INVERTING THE POSITION-VELOCITY DIAGRAMS OF MOLECULAR DISCS

J.S. Richer and R. Padman

Mullard Radio Astronomy Observatory Cambridge, England

The molecular discs around Young Stellar Objects can be detected through high spatial and spectral resolution observations of their position-velocity diagrams. By mapping a high lying transition of a density-tracing molecule (e.g. HCN, HCO^+ , NH_3), the lines should be optically thin and we can expect to see the signature of rotation of the protostellar accretion disc. We present single-dish observations of the S106 system which show evidence for the presence of such a rotating disc. We also discuss a simple disc model which predicts the form of the resulting l-v diagram. With high quality data, we should be able to do the inverse problem that of recovering the disc properties from the l-v diagram. We discuss approaches to this inverse problem both by a Singular Value Decomposition (least-squares) method, and by a Maximum Entropy Method.

IDENTIFICATION OF OUTFLOW EXCITING SOURCES THROUGH AMMONIA OBSERVATIONS

G. Anglada^{1,2}, L.F. Rodriguez^{3,4}, J. M. Torrelles⁵, R. Estalella^{1,2}, P.T.P. Ho³, J. Cantó⁶, R. López^{1,2}, and L. Verdes-Montenegro⁵

¹Department de Física de l'Atmósfera, Universitat de Barcelona
²Grup d'Astrofísica, Societat Catalana de Física, IEC
³Harvard-Smithsonian Center for Astrophysics
⁴On sabbatical leave from Instituto de Astronomía, UNAM
⁵ Instituto de Astrofísica de Andalucía, CSIC
⁶Instituto de Astronomía, UNAM

Using the 37-m telescope of the Haystack Observatory, we observed the (J,K)=(1,1) ammonia transition towards the suspected exciting sources of twelve regions with molecular or optical outflows: L1448, L1455, L1524 (Haro 6-10), RNO 43, HH 34, HH 38,43, Haro 4-255 FIR, NGC 2264 (HH 14-4,6), L43, R CrA, HH 32a (AS353A), and V1331 Cyg. We detected and mapped ammonia emission in nine of these regions.

In five of mapped regions, the spatial coincidence of the high-density gas with the objects previously proposed as exciting sources gives support to those identifications. For L1524 (Haro 6-10) and HH 38,43 we propose a new location for their exciting sources. We detected a radio continuum source and an unusually strong H_2O maser coinciding with the maximum of the ammonia emission in L1448. This region appears to be the site of very recent star formation.