Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-23T13:10:06.095Z Has data issue: false hasContentIssue false

In-Situ Characterization of Growth and Intermixing at a Heteroepitaxial Interface: Fe on Au(001)

Published online by Cambridge University Press:  21 February 2011

Q. Jiang
Affiliation:
Department of Physics, Rensselaer Polytechnic Institute, Troy, NY 12180-3590
A. Chan
Affiliation:
Department of Physics, Rensselaer Polytechnic Institute, Troy, NY 12180-3590
Y.-L. He
Affiliation:
Department of Physics, Rensselaer Polytechnic Institute, Troy, NY 12180-3590
G.-C. Wang
Affiliation:
Department of Physics, Rensselaer Polytechnic Institute, Troy, NY 12180-3590
Get access

Abstract

The growth and chemical intermixing of submonolayer and a few monolayer thick Fe films on a Au(001) surface was studied by High Resolution Low Energy Electron Diffraction (HRLEED) technique. Through the analysis of the energy dependent angular profiles as a function of time, we obtained the distribution of islands and distribution of spacings during submonolayer growth. The interference of electron waves from different chemical elements in terraces at different heights in the surface contributes to the background intensity and broadening in the angular profiles of diffraction beams. A subsurface Fe capped by Au islands as a result of atomic place exchange was observed at the initial stage of monolayer growth. From the energy dependent angular profiles as a function of temperature, we determine the quantitative change of inhomogeneity length (∼20 Å) at the interface of ultrathin films at elevated temperatures due to intermixing.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 For examples, see Interface Dynamics and Growth, edited by Liang, K. S., Anderson, M. P., Bruinsma, R. F. and Scoles, G. (Mat. Res. Soc. Proc. 237, Pittsburg, PA, 1992); Kinetics of Ordering and Growth at Surfaces, edited by M. G. Lagally (Plenum Press, New York, 1990).Google Scholar
2 For examples, see Quantitative Analysis of Thin Films, Part I and Part II, edited by Bruynseraede, Y. and Schuller, Ivan K. (MRS Bulletin, Vol. XVII, No. 12, Dec. 1992 and Vol. XVIII, No. 1, Jan. 1993).Google Scholar
3 For examples, see STM, edited by Stroscio, J. A. and Kaiser, W. J. (Academic Press, 1993); STM I, edited by H. J. Guntherodt, R. Wiesendanger and D. Anselmetti (Springer-Verlag, New York, 1992).Google Scholar
4 For examples, see Reflection High Energy Electron Diffraction and Reflection Electron Imaging from Surfaces, edited by Larsen, P. K. and Dobson, P. J. (Plenum, London, 1989).Google Scholar
5 Kunkel, R., Poelsem, B., Verheij, L. K., and Comsa, G., Phys. Rev. Lett. 65, 733 (1990).CrossRefGoogle Scholar
6 Scheithauer, U., Mayer, G., and Henzler, M., Surf. Sci. 178, 441 (1986).CrossRefGoogle Scholar
7 He, Y.-L. and Wang, G.-C., Phys. Rev. Lett. 71, 3834 (1993); Mat. Res. Soc. Symp. 237, 429 (1992).CrossRefGoogle Scholar
8 Altsinger, R., Busch, H., Horn, M., and Henzler, M., Surf. Sci. 200, 235 (1988).CrossRefGoogle Scholar
9 Henzler, M., in Electron Spectroscopv for Surface Analysis, edited by Ibach, H. (Springer, Berlin, 1977).Google Scholar
10 Pimbley, J. M. and Lu, T.-M., J. Appl. Phys. 58, 2184 (1985).CrossRefGoogle Scholar
11 Lu, T.-M. and Lagally, M. G., Surf. Sci. 120, 47 (1982); C. S. Lent and P. I. Cohen, Surf. Sci. 139, 121 (1984).CrossRefGoogle Scholar
12 Wollschläger, J., Falta, J. and Henzler, M., Appl. Phys. A 50 , 57 (1990).CrossRefGoogle Scholar
13 Chan, C. T., Bohnen, K. P. and Ho, K. M., Phys. Rev. Lett, 69, 1672 (1992); P. J. Feibelman, Phys. Rev. lett. 65, 729 (1990); T. J. Raeker, D.’E. Sanders, and A. E. DePristo, J. Vac. Sci. Technol. A 8 , 3531 (1990); W. D. Luedtke and U. Landman, Phys. Rev. B 44 , 5970 (1991); L. Hansen, P. Stoltze, K. W. Jacobsen, and J. K. Norskov, Phys. Rev. B 44 , 6523 (1991); M. I. Haftel, M. Rosen, Tameika Franklin and Matthew Hettermann, preprint.CrossRefGoogle Scholar
14 Rousset, S., Chiang, S., Fowler, D. E., and Chambliss, D. D., Phys. Rev. Lett. 69, 3200 (1992); M. Schmid, H. Stadler and P. Varga, Phys. Rev. Lett 70, 1441 (1993); L. Pleth Nielsen, F. Besenbacher, I. Stensgaard, E. Lægsgaard, C. Engdahl, P. Stoltze, K. W. Jacobsen and J. K. Norskov, Phys. Rev. Lett. 71, 754 (1993).CrossRefGoogle Scholar
15 Wang, S. C. and Ehrlich, G., Phys. Rev. Lett. 67, 2509 (1991) and references therein.CrossRefGoogle Scholar
16 Egelhoff, W. F. Jr. Mat. Res. Soc. Symp. 229, 27 (1991).CrossRefGoogle Scholar
17 Moog, E. R. and Bader, S. D., Superlattices Microstruc. 1, 543 (1985).CrossRefGoogle Scholar
18 Jiang, Q., He, Y.-L. and Wang, G.-C., Surf. Sci. 295, 197 (1993) and references therein.CrossRefGoogle Scholar
19 Liew, Y.-F., He, Y.-L., Chan, A., and Wang, G.-C., Surf. Sci. 273, L461 (1992); A consistent result was obtained from I-V analysis by A. M. Begley, S. K. Kim, J. Quinn, F. Jona, H. Over, and P. M. Marcus, Phy. Rev. B 48, 1779 (1993).CrossRefGoogle Scholar