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1. Introduction. Let
h (m, n) = am2 + 2xmn + pn2

be a positive definite quadratic form with determinant a/J-x2 = 1. A special form of this
kind is

Q(m, n) = 2 .3~*(m2+m«+n2).

We consider the Epstein zeta-function

2 {h
m, n integers
not m <= n — 0

the series converging for s > 1. For s ^ 1-035 Rankin [1] proved the following

STATEMENT R.

0 (1)

The sign of equality is needed only when h is equivalent to Q.
When s is large, this statement suggests itself, since Zh (s) is dominated by those integer

pairs (m, n) for which h (m, n) is smallest, and the forms equivalent to Q (m, n) are well known
to be precisely the unimodular forms h for which

min h(m, n)
(m, n) * (o, 0)

is greatest. It is perhaps rather surprising that the statement R continues to hold so far as
s = 1-035, and Rankin asked if it continued to hold up to s = 1. In this note we shall show
that this is the case and indeed rather more. The function Zh (s) may be analytically continued

over the whole plane. Its only singularity is at s = 1, where it has a pole with residue IT.
We shall prove the following theorem :

THEOREM. The statement R holds for all s > 0.
We note that the statement R is meaningful even for s = 1, since Zh (s) - ZQ (S) is regular

there. This case has indeed a special interest since it is connected with the Kronecker Limit
Theorem which plays a part in the old-fashioned treatment of modular functions (cf. Weber
[3]; for an interesting application see Kronecker [6]). We shall, however, assume that
s # 1 and leave to the reader the trivial modifications required to deal with s = 1.

For s < 0 it is easy to see how the statement R should be modified, since Zh (s) satisfies
the functional equation.

TT-r(s)zh(s) = w»-ir(i -S)zh{\ -s) (2)
(cf. Deuring [3]).

Our proof is a slight modification of Rankin's but we give incidentally a simplification
in part of the range considered by him. When s > 3, Rankin gave an elementary proof on
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74 J. W. S. CASSELS

quite different lines from his proof for 1-035 < s < 3. As our proof here does not work, at
least without modification, for large s, we shall consider only the case

0 < s < 3 (3)

I am grateful to Professor Rankin for suggesting improvements and corrections to the
first draft.

2. Preliminaries. Since h(m, n) has unit determinant, it may be put in the shape

h(m,n) = y-1{{m+nx)2+n2y2}
with y > 0. We write

Zk(s) -G(x,y)(a),

and omit the (s) if it does not cause confusion. Put

2 = x+iy.

Then, for fixed s, the function G {x, y) is invariant under the substitutions of the modular
group acting on z : it is not a modular function of z in the usual sense since it is not analytic.

On developing 0 (x, y) as a Fourier expansion for x, one obtains for s > 1 the expansion

G(x,y) =

2 r*-* ffl_j, (r) Ks_i {2^ry) cos 2TTTX, (4)
r > 0

where

ak(n) = 2 <
d\n

and

K,(u) = \ e-«cosh' cosh vtdt
J o

rf(|) J,
cos xu , .

is a Bessel function [cf. Rankin's paper, and Watson [4, § 6.3] for the equality of the two
integrals for Kr(u). The second, which is valid only when v > \, is the one which naturally
arises in the development of G(x, y) in a Fourier series. The first integral, which is valid for
all v provided that H« > 0, is the one which will be used in the sequel, as it was by Rankin.]

On applying the functional equation for the Riemann ^-function to the second term, one
obtains

\r{s)TT~aG(x, y) = <f>(s)+<f>(l -s)+4?/l 2 ^ - i cri-2s(r)Ks_i(2vry) cos2nrx (6)

where

<£($) = (ylir)sr(s)t,(2s) (6')

This gives us the continuation of G(x, y)(s) to the whole s-plane. Incidentally, since
Kv(u) = K_v(u), it also gives the functional equation (2).
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3. Outline of Proof. In §§ 4,5 we shall prove the following two lemmas about the partial
derivatives of 0 (x, y) with respect to x and y.

LEMMA 1. Gv(x, y)>0 jory^\.

LEMMA 2. Ox(x, y) < 0 for y ^ f and 0 < x < \.

Both of these lemmas play a part in Rankin's paper for one of the ranges (1-035 < s < 2)
considered by him.

For the sake of completeness we reproduce Rankin's argument showing that Statement R
follows from Lemmas 1 and 2.

When the form h(m, n) is reduced, (x, y) lies in the modular region

D: 0 < a ; < i y > 0, x2+y2>l.

Since O(x, y) is a continuous function, it must, by Lemma 1, attain its minimum at some
point (x', y') e D with y' < f. By Lemma 2, we must have x' = J. But now

0(8!', y') = O(x", y"),
where

x"+iy" =l-( = 1 + *
so that

since 3*/2 < y' < f. By Lemma 2, we must have x" = \. Hence y' = 3*/2. That is, in the
modular region D the function O(x, y) attains its minimum at x = | , y = 3*/2, and only
there. This is just statement R.

In the rest of this note we shall prove Lemmas 1 and 2 by differentiating the identity of
§ 2, and estimating the resulting expressions.

4. Proof of Lemma 2. On differentiating the identity (4) for O(x, y) term by term we
obtain

where we have written

A = 2 rs+i(T1_2s(r)Ks_i(2irry)sin2TTrx.

On substituting the integral (5,) for Ks_^(2nry) and interchanging summation and integration
we obtain

A = r°iA(8()cosh (s-\)tdl,
Jo

where
8 = g— 2*v cosh't

and
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0 = 0(8) = 2 rs+la1_23(r)Sr sin 2-nrx (7)

We note that

St < e-^y < e-6"'5 < 40-1, (8)

since y ^ 3/5. Hence it will be enough to show that

>0
whenever

0 < x < \, ]
0 < 8 < iO-\> (9)
0 < s < 3. J

In (7) we have

d|r

Put r = df and change the order of summation in (7). Then we have

0 = 2 d*->u>d,

where

<°d = S / s+i8d ' sin W / z (10)

We now obtain various estimates for wd. In the first place, quite trivially,

| ojd | < 2 /s+*Sd> < 2 / 4 S d '

the last inequality holding because the expansion of the last line majorizes the previous line.
On applying partial summation following Rankin, one also obtains

4sin2(7rtfa;K, = 2 0/{(/+l) sin 2»nfa;-sin 27r(/+l)da;}, (11)

where

gf =/ '+iSd ' -2(/+l)5+*8d<^1>+(/ + 2)s+*8d<'+2> (12)

by (9). We deduce from (11) that
c o d > 0

for all d such that
0 < dx < | (13)

By hypothesis, (13) is true with d = 1. Since x > 0, there is a greatest d, say d0, such that
(13) holds, so that

1 < dox < J.
Then, by (11),
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4<«rf0 > 4 sin2(7rd!0a;)co(fo

> 2 9,{(f+1)2-1-1}

= (24 -1)8*> + (1 -2-l)2»+J82do,

on substituting the values (12) for gf and arranging in powers of 8. Hence

Since wd > 0 for rf < d0, we deduce that

Hence

vl-«

Here

and

(l-Sd)1 6Ss (1

On substituting these estimates in (14) we obtain

( - 8 2 ) - 1 6 S

-1) -21(1 -S2)- i a ( l -S)-3S

since 8 < 40"1. This concludes the proof that ifs > 0 and so of Lemma 2.

5. Proof of Lemma 1. This lemma was already proved simply by Rankin for all s > 1
(his Lemma 7). His proof does not naturally extend to s ^ 1. We may thus confine ourselves
to the range

0 < s < 1 (15)

However, it would probably not be difficult to extend our proof to all s ^ 0.
On differentiating the identity (6) of § 2 term by term with respect to log y we obtain

'\yr{s)TT-*Gy{x, y) = 6(s) +6(1 -s)+2M, (16)
where

8(s) = a(y/w)T(a)|(2«) (17)
and

M = yi 2 rs-ia1_23(r)K

2s(r)Ks_i(2irry) cos2nrx (18)

We shall show that Gv(x, y) > 0 by showing that 0(s) +0(1 -s) is fairly large and M is fairly
small in the range

0<5<l, y>f (19)

https://doi.org/10.1017/S2040618500033906 Published online by Cambridge University Press

https://doi.org/10.1017/S2040618500033906


78 J. W. S. CASSELS

under consideration. Most of the time we can estimate quite crudely.
We consider first d (s) and write

Since 8(s) has a pole at s = £ with residue lrfF(%) = |(r?7r)i> i* i8 convenient to treat

l)] (21)

Clearly
9*{s)+0*(l-s) = 6(s)+6(l-s).

I t is probably well-known that

' w>ik+12-wh] (22)

for t 2s 0. [For the identity

C(t) = _L + i

which is an immediate consequence of Euler's summation formula when H t > 1, continues
to hold by analytic continuation when H t ^ 0]. By (21) and (22),

6*(

We may now apply the mean-value theorem to

f(s) = (2s + l)7j8r(s + l) (23)
since

/(*) = in*)*-
Hence

inf 0 * ( s ) > i inf f'(t) (24)

Now

From the tables of F'jF (e.g. in Jahnke and Emde [5]) one readily sees that

2_

2[F
for r = 0, 1, 2, ..., 9 and so, by the monotonicity of 2/(2^ + 1) and F'(t + l)IF(t + l), we have

_ — + (t + l)>0-9 ( 0 < « < l ) (26)

Further,

log T] ~i? log -x- ^ — 0'75.

Hence
/'{<) > 0-16/(0 (0 < * < 1) (27)
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Further, T(< +1) > 0-8 for 0 < t < 1, and so

(28)
where

3
Vo = 2^-

Now log{(2< + l)ij(0} is convex in 0 < t < 1 and takes the values 0 and log 3T;0 > 0 at the
two ends of the range. Hence, by (28),

f(t) 5? 0-8 (29)

To sum up, from (24), (27), (29) we have

8*(s) > i(0-15)(0-8) = 0-03 (0 < s < 1) (30)

[From the signs of the coefficients of rf and •>?* in (21), it is clear that for fixed s in 0 < 5 < 1
the function 8* (s) increases when y increases, provided that it is positive, so it would have
been enough to consider y = •§. The numerical evidence suggests that then 8*(s) increases
i n 0 < s < l . If so, the 0-03 in (30) could be replaced by the value of 0*(O) when y = f,
namely $(f)* - i = 0-1124. But the inequality (30) is much more than we in fact need.]

We can now estimate | M \ using the techniques of § 3 but more crudely. For | v | < 1
we have

/•to

0 < Kv (u) = e-»cosh' cosh vt dt
Jo

J
e-«™sh' cosh t cosh vtdt

o

= -K'v(u)

' < | e"u C08h' cosh21 dt (31)
J o

On applying these inequalities to M and observing that
yi < 2/8, r'-h -^ r»+J; | c o s 2-nvx | < 1,

we obtain

| M | < (4TT +1)2/8 f° W(St) cosh21 dt (32)
Jo

where
St = e-2^I/cosh« ^ e-2wy ^ e-3n ^ JQ-^ (33)

and V(8) is defined by replacing sin 2nrx by 1 on the right-hand side of (7) in § 4. But now
as in § 4, we have

= | 2 d*-Od | < 2 (B | 0 , I, (33')

where Qd is defined by replacing sin 2-rrrx by 1 on the right-hand side of (10). The estimate
(10') holds with Qd instead of wd. Hence by (33) and (33'),

I f (8) I < 2 <fl8"(l - 8d)-16 < (1 - 8)-20 8

< (M)8 (34)
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From (32) and (34), we have

|Af | < (4kn + l){l-l)yh-2"yI, (35)

where

/ = | e-^to^ ' -Dcosh2^ (36)
J o

On making the substitution v = cosh t and observing that

one readily sees that

From (35) and (37) we have

\M\

< 0-005, (38)

since y > f. Thus finally, by (30) and (38),

%yr(s)-n-sGv(x, y) = 0*(s) +0*(1 -s) +2M

5*0-03+0-03-2(0-005)

This concludes the proof of Lemma 1 and so of the theorem.
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