ = (k1, . . . , kt) be a proper ordered
partition of k, and let Si ⊆

(V (H)
ki

)
for 1 6 i 6 t (where the elements of Si are

potentially multisets of size ki ). Then∣∣∣∣∣e(S1, . . . , St)−
k!|E(H)|

nk

t∏
i=1

|Si |

∣∣∣∣∣ 6 λ2,π (H)
√
|S1| · · · |St |,

where e(S1, . . . , St) is the number of ordered tuples (s1, . . . , st) such that s1 ∪

· · · ∪ st ∈ E(H) and si ∈ Si .

Proof. Let q = k!|E(H)|/nk , let τH be the adjacency map of H , and let σ = τH−

q J . It is easy to see that, by definition, (τ−q J )Eπ = τEπ−q JEπ , so λ2,π (H) = ‖σEπ‖.
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Let χSi ∈ W ki⊗ be the indicator tensor of Si . If we let V (H) = [n], then

χSi =

∑
{v1,...,vki }∈Si
v16···6vki

(ev1 ⊗ · · · ⊗ evki
).

By the linearity of σEπ and the definition of JEπ ,

σEπ (χS1, . . . , χSt ) = τEπ (χS1, . . . , χSt )− q JEπ (χS1, . . . , χSt )

= e(S1, . . . , St)− q
t∏

i=1

|Si |.

Before upper bounding this by λ2,π (H), we must scale each indicator tensor to be
unit length. Since {e j1 ⊗ · · · ⊗ e jki

: 1 6 j1, . . . , jki 6 n} forms a basis of W⊗ki ,
we have

∥∥χSi

∥∥ = √|Si |. Thus∣∣∣∣σEπ ( χS1

‖χS1‖
, . . . ,

χSt

‖χSt‖

)∣∣∣∣ 6 ‖σEπ‖ = λ2,π (H).

Consequently,

|σEπ (χS1, . . . , χSt )| 6 λ2,π (H)‖χS1‖ · · · ‖χSt‖ = λ2,π (H)
√
|S1| · · · |St |,

and the proof is complete.

LEMMA 4. Let H = {Hn} be a sequence of k-uniform hypergraphs with loops
with |V (Hn)| = n and |E(Hn)| > p

(n
k

)
+ o(nk). Let τn be the adjacency map of

Hn , and let Eπ = (k1, . . . , kt) be a proper ordered partition of k. If λ1,π (Hn) =

pnk/2
+ o(nk/2), then |E(Hn)| = p

(n
k

)
+ o(nk).

Proof. Throughout this proof, the subscripts on n are dropped for simplicity. Let
W be the vector space over R of dimension n. For 1 6 i 6 t , let E1ki denote the
all-ones vector in W⊗ki , so ‖E1ki‖ = nki /2. Then

τEπ

(
E1k1

nk1/2
, . . . ,

E1kt

nkt /2

)
=

1
nk/2

τEπ (E1k1, . . . ,
E1kt ) =

1
nk/2

τ(E11, . . . , E11)

=
1

nk/2

n∑
i1,...,ik=1

τ(ei1, . . . , eik )

=
1

nk/2
k!|E(H)|.
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Thus the spectral norm of τEπ is at least k!|E(H)|/nk/2, so

pnk/2 6
k!|E(H)|

nk/2
+ o(nk/2) 6 ‖τEπ‖ + o(nk/2) = pnk/2

+ o(nk/2).

This implies equality (up to o(nk/2)) throughout the above expression. In
particular, |E(Hn)| = p

(n
k

)
+ o(nk).

Proof that Eig[π]⇒ Expand[π] . First, Eig[π ] contains the assertion that
λ1,π (Hn) = pnk/2

+ o(nk/2), which by Lemma 4 implies that |E(Hn)| = p
(n

k

)
+

o(nk). Consequently, k!|E(Hn)|/nk
= (1+ o(1))p and Theorem 3 imply that∣∣∣∣∣e(S1, . . . , St)− (1+ o(1))p

t∏
i=1

|Si |

∣∣∣∣∣ 6 λ2,π (H)
√
|S1| · · · |St | (2)

for any choice of Si ⊆
(V (Hn)

ki

)
, i = 1, . . . , t . Since π is a partition of k,

√
|S1| · · · |St | = O(nk/2). Also, Eig[π ] states that λ2,π (H) = o(nk/2). Thus (2)

becomes

|e(S1, . . . , St)− p|S1| · · · |St || = o(nk),

which proves Expand[π ].

5. Expand[π ] ⇒ Count[π -linear]

The proof that Expand[π ] ⇒ Count[π -linear] follows from an embedding
lemma for hypergraphs. The proof of Proposition 5 below is a generalization
of an argument by Kohayakawa et al. [28], who proved it in the special case of
linear hypergraphs, so we omit the proof. A detailed proof appears online [31].
The proposition below is stated for ordered partitions Eπ , but it is easy to see that
the proposition is independent of the ordering chosen for Eπ .

PROPOSITION 5. Let Eπ = (k1, . . . , kt) be a proper ordered partition of k, let
0 < p < 1, and let F be any fixed k-uniform, π -linear hypergraph with f vertices
and m edges.

Let H = {Hn}n→∞ be a sequence of k-uniform hypergraphs with loops with
|V (Hn)| = n, |E(Hn)| = p

(n
k

)
+ o(nk), and for which Expand[Eπ] holds. In

other words, for every S1 ⊆
(V (H)

k1

)
, . . . , St ⊆

(V (H)
kt

)
, we have e(S1, . . . , St) =

p|S1| · · · |St | + o(nk). Then the number of labeled copies of F in H is pmn f
+

o(n f ).
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6. Cycle4`[π ] ⇒ Eig[π ]

In this section, we prove that, if H is a sequence of d-coregular, k-uniform
hypergraphs with loops which satisfies Cycle4`[π ], then H satisfies Eig[π ].
Indeed, if H is d-coregular with loops, then λ1,π (H) = dnk/2−1, and the vectors
maximizing τEπ are the all-ones vectors scaled to unit length (see [21, 22]). These
facts simplify the proof of Cycle4`[π ]⇒ Eig[π ] which appears in this section.
In a companion paper [32], we develop the additional algebra required to prove
Cycle4`[π ]⇒ Eig[π ] for all sequences. Throughout this section, let 0 < p < 1
be a fixed integer, and define d = d(n) = bpnc.

First, let us recall the proof of Cycle4[1 + 1]⇒ Eig[1 + 1] for graphs. Let
A be the adjacency matrix of a d-regular graph G. Then Tr

[
A4
]

is the number of
circuits of length 4, so Cycle4[1+1] implies that Tr

[
A4
]
= d4
+o(n4). Since G is

d-regular, the largest eigenvalue of A4 is d4, so all eigenvalues of A besides d are
o(n) in absolute value, completing the proof that Eig[1+ 1] holds. Our proof for
hypergraphs follows the same outline once some algebraic facts about multilinear
maps are proved. In Section 6.1, we define (nonstandard) products and powers of
multilinear maps. In Section 6.2, we show that the powers of multilinear maps
count walks and that the trace of the powers of multilinear maps counts circuits.
Finally, Section 6.3 contains the proof that Cycle4`[π ]⇒ Eig[π ].

6.1. Products and powers of multilinear maps. In this section, we give
(nonstandard) definitions of the products and powers of multilinear maps.

DEFINITION. Let V1, . . . , Vt be finite-dimensional vector spaces over R, and let
φ,ψ : V1 × · · · × Vt → R be t-linear maps. The product of φ and ψ , written
φ ∗ ψ , is a (t − 1)-linear map defined as follows. Let u1, . . . , ut−1 be vectors,
where ui ∈ Vi . Let {b1, . . . , bdim(Vt )} be any orthonormal basis of Vt .

φ ∗ ψ : (V1 ⊗ V1)× (V2 ⊗ V2)× · · · × (Vt−1 ⊗ Vt−1)→ R

φ ∗ ψ(u1 ⊗ v1, . . . , ut−1 ⊗ vt−1) :=

dim(Vt )∑
j=1

φ(u1, . . . , ut−1, b j)ψ(v1, . . . , vt−1, b j).

Extend the map φ ∗ ψ linearly to all of the domain to produce a (t − 1)-linear
map.

It is straightforward to see that the above definition is well defined: the map is
the same for any choice of orthonormal basis by the linearity of φ and ψ . A proof
of this fact appears in [32].
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DEFINITION. Let V1, . . . , Vt be finite-dimensional vector spaces over R, let φ :
V1×· · ·×Vt → R be a t-linear map, and let s be an integer 0 6 s 6 t−1. Define

φ2s
: V⊗2s

1 × · · · × V⊗2s

t−s → R,

where φ20
:= φ and φ2s

:= φ2s−1
∗ φ2s−1 .

Note that we only define this for exponents which are powers of two, because
the product ∗ is only defined when the domains of the maps are the same. An
expression like φ3

= φ ∗ (φ ∗ φ) does not make sense, because φ and φ ∗ φ have
different domains. This defines the power φ2t−1 , which is a linear map V⊗2t−1

1 →

R.

DEFINITION. Let V1, . . . , Vt be finite-dimensional vector spaces over R, let φ :
V1×· · ·×Vt → R be a t-linear map, and define A[φ2t−1

] to be the following square
matrix/bilinear map. Let u1, . . . , u2t−2, v1, . . . , v2t−2 be vectors, where ui , vi ∈ V1.

A[φ2t−1
] : V⊗2t−2

1 × V⊗2t−2

1 → R

A[φ2t−1
](u1 ⊗ · · · ⊗ u2t−2, v1 ⊗ · · · v2t−2)

:= φ2t−1
(u1 ⊗ v1 ⊗ u2 ⊗ v2 ⊗ · · · ⊗ u2t−2 ⊗ v2t−2).

Extend the map linearly to the entire domain to produce a bilinear map.

It is straightforward to check that, by definition, A[φ2t−1
] is a square symmetric

real-valued matrix for any φ; a proof of this fact appears in [32].

6.2. Counting walks and circuits. This section contains the proof of the
following proposition.

PROPOSITION 6. Let H be a k-uniform hypergraph with loops, let Eπ be a proper
ordered partition of k, and let ` > 2 be an integer. Let τ be the adjacency map
of H. Then Tr[A[τ 2t−1

Eπ ]
`
] is the number of labeled circuits of type Eπ and length 2`

in H.

The proof of this proposition comes down to showing that the function τ 2t−1

Eπ

counts the step SEπ . We do this by induction by describing exactly the hypergraph
counted by τ 2s

Eπ , which is the following hypergraph.

DEFINITION. For Eπ = (1, . . . , 1) with t parts, let 0 6 s 6 t − 1, and define the
hypergraph DEπ,s as follows. Let A1, . . . , At−s be disjoint sets of size 2s where
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elements are labeled by binary strings of length s, and let Bt−s+1, . . . , Bt be
disjoint sets of size 2s−1 where elements are labeled by binary strings of length
s − 1. The vertex set of DEπ,s is A1∪̇ · · · ∪̇At−s∪̇Bt−s+1∪̇ · · · ∪̇Bt . Make a1, . . . ,

at−s, bt−s+1, . . . , bt an edge of DEπ,s if ai ∈ Ai , b j ∈ B j , the codes for a1, . . . , at−s

are all equal, and the code for bt−s+ j is equal to the code formed by removing the
j th bit of the code for a1.

For a general Eπ = (k1, . . . , kt), start with D(1,...,1),s and expand each vertex into
the appropriate size; that is, a vertex in Ai is expanded into ki vertices, and each
vertex in B j is expanded into k j vertices. In DEπ,s , each vertex in Ai is labeled by a
pair (c, z), where c is a bit string of length s and z ∈ [ki ]. We call z the expansion
index of the vertex.

The hypergraph DEπ,0 is a single edge, and the hypergraph DEπ,t−1 is by definition
the step SEπ . The following lemma precisely formulates what we mean when we
say that τ 2s

Eπ counts the hypergraph DEπ,s .

LEMMA 7. Let H be a k-uniform hypergraph with loops, let Eπ be a proper
ordered partition of k with Eπ = (k1, . . . , kt), and let 0 6 s 6 t − 1. Let W
be the vector space over R of dimension |V (H)|, and let τ be the adjacency map
of H. Let A1, . . . , At−s, Bt−s+1, . . . , Bt be the vertex sets in the definition of DEπ,s ,
and let ∆ be any map A1 ∪ · · · ∪ At−s → V (H). Then τ s

Eπ counts the number of
labeled, possibly degenerate copies of DEπ,s extending ∆ as follows.

Let ai,1, . . . , ai,ki 2s be the vertices of Ai ordered first lexicographically by bit
code and then for equal codes ordered by expansion index. Let χi be the indicator
tensor in W⊗ki 2s

for the vertex tuple (∆(ai,1), . . . , ∆(ai,ki 2s )). Then τ 2s

Eπ (χ1, . . . ,

χt−s) is the number of edge-preserving maps V (DEπ,s) → V (H) which are
consistent with ∆.

Proof. The proof is done by induction on s. The base case is s = 0, where DEπ,0
is a single edge, there are no B-type sets, and thus∆ is a map V (DEπ,0)→ V (H).
The number of edge-preserving maps extending∆ is either zero or one depending
on if the image of ∆ is an edge of H or not. But τEπ (χ1, . . . , χt) equals zero or
one depending on if the vertices defining the indicator tensors χi form an edge,
exactly what is required.

Assume that the lemma is true for s; we will prove it for s + 1. Denote by
Â1, . . . , Ât−s−1, B̂t−s, . . . , B̂t the sets in the definition of DEπ,s+1 and by A1, . . . ,

At−s, Bt−s+1, . . . , Bt the sets in the definition of DEπ,s . Let ∆̂ be a map Â1 ∪ · · · ∪

Ât−s−1 → V (H), and let χ̂1, . . . , χ̂t−s−1 be the indicator tensors for the image
of ∆̂ ordered as in the statement of the lemma. Since χ̂i is an indicator tensor
in W⊗ki 2s+1 , it is a simple tensor, so χ̂i = χi ⊗ χ

′

i for χi , χ
′

i ∈ W⊗ki 2s . Note that
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Â1 . . . Ât−s−1 B̂t−s

Bs

Bs

(a) DEπ,s+1

A1 . . . At−s−1 At−s

Bs

(b) DEπ,s

τ 2s+1

Eπ (χ1 ⊗ χ
′

1, . . . , χt−s−1 ⊗ χ
′

t−s−1)

=

d∑
j=1

τ 2s

Eπ (χ1, . . . , χt−s−1, w j)τ
2s

Eπ (χ
′

1, . . . , χ
′

t−s−1, w j) (3)

Figure 5: The induction step of Lemma 7.

χi is the indicator tensor for the image under ∆̂ of the vertices of DEπ,s+1 whose
code starts with zero, and χ ′i is the indicator tensor for the image under ∆̂ of the
vertices whose code starts with a one, since the definition of χ̂i sorted the vertices
in the image lexicographically.

Consider the expansion of the definition of τ 2s+1

Eπ (χ̂1, . . . , χ̂t−s−1) shown in (3)
in Figure 5; the tensors χ̂i are split into χi and χ ′i , and we sum over the standard
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basis {w1, . . . , wd} of W⊗kt−s 2s , where d = dim(W⊗kt−s 2s
). We can consider the

tensor w j in (3) to be the indicator tensor of a tuple of kt−s2s vertices.

DEFINITION. We now describe two embeddings of DEπ,s into DEπ,s+1. In
Figure 5(a), these two embeddings are the dotted and solid lines. Let
Γ0 : V (DEπ,s)→ V (DEπ,s+1) be the following injection. For 1 6 i 6 t − s − 1 and
a ∈ Ai , set Γ0(a) equal to the vertex in Âi whose code equals the code for a with
a zero prepended to the code and the same expansion index. That is, a vertex in
Ai with label (1011, 4) is mapped to the vertex in Âi with label (01011, 4). For
a ∈ At−s , set Γ0(a) equal to the vertex in B̂t−s which has the same label as a. For
t − s + 1 6 j 6 t and b ∈ B j , set Γ0(b) equal to the vertex in B̂ j whose code
equals the code for b with a zero prepended to the code and the same expansion
index. In other words, Γ0 adds a zero to the front of the codes except for vertices
in At−s whose code does not change. Define Γ1 : V (DEπ,s)→ V (DEπ,s+1) similarly,
except prepend a one instead of a zero. In Figure 5(a), the dotted lines represent
Γ0 and the solid lines represent Γ1.

Claim. Γ0 and Γ1 are edge-preserving injections, and every edge in DEπ,s+1 is in
the image of Γ0 or Γ1 but not both.

Proof of Claim. Let E be an edge in DEπ,s . For 1 6 i 6 j 6 t − s − 1 and
ai ∈ Ai ∩ E and a j ∈ A j ∩ E , since E is an edge of DEπ,s , the code for ai equals
the code for a j . This implies that the codes for Γ0(ai) and Γ0(a j) are equal, since
both had a zero prepended. Now consider b ∈ At−s ∩ E which is mapped to B̂t−s .
The conditions for Γ0(E) to be an edge of DEπ,s+1 requires that the code for Γ0(b)
equals the code formed by deleting the first bit of Γ0(a), where a ∈ A1 ∩ E . But
the code for a equals the code for b, since both are in A-type sets in DEπ,s , and
the map Γ0 adds a zero to the front of the code for a and leaves the code for b
alone. Thus the code for Γ0(b) equals the code formed by deleting the first bit of
Γ0(a). Lastly, consider b ∈ B j ∩ E for t − s + 1 6 j 6 t , and consider deleting
the ( j + 1)th bit of the code for Γ0(a). This is the same as deleting the j th bit
of a, since Γ0(a) had a zero prepended. But deleting the j th bit of a equals the
code for b, since a, b ∈ E ∈ E(DEπ,s). Thus deleting the ( j + 1)th bit of Γ0(a)
gives the code for Γ0(b). We have now checked all the conditions, so Γ0(E) is an
edge of DEπ,s+1; that is, Γ0 is edge preserving. Γ1 is edge preserving by the same
argument. Finally, let E be an edge of DEπ,s+1, and pick a ∈ E ∩ Â1. If the first bit
of the code for a equals zero, then E is in the image of Γ0, and if the first bit of
the code for a equals one, then E is in the image of Γ1. This concludes the proof
of the claim.

This claim implies that any edge-preserving map extending ∆̂ is formed from
two edge-preserving maps V (DEπ,s) → V (H) each extending the appropriate
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restriction of ∆̂. Start with ∆̂, and extend arbitrarily to a map Λ : Â1 ∪ · · · ∪

Ât−s−1∪ B̂t−s → V (H). Next defineΛ0 andΛ1 as maps A1∪· · ·∪ At−s → V (H)
such that Λ0 = Λ ◦Γ0| Ā andΛ1 = Λ ◦Γ1| Ā, where Ā = A1 ∪ · · · ∪ At−s , so Γ0| Ā

is the map Γ0 restricted to the A-type sets in DEπ,s . By the claim, the number of
edge-preserving maps extending ∆̂ equals the sum over Λ of the product of the
number of edge-preserving maps extendingΛ0 and extendingΛ1. This is because
any edge-preserving map extending Λ can be composed with Γ0 and Γ1 to create
edge-preserving maps extending Λ0 and Λ1, and, since Γ0 and Γ1 are injections
covering all edges of DEπ,s+1, this can be reversed. The last step in the proof is to
show that this is exactly what (3) counts.

Let b̂1, . . . , b̂kt−s 2s be the vertices of B̂t−s listed first in lexicographic order of
codes and then by expansion index. Let w be the indicator tensor in W⊗kt−s 2s for
the vertex tuple (Λ(b̂1), . . . , Λ(b̂kt−s 2s )). Note that, as Λ ranges over all possible
extensions of ∆̂, w ranges over the standard basis of W⊗kt−s 2s . Now χ1, . . . ,

χt−s−1, w are the indicator tensors representing the image of the map Λ0, since,
as mentioned above, χ1, . . . , χt−s−1 are the indicator tensors for the image under
∆̂ of the vertices whose code stars with a zero. Similarly, χ ′1, . . . , χ

′

t−s−1, w are
the indicator tensors representing the image of the map Λ1. Thus, by induction,
τ 2s

Eπ (χ1, . . . , χt−s−1, w) is the number of edge-preserving maps extending Λ0, and
τ 2s

Eπ (χ
′

1, . . . , χ
′

t−s−1, w) is the number of edge-preserving maps extending Λ1. By
the claim, this implies that the product

τ 2s

Eπ (χ1, . . . , χt−s−1, w)τ
2s

Eπ (χ
′

1, . . . , χ
′

t−s−1, w)

counts the number of edge-preserving maps extending Λ. Thus (3) sums over
the choices for Λ extending ∆̂ of the number of edge-preserving maps extending
Λ. This sum is exactly the number of edge-preserving maps extending ∆̂, so the
proof is complete.

COROLLARY 8. Let H be a k-uniform hypergraph with loops, let Eπ be a proper
ordered partition of k with Eπ = (k1, . . . , kt), and let ` > 2 be an integer. Let W
be the vector space over R of dimension |V (H)|, and let τ be the adjacency map
of H. Let a1, . . . , ak12t−2, a′1, . . . , a′k12t−2 be (not necessarily distinct) vertices of H,
and let ξ and ξ ′ be the indicator tensors in W k12t−2

for the tuples (a1, . . . , ak12t−2)

and (a′1, . . . , a′k12t−2), respectively. Then A[τ 2t−1

Eπ ](ξ, ξ
′) is the number of labeled,

possibly degenerate steps of type Eπ in H with attach tuples (a1, . . . , ak12t−2) and
(a′1, . . . , a′k12t−2). Also, A[τ 2t−1

Eπ ]
`(ξ, ξ ′) is the number of labeled walks of length 2`

and type Eπ with attach tuples (a1, . . . , ak12t−2) and (a′1, . . . , a′k12t−2).

Proof. The proof is by induction on `. First, consider the base case of ` = 1,
where the path of length two and type Eπ is the step of type Eπ . Let A be the
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vertex set from the definition of the step SEπ . Define a mapping ∆ : A → V (H)
by mapping the attach tuples of SEπ to the tuples (a1, . . . , ak12t−2) and (a′1, . . . ,
a′k12t−2) in V (H). By definition, the first attach tuple of SEπ is the vertices ending
with a zero and listed in lexicographic order, and the second attach tuple of SEπ
is the vertices ending with a one and listed in lexicographic order. This implies
that the indicator tensor χ1 from the statement of Lemma 7 is the indicator
tensor in W⊗k12t−1 for the tuple (a1, . . . , ak1, a′1, . . . , a′k1

, ak1+1, . . . , a2k1, a′k1+1,

. . . , a′2k1
, . . . , ak12t−3+1, . . . , ak12t−2, a′k12t−3+1, . . . , a′k12t−2), since each attach tuple is

in lexicographic order but the last bit is zero or one, so the full ordering alternates
between attach tuples. By the definition of A[τ 2t−1

Eπ ] and the indicator tensors ξ, ξ ′,
χ1, A[τ 2t−1

Eπ ](ξ, ξ
′) = τ 2t−1

Eπ (χ1). Thus Lemma 7 applied with s = t − 1 shows that
the number of edge-preserving maps extending ∆ is A[τ 2t−1

Eπ ](ξ, ξ
′), but, by the

definition of∆, this is exactly the number of labeled, possibly degenerate steps of
type Eπ with attach tuples (a1, . . . , ak12t−2) and (a′1, . . . , a′k12t−2).

Next assume that the corollary is true for `; we will show that it is true for
` + 1. Using the definition of matrix multiplication, let {d1, . . . , ddim(W⊗k12t−2

)
} be

the standard basis of W⊗k12t−2 , so

A[τ 2t−1

Eπ ]
`+1(ξ, ξ ′) =

dim(W⊗k12t−2
)∑

i=1

A[τ 2t−1

Eπ ]
`(ξ, di)A[τ 2t−1

Eπ ](di , ξ
′). (4)

Each standard basis vector di can be thought of as a k12t−2-tuple of vertices which
corresponds to one of the two attach tuples. Thus (4) sums over the internal attach
tuple for a walk of length 2` and SEπ .

Proof of Proposition 6. Since A[τ 2t−1

Eπ ]
` counts the number of walks of length 2`,

the trace counts circuits. If {d1, . . . , ddim(W⊗k12t−2
)
} is any orthonormal basis of

W⊗k12t−2 , the trace of the matrix A[τ 2t−1

Eπ ]
` is

Tr[A[τ 2t−1

Eπ ]
`
] =

dim(W⊗k12t−2
)∑

i=1

A[τ 2t−1

Eπ ]
`(di , di).

If {d1, . . . , ddim(W⊗k12t−2
)
} is the standard basis, each di corresponds to a tuple of

k12t−2 vertices, so the above expression is the number of walks of type Eπ with
both attach tuples equal to di .

6.3. Bounding eigenvalues from cycle counts. This section contains the
proof that Cycle4`[π ]⇒ Eig[π ] for d-coregular hypergraphs with loops. First,
we require a few simple algebraic facts of multilinear maps.
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LEMMA 9. Let t > 2, let V1, . . . , Vt be finite-dimensional vector spaces over R,
let φ : V1 × · · · × Vt → R be a t-linear map, and let x1 ∈ V1, . . . , xt ∈ Vt be unit
length vectors. Then

|φ(x1, . . . , xt)|
2 6 |φ2(x1 ⊗ x1, . . . , xt−1 ⊗ xt−1)|.

Proof. Consider the linear map φ(x1, . . . , xt−1, ·) which is a linear map from Vt

to R. There exists a vector w ∈ Vt such that φ(x1, . . . , xt−1, ·) = 〈w, ·〉. Then

φ2(x1 ⊗ x1, . . . , xt−1 ⊗ xt−1) =
∑

j

|φ(x1, . . . , xt−1, b j)|
2

=

∑
j

|
〈
w, b j

〉
|
2
= 〈w,w〉 ,

where the last equality is because {b j } is an orthonormal basis of Vt . Since ‖w‖ =
√
〈w,w〉, |φ2(x1⊗x1, . . . , xt−1⊗xt−1)| = | 〈w,w〉 | = | 〈w,w/‖w‖〉 |

2. But, since
xt is unit length and 〈w, ·〉 is maximized over the unit ball at vectors parallel to w
(so maximized at ±w/‖w‖), | 〈w,w/‖w‖〉 | > | 〈w, xt〉 |. Thus

|φ2(x1 ⊗ x1, . . . , xt−1 ⊗ xt−1)| =

∣∣∣∣〈w, w

‖w‖

〉∣∣∣∣2 > | 〈w, xt〉 |
2
= |φ(x1, . . . , xt)|

2.

The last equality used the definition of w, that φ(x1, . . . , xt−1, ·) = 〈w, ·〉.

LEMMA 10. Let t > 2, let V1, . . . , Vt be finite-dimensional vector spaces over
R, and let φ : V1 × · · · × Vt → R be a t-linear map. Then, for any unit length
x1 ∈ V1, . . . , xt ∈ Vt , we have

|φ(x1, . . . , xt)|
2t−1

6

∣∣∣∣∣∣A[φ2t−1
](x1 ⊗ · · · ⊗ x1︸ ︷︷ ︸

2t−2

, x1 ⊗ · · · ⊗ x1︸ ︷︷ ︸
2t−2

)

∣∣∣∣∣∣ . (5)

Also,

‖φ‖2t−1
6 λ1(A[φ2t−1

]). (6)

Proof. By induction on s, we have that

|φ(x1, . . . , xt)|
2s
6

∣∣∣∣∣∣φ2s
(x1 ⊗ · · · ⊗ x1︸ ︷︷ ︸

2s

, . . . , xt−s ⊗ · · · ⊗ xt−s︸ ︷︷ ︸
2s

)

∣∣∣∣∣∣ .
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Indeed, the base case is s = 0 where both sides are equal and the induction step
follows from the previous lemma, since

(|φ(x1, . . . , xt)|
2s−1
)2 6

∣∣∣∣∣∣φ2s−1
(x1 ⊗ · · · ⊗ x1︸ ︷︷ ︸

2s−1

, . . . , xt−s+1 ⊗ · · · ⊗ xt−s+1︸ ︷︷ ︸
2s−1

)

∣∣∣∣∣∣
2

6

∣∣∣∣∣∣φ2s
(x1 ⊗ · · · ⊗ x1︸ ︷︷ ︸

2s

, . . . , xt−s ⊗ · · · ⊗ xt−s︸ ︷︷ ︸
2s

)

∣∣∣∣∣∣ .
By definition of A[φ2t−1

], |A[φ2t−1
](x1⊗· · ·⊗x1, x1⊗· · ·⊗x1)| = |φ

2t−1
(x1⊗· · ·⊗

x1)|, completing the proof of (5). Let x1, . . . , xt be unit length vectors maximizing
φ. Since x1 ⊗ · · · ⊗ x1 is unit length, (5) proves that

‖φ‖2t−1
= |φ(x1, . . . , xt)|

2t−1
6 |A[φ2t−1

](x1 ⊗ · · · ⊗ x1, x1 ⊗ · · · ⊗ x1)|

6 λ1(A[φ2t−1
]).

COROLLARY 11. Let H be a d-coregular, k-uniform hypergraph with loops, and
let π be any proper partition of k with t parts. Then, for any ordering Eπ of π ,

λ2,π (H) 6 (λ2(A[τ 2t−1

Eπ ]))
2−t+1

.

Proof. Let Eπ = (k1, . . . , kt), and let x1, . . . , xt be unit length vectors maximizing
τEπ − d/n JEπ in absolute value, so that λ2,π (H) = |(τEπ − d/n JEπ )(x1, . . . , xt)|.
Write x1 = αy + β1̂, where y is a unit length vector perpendicular to the all-
ones vector, 1̂ is the all-ones vector scaled to unit length, and α, β ∈ R with
α2
+β2

= 1. Let W be the vector space over R of dimension n, and for 1 6 i 6 t
let ei,1, . . . , ei,nki be the standard basis of W⊗ki . Since H is d-coregular,

τEπ (1̂, x2, . . . , xt) =
1

nk/2

∑
16 j26nk2

· · ·

∑
16 jt6nkt

〈
e2, j2, x2

〉
· · ·
〈
et, jt , xt

〉
×

∑
16 j16nk1

τEπ (e1, j1, . . . , et, jt )

=
1

nk/2

∑
16 j26nk2

· · ·

∑
16 jt6nkt

〈
e2, j2, x2

〉
· · ·
〈
et, jt , xt

〉
dnk1−1

× JEπ (e1,1, e2, j2, . . . , et, jt )

=
d
n

JEπ (1̂, x2, . . . , xt).
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Next, JEπ (y, x2, . . . , xt) = 〈1, y〉 〈1, x2〉 · · · 〈1, xt〉. Since y is perpendicular to the
all-ones vector, JEπ (y, x2, . . . , xt) = 0. Therefore, using linearity,

λ2,π (H) =
∣∣∣∣(τEπ − d

n
JEπ

)
(αy + β1̂, x2, . . . , xt)

∣∣∣∣ = |α| |τEπ (y, x2, . . . , xt)|.

By (5) applied to τEπ (y, x2, . . . , xt), λ2,π (H) 6 |α| |A[τ 2t−1

Eπ ](y ⊗ · · · ⊗ y, y ⊗
· · · ⊗ y)|2

−t+1 . Since H is d-coregular, the number of steps of type Eπ with a fixed
attach tuple A(0) is independent of the choice of A(0). By Corollary 8, each row
of the matrix A[τ 2t−1

Eπ ] corresponds to an attach tuple A(0), and the sum of the
entries in that row counts the number of steps of type Eπ with fixed attach tuple
A(0). Therefore, each row of A[τ 2t−1

Eπ ] sums to the same value, so the Perron–
Frobenius theorem implies that the all-ones vector is the eigenvector associated to
λ1(A[τ 2t−1

Eπ ]). Since y⊗· · ·⊗ y is perpendicular to the all-ones vector and A[τ 2t−1

Eπ ]

is a square real symmetric matrix, |A[τ 2t−1

Eπ ](y⊗· · ·⊗y, y⊗· · ·⊗y)|6 λ2(A[τ 2t−1

Eπ ).
Since |α| 6 1, the proof is complete.

Proof that Cycle4`[π]⇒ Eig[π] . Let H = {Hn}n→∞ be a sequence of d-
coregular, k-uniform hypergraphs with loops, and let τn be the adjacency map
of Hn . For notational convenience, the subscript on n is dropped below. Let Eπ
be any ordering of the entries of π . Let m = |E(Cπ,4`)| = 2`2t−1, and note that
|V (Cπ,4`)| = mk/2 since Cπ,4` is two-regular. The matrix A = A[τ 2t−1

Eπ ] is a square
symmetric real-valued matrix, so let µ1, . . . , µr be the eigenvalues of A arranged
so that |µ1| > · · · > |µr |, where r = dim(A). The eigenvalues of A2` are µ2`

1 ,

. . . , µ2`
d and the trace of A2` is

∑
i µ

2`
i . Since all µ2`

i > 0, Proposition 6 and
Cycle4`[π ] imply that

µ2`
1 6 µ2`

1 + µ
2`
2 6 Tr

[
A2`]
= #{possibly degen Cπ,4` in Hn}

6 pmnmk/2
+ o(nmk/2). (7)

Since pnk/2
= dnk/2−1

= τEπ (1̂, . . . , 1̂) 6 ‖τEπ‖ = λ1,π (H), (6) implies that µ1 >
p2t−1

nk2t−2 , which implies equality up to o(nmk/2) throughout (7). Therefore, µ2 =

o(nk2t−2
), so Corollary 11 shows that λ2,π (H) = o(nk/2), completing the proof.
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