THAINE'S METHOD FOR CIRCULAR UNITS AND A CONJECTURE OF GROSS

HENRI DARMON

Abstract

We formulate a conjecture analogous to Gross' refinement of the Stark conjectures on special values of abelian L-series at $s=0$. Some evidence for the conjecture can be obtained, thanks to the fundamental ideas of F. Thaine.

1. Introduction. This paper formulates a refined analogue of the usual class number formula for a real quadratic extension of \mathbf{Q}, using circular units. The statement of this conjecture is inspired by an analogous conjecture of Gross [Gr]. Strong evidence for this conjecture can be given thanks to F. Thaine's powerful method [Th] for generating relations in ideal class groups using circular units.

The first two sections briefly recall Dirichlet's analytic class number formula and Gross's refinement of it; they are there mainly to fix notations and provide motivation. Section 4 states the new conjecture. The remaining sections are devoted to proving various results that support it.

Acknowledgements. I wish to thank Massimo Bertolini and Benedict Gross for many stimulating conversations on the topics of this paper.

Notations. If K is a number field and w is a place of K lying above a prime v of Q, we denote by K_{w} the localization of K at w, and let $\mathbf{N} w$ be the order of its residue field. The w-adic norm $\left\|\|_{w}\right.$ is normalized so that it is equal to $\mathbf{N} w^{-1}$ on uniformizing elements.

Given a finite abelian extension M / K, we let

$$
\begin{equation*}
\operatorname{rec}_{w}: K_{w}^{*} \longrightarrow \operatorname{Gal}(M / K) \tag{1}
\end{equation*}
$$

denote the reciprocity map of local class field theory. When w is unramified in M / K, it factors through the valuation map $K_{w}^{*} \rightarrow \mathbf{Z}$ and maps uniformizing elements to Frob ${ }_{w}$, the Frobenius element in $\operatorname{Gal}(M / K)$ characterized by

$$
\begin{equation*}
\operatorname{Frob}_{w}(x)=x^{\mathbf{N}^{w}}(\bmod \tilde{w}), \tag{2}
\end{equation*}
$$

where \tilde{w} is any place of M above w.

[^0]We write $\operatorname{Div}(K)$ for the free \mathbf{Z}-module generated by the finite places of K, and $P(K)$ for the submodule generated by the principal divisors. The class group $C(K)$ is the quotient $\operatorname{Div}(K) / P(K)$. Given a set S of places of K, let $\langle S\rangle$ be the \mathbf{Z}-span of the elements of S in $\operatorname{Div}(K)$, and let

$$
\begin{equation*}
C_{S}(K)=\langle S\rangle \backslash \operatorname{Div}(K) / P(K) \tag{3}
\end{equation*}
$$

2. Dirichlet's analytic class number formula. We recall briefly the analytic class number formula of Dirichlet relating the behavior of the L-series of a number field at $s=0$ to the arithmetic properties of that number field. The exposition follows closely the one in [Gr].

Let K be a number field, and choose a finite set S of places of K containing all of the archimedean places. Let T be a finite set of places of K disjoint from S.

There is associated to this situation the local data which describes the splitting of the primes in K. This data is conveniently encoded in the Euler product

$$
\begin{equation*}
L_{S, T}(K, s)=\prod_{v \notin S}\left(1-\mathbf{N} v^{-s}\right)^{-1} \prod_{v \in T}\left(1-\mathbf{N} v^{1-s}\right) . \tag{4}
\end{equation*}
$$

Here the products are taken over the non-archimedean places of K. The Euler product defines the L-function $L_{S, T}(K, s)$ in some right half plane of convergence, and it is known that $L_{S, T}(K, s)$ has a meromorphic continuation to the entire complex plane.

The number field K together with the sets S and T gives rise to more subtle global invariants.

1. The group $\left(O_{S}^{*}\right)_{T}$ of S-units which are congruent to 1 modulo the places of T. This is a finitely generated abelian group which is free when T is large enough. Let r denote the rank of this group. By Dirichlet's unit theorem, one has $r=\#(S)-1$.
2. The torsion subgroup $\left[\left(O_{S}^{*}\right)_{T}\right]_{\text {torsion }}$ which is cyclic of order $w_{S, T}$. (Typically we will choose T so that $w_{S, T}=1$.)
3. The Picard group $\operatorname{Pic}\left(O_{S}\right)_{T}$ of invertible O_{S}-modules together with a trivialization at T. It is a finite extension of $C_{S}(K)$. Let $h_{S, T}$ denote its order.
4. The S-unit regulator $R_{S, T}$, defined as follows. Let $X=\operatorname{Div}^{0}(S)$ be the free abelian group generated by the formal linear combinations of places of S of degree 0 ,

$$
X=\left\{\sum_{v \in S} n_{v} v, \quad \sum n_{v}=0\right\} .
$$

The logarithmic embedding $\log _{S}: O_{S}^{*} \rightarrow \mathbf{R} \otimes X$ of the S-units is defined by

$$
\begin{equation*}
\log _{S}(u)=\sum_{v \in S} \log \|u\|_{v} \otimes v . \tag{5}
\end{equation*}
$$

Both $\left(O_{S}^{*}\right)_{T}$ and X are of rank r. Let

$$
\begin{equation*}
\Lambda^{r} \log _{S}: \Lambda^{r} O_{S}^{*} \longrightarrow \Lambda^{r}(\mathbf{R} \otimes X) \tag{6}
\end{equation*}
$$

denote the map induced by $\log _{S}$ on the top exterior powers, and define the regulator $R_{S, T}$ by

$$
\begin{equation*}
\Lambda^{r} \log _{S}\left(\gamma_{1} \wedge \cdots \wedge \gamma_{r}\right)=R_{S . T} \otimes\left(v_{1} \wedge \cdots \wedge v_{r}\right), \tag{7}
\end{equation*}
$$

where $\gamma_{1}, \ldots, \gamma_{r}$ (resp. v_{1}, \ldots, v_{r}) are integral bases for $\left(O_{S}^{*}\right)_{T}$ modulo torsion (resp. X), normalized so that $R_{S, T}$ is positive.

The theorem of Dirichlet asserts that the above global invariants appear in the Taylor expansion of the L-function $L_{S . T}(K, s)$ which was constructed using purely local data. It is one of the simplest manifestations of a local global principle which is pervasive in number theory.

Theorem 2.1 (Dirichlet). 1. The L-series $L_{S, T}(K, s)$ vanishes to order r at $s=0$.
2. The Taylor expansion of $L_{S, T}(K, s)$ at $s=0$ is given by:

$$
L_{S, T}(K, s)=-\frac{h_{S, T} R_{S, T}}{w_{S, T}} s^{r}+O\left(s^{r+1}\right)
$$

3. Gross's refined class number formula. We now turn to the refined class number formula of Gross, following closely the account given in [Gr].

Let L be a finite abelian extension of K which is unramified outside the places of S, and let $G=\operatorname{Gal}(L / K)$. Define a complex-valued function $\hat{\theta}_{G}$ on the dual group $\hat{G}=\operatorname{hom}\left(G, \mathbf{C}^{*}\right)$ by

$$
\begin{equation*}
\hat{\theta}_{G}(\chi)=L_{S . T}(K, \chi, 0) \tag{8}
\end{equation*}
$$

where, for a complex character $\chi: G \longrightarrow \mathbf{C}^{*}$ and a complex number s with $\Re s>1$, the complex function $L_{S, T}(K, \chi, s)$ is defined by the convergent Euler product

$$
L_{S . T}(K, \chi, s)=\prod_{v \notin S}\left(1-\chi\left(\operatorname{Frob}_{v}\right) \mathbf{N} v^{-s}\right)^{-1} \prod_{v \in T}\left(1-\chi\left(\text { Frob }_{v}\right) \mathbf{N} v^{1-s}\right) .
$$

This function has a meromorphic continuation to the entire complex plane and is regular at $s=0$. Let $\theta_{G} \in \mathbf{C}[G]$ be the Fourier transform of $\hat{\theta}_{G}$,

$$
\theta_{G}=\sum_{\chi \in \hat{G}} \hat{\theta}_{G}(\chi) e_{\chi}, \quad e_{\chi}=1 /|G| \sum_{g \in G} \chi(g) g^{-1} .
$$

Thus, $\theta_{G}=\sum_{g \in G} a(g) g$ interpolates values of $L_{S . T}(K, \chi, 0)$,

$$
\begin{equation*}
\sum_{g \in G} a(g) \chi(g)=L_{S, T}(K, \chi, 0) . \tag{9}
\end{equation*}
$$

For the rest of this section, we make the following assumption on T, which forces $w_{S, T}=1$ so that the leading term in the class number formula is integral.

Hypothesis 3.1. Suppose that T contains two primes of unequal residue characteristic, or that T contains a prime whose absolute ramification index in K is strictly less that the residue field characteristic minus 1 .

Under this condition, Gross [Gr] shows that the element θ_{G} belongs to the integral group ring $\mathbf{Z}[G]$.

FACT 3.2 (Gross). θ_{G} belongs to $\mathbf{Z}[G]$.

The order of vanishing of θ_{G} : Let I denote the augmentation ideal in the group ring $\mathbf{Z}[G]$. It is the kernel of the augmentation homomorphism $\epsilon: \mathbf{Z}[G] \rightarrow \mathbf{Z}$ which sends $\sigma \in G$ to 1 . The powers $I \supset I^{2} \supset \cdots$ define a decreasing filtration on $\mathbf{Z}[G]$. Because of the exact sequence

$$
\begin{equation*}
0 \longrightarrow I \longrightarrow \mathbf{Z}[G] \xrightarrow{\epsilon} \mathbf{Z} \longrightarrow 0, \tag{10}
\end{equation*}
$$

one has $\mathbf{Z}[G] / I=\mathbf{Z}$. The higher quotients in the filtration are torsion. For instance, there is a natural homomorphism $G \rightarrow I / I^{2}$ which sends $\sigma \in G$ to $\sigma-1\left(\bmod I^{2}\right)$. In fact, this is an isomorphism. More generally, there is a natural surjective map

$$
\begin{equation*}
\operatorname{Sym}^{r}(G) \longrightarrow I^{r} / I^{r+1} \tag{11}
\end{equation*}
$$

which sends $\sigma_{1} \otimes \cdots \otimes \sigma_{r}$ to $\left(\sigma_{1}-1\right) \cdots\left(\sigma_{r}-1\right)\left(\bmod I^{p+1}\right)$. (This map is not necessarily an isomorphism; for a detailed study of the map $\operatorname{Sym}(G) \rightarrow \oplus_{r} I^{r} / I^{r+1}$, the reader may consult [Pa], [H1], [H2].)

The element θ_{G} which interpolates special values at $s=0$ of the twisted L-function $L_{S, T}(K, \chi, s)$ is what plays the role of the L-function in Gross's refined class number formula. To say that this element vanishes to order r is to say that it belongs to the r-th power of the augmentation ideal.

Conjecture 3.3 (Gross). The element θ_{G} belongs to I.
The leading coefficient $\tilde{\theta}_{G}$ in the refined class number formula is defined to be the projection of θ_{G} to r^{r} / I^{r+1}. It is natural to search for an interpretation of $\tilde{\theta}_{G}$ which is analogous to the analytic result of Dirichlet.

To do this, it suffices to change the definition of the regulator term $R_{S, T}$ defined in the previous section. Consider the homomorphism

$$
\begin{equation*}
\operatorname{rec}_{S}: O_{S}^{*} \longrightarrow\left(I / I^{2}\right) \otimes_{\mathbf{z}} X \tag{12}
\end{equation*}
$$

defined by

$$
\begin{equation*}
\operatorname{rec}_{S}(u)=\sum_{v \in S}\left(\operatorname{rec}_{v}\left(u_{v}\right)-1\right) \otimes v, \tag{13}
\end{equation*}
$$

where $u_{v} \in K_{v}^{*}$ is the natural image of u. Let Λ^{r} rec $_{S}$ denote the induced map on the top exterior powers:

$$
\Lambda^{r} \mathrm{rec}_{S}: \Lambda^{r} O_{S}^{*} \longrightarrow \Lambda^{r}\left(I / I^{2} \otimes X\right) \longrightarrow\left(I^{r} / I^{r+1}\right) \otimes \Lambda^{r} X
$$

and define the regulator $R_{S, T}$ in r^{r} / I^{r+1} by

$$
\begin{equation*}
\Lambda^{r} \operatorname{rec}_{S}\left(\gamma_{1} \wedge \cdots \wedge \gamma_{r}\right)=R_{S, T} \otimes\left(v_{1} \wedge \cdots \wedge v_{r}\right) \tag{14}
\end{equation*}
$$

where $\gamma_{1}, \ldots, \gamma_{r}$ and v_{1}, \ldots, v_{r} are the integral bases chosen in Section 2.
Conjecture 3.4 (Gross).

$$
\tilde{\theta}_{G}=-h_{S, T} R_{S, T} .
$$

Remarks. 1. If K has a complex place v, then the Γ-factors in the functional equation force a zero at $s=0$ in the twisted L-function $L_{S, T}(K, \chi, s)$ for all χ. Hence $\theta_{G}=0$. But rec $_{v}$ is trivial, so that $R_{S . T}=0$ as well. Therefore the conjecture is trivially verified. It is only interesting when K is a totally real field.
2. Because of the presence of the archimedean places, one has $2 R_{S, T}=0$ in I^{r} / I^{r+1}. (Also one can show that $2 \tilde{\theta}_{G}=0$.) Thus Gross's conjecture for number fields is really a parity statement - it was proved by Gross when S contains only the archimedean places by using the 2-adic congruences of Deligne-Ribet for totally real fields [DR].
4. A refined conjecture for circular units. Let ω be an even primitive Dirichlet character of conductor N. In order to simplify the exposition, we assume that ω is quadratic, and let K denote the corresponding real quadratic field. Choose an auxiliary real abelian extension M of \mathbf{Q} with conductor prime to N, and let G denote its Galois group. For all χ in \hat{G}, the Dirichlet L-series

$$
\begin{equation*}
L_{S}(s, \omega \chi)=\sum_{(n, S)=1}^{\infty} \omega \chi(n) n^{-s}=\prod_{p \nmid S}\left(1-\omega \chi(p) p^{-s}\right)^{-1} \tag{15}
\end{equation*}
$$

vanishes at $s=0$, because of the pole in the factor $\Gamma\left(\frac{1}{2} s\right)$ in the functional equation. One might be tempted to define a function $\hat{\theta}_{G}^{\prime}$ on \hat{G} by $\hat{\theta}_{G}^{\prime}(\chi)=L_{S}^{\prime}(0, \omega \chi)$, and letting $\theta_{G}^{\prime} \in \mathbf{C}[G]$ be its Fourier transform as in Section 3. However, the coefficients of θ_{G}^{\prime} are not integral, or even algebraic. This leads to the problem of finding an appropriate substitute for θ_{G}^{\prime}, and formulating a conjecture analogous to conjectures 3.3 and 3.4 for it.

Fix a choice of primitive n-th roots of unity $\zeta_{n} \in \overline{\mathbf{Q}}$ for each n, satisfying the compatibilities

$$
\begin{equation*}
\zeta_{n m}^{m}=\zeta_{n} . \tag{16}
\end{equation*}
$$

This choice determines a complex embedding Ψ of $\mathbf{Q}^{a b}$, sending ζ_{n} to $e^{2 \pi i / n}$.
Let S be a square-free integer which is relatively prime to the conductor of ω. Let $K_{S}=K\left(\mu_{S}\right)$. The circular unit α_{S} in K_{S} is defined by

$$
\begin{equation*}
\alpha_{S}=\prod_{\sigma \in \operatorname{Gal}\left(\mathbf{Q}\left(\mu_{S N}\right) / \mathbf{Q}\left(\mu_{S}\right)\right)} \sigma\left(\zeta_{N S}-1\right)^{\omega(\sigma)} . \tag{17}
\end{equation*}
$$

Let $\Gamma_{S}=\operatorname{Gal}\left(K_{S} / K\right)$, and let I denote the augmentation ideal in the group ring $\mathbf{Z}\left[\Gamma_{S}\right]$. The theta-element $\theta^{\prime}(\omega, S)$ is given by the formula

$$
\begin{equation*}
\theta^{\prime}(\omega, S)=\sum_{\sigma \in \Gamma_{S}} \sigma \alpha_{S} \otimes \sigma \in K_{S}^{*} \otimes \mathbf{Z}\left[\Gamma_{S}\right] . \tag{18}
\end{equation*}
$$

Relation between $\theta^{\prime}(\omega, S)$ and $L_{S}^{\prime}(0, \omega \chi)$: Let $\log : K_{S}^{*} \rightarrow \mathbf{C}$ be a principal branch of the logarithm map induced by the complex embedding Ψ of K_{S}. Extending a character $\chi \in \hat{\Gamma}_{S}$ by linearity to the group ring $\mathbf{Z}\left[\Gamma_{S}\right]$, one combines the maps log and χ to give a linear map

$$
\log \otimes \chi: K_{S}^{*} \otimes \mathbf{Z}\left[\Gamma_{S}\right] \longrightarrow \mathbf{C}
$$

We call a character χ of Γ_{S} primitive if it does not factor through the natural homomorphism $\Gamma_{S} \rightarrow \Gamma_{T}$ for any proper divisor T of S. The following theorem which describes the interpolation property of the circular units is due to Kummer.

Theorem 4.1. Assume that χ is primitive. Then

$$
\log \otimes \chi\left(\theta^{\prime}(\omega, S)\right)=\sum_{\sigma \in \Gamma_{S}} \chi(\sigma) \log \left|\sigma \alpha_{S}\right|=-2 L_{S}^{\prime}(0, \omega \chi)
$$

Thus $\theta^{\prime}(\omega, S)$ can be viewed as an analogue of $L_{S}^{\prime}(s, \omega)$.
Let

$$
\begin{gathered}
S_{\text {split }}=\{l \mid S, \omega(l)=1\} \\
S_{\text {inert }}=\{l \mid S, \omega(l)=-1\} .
\end{gathered}
$$

Let X^{-}be the group of divisors of K of degree 0 lying above S or ∞ on which the generator of $\operatorname{Gal}(K / \mathbf{Q})$ acts by -1 . It is a free \mathbf{Z}-module of $\operatorname{rank} r$, where

$$
\begin{equation*}
r=\#\left(S_{\text {split }}\right)+1 . \tag{19}
\end{equation*}
$$

Let $v_{\infty}=\lambda_{\infty}-\bar{\lambda}_{\infty}$ be the difference of the two conjugate real places of K, and let $v_{i}=\lambda_{i}-\bar{\lambda}_{i}$, where $\lambda_{i}, \bar{\lambda}_{i}$ denote conjugate primes of K lying above $l_{i} \in S_{\text {split }}$. Then $\left\{v_{\infty}, v_{1}, \ldots, v_{r-1}\right\}$ forms a basis for X^{-}. Let $\left(O_{S}^{*}\right)^{-}$be the group of S-units of K on which the generator of $\operatorname{Gal}(K / \mathbf{Q})$ acts by -1 . This is also a free \mathbf{Z}-module of rank r. Choose a basis $\omega_{1}, \ldots, \omega_{r}$ for $\left(O_{S}^{*}\right)^{-}$in such a way that the regulator R_{S} for the logarithmic embedding

$$
\begin{equation*}
\left(O_{S}^{*}\right)^{-} \longrightarrow X^{-} \otimes \mathbf{R} \tag{20}
\end{equation*}
$$

relative to the bases $\left\{\omega_{1}, \ldots, \omega_{r}\right\}$ and $\left\{v_{\infty}, v_{1}, \ldots, v_{r-1}\right\}$ is positive.
From the non-vanishing of the classical Dirichlet L-series at $s=1$ combined with the functional equation for these L-series, one knows that

$$
\begin{equation*}
\operatorname{ord}_{s=0} L_{S}^{\prime}(s, \omega)=r-1, \tag{21}
\end{equation*}
$$

and that

$$
\begin{equation*}
\lim _{s \rightarrow 0} L_{S}^{\prime}(s, \omega) /\left(s^{r-1}\right)=-2^{\# S_{\text {inen }}+1} r h_{S} R_{S} . \tag{22}
\end{equation*}
$$

In the next section, we will show that a similar statement is true for the element $\theta^{\prime}(\omega, S)$:
Theorem 4.2 (ORder of Vanishing). The element $\theta^{\prime}(\omega, S)$ belongs to the group $K_{S}^{*} \otimes I^{r-1}$.

The leading coefficient $\tilde{\theta}^{\prime}(\omega, S)$ is defined to be the natural projection of $\theta^{\prime}(\omega, S)$ to the group $K_{S}^{*} \otimes\left(I^{r-1} / I^{r}\right)$. One can interpret $\theta^{\prime}(\omega, S)$ by means of a kind of S-unit regulator belonging to $O_{S}^{*} \otimes\left(r^{r-1} / r^{r}\right)$.

The regulator: Let Y^{-}denote the group of divisors of K of degree 0 lying above S on which $\operatorname{Gal}(\overline{\mathbf{Q}} / \mathbf{Q})$ acts via the character ω. This is a free module of rank $r-1$ with basis $\left\{v_{1}, \ldots, v_{r-1}\right\}$. One defines the map

$$
\begin{equation*}
\operatorname{rec}_{S}:\left(O_{S}^{*}\right)^{-} \longrightarrow I_{S} \otimes Y^{-} \tag{23}
\end{equation*}
$$

using the reciprocity law of local class field theory as in Section 3. Define the partial regulators $R_{i} \in I_{S}^{r-1} / I_{S}^{r}$ by the formula

$$
\begin{equation*}
\operatorname{rec}_{S}\left(\gamma_{1} \wedge \cdots \wedge \gamma_{i-1} \wedge \gamma_{i+1} \wedge \cdots \wedge \gamma_{r}\right)=R_{i} \otimes\left(v_{1} \wedge \cdots \wedge v_{r-1}\right) \tag{24}
\end{equation*}
$$

The regulator $R_{S} \in O_{S}^{*} \otimes\left(I^{r-1} / I^{r}\right)$ is given by

$$
\begin{equation*}
R_{S}=\sum_{i=1}^{r}(-1)^{i+1} \gamma_{i} \otimes R_{i} . \tag{25}
\end{equation*}
$$

Conjecture 4.3.

$$
\tilde{\theta}^{\prime}(\omega, S)=-2^{\#\left(S_{\text {iefer }}\right)+1} h_{S} R_{S} .
$$

We now give some evidence for Conjecture 4.3. Let $\tilde{\theta}^{\prime}(\omega, S)_{2}$ denote the projection of $\tilde{\theta}^{\prime}(\omega, S)$ in the group $K_{S}^{*} \otimes\left(I_{2}^{r-1} / I_{2}^{r}\right)$, where I_{2} denotes the augmentation ideal in the group ring $\mathbf{Z}\left[\frac{1}{2}\right]\left[\Gamma_{S}\right]$. The tensoring with the ring $\mathbf{Z}\left[\frac{1}{2}\right]$ has been made to avoid some technical complications associated with the prime 2: observe that $\left(I_{2}^{r-1} / I_{2}^{r}\right)=\left(I^{r-1} / I^{r}\right) \otimes \mathbf{Z}\left[\frac{1}{2}\right]$ is a finite abelian group of odd order, when $r>1$.

FACT 4.4. The natural map $K^{*} \otimes\left(r_{2}^{r-1} / r_{2}^{r}\right) \longrightarrow K_{S}^{*} \otimes\left(I_{2}^{r-1} / I_{2}^{r}\right)$ is an injection.
The proof for this standard fact will be given in Section 9 .
Let $n(S)$ be the greatest odd divisor of $\operatorname{gcd}_{\| \mid S}(l-1)$. The following theorem gives some evidence for Conjecture 4.3:

Theorem 4.5. I. Conjecture 4.3 is true when $r=1$.
2. $\tilde{\theta}^{\prime}(\omega, S)_{2}$ belongs to $K^{*} \otimes I_{2}^{r-1} / I_{2}^{r}$.
3. If $\operatorname{gcd}\left(h_{S}(K), n(T)\right)=1$ for all $T \mid S$, then $\tilde{\theta}^{\prime}(\omega, S)_{2}$ belongs to $O_{s}^{*} \otimes\left(r_{2}^{r-1} / r_{2}^{r}\right)$.
4. $h_{S}(K)$ divides $\tilde{\theta}^{\prime}(\omega, S)_{2}$.
5. Suppose that $\Gamma_{S}=\Gamma_{l}$ is cyclic, and that l is split in K / \mathbf{Q} so that $r=2$. Let λ be a prime of K above l, and let $k_{\lambda} \simeq \mathbf{F}_{l}$ denote the residue field at λ. If the fundamental unit of K / \mathbf{Q} is a generator for k_{λ}^{*}, and $\operatorname{gcd}(h(K), n(l))=1$, then

$$
\tilde{\theta}^{\prime}\left(\omega, l_{2}= \pm 2 h_{l} R_{l}\left(\bmod I_{2}^{2}\right) .\right.
$$

The proof of this theorem, which uses the methods of Thaine [Th] in an essential way, will be given in Section 9.
5. The Euler system of circular units. Let S be the set of square-free integers prime to the conductor of K. For all $S \in S$ we are given the following data:

1. An abelian extension $K_{S}=K\left(\mu_{S}\right)$ of K with Galois group $\Gamma_{S}=(\mathbf{Z} / S \mathbf{Z})^{*}$.
2. The circular unit $\alpha(S)$ in K_{S}, given by the formula

$$
\begin{equation*}
\alpha(S)=\prod_{\sigma \in \operatorname{Gal}\left(\mathbf{Q}\left(S_{v}\right) / \mathbf{Q}\left(s_{s}\right)\right)} \sigma\left(\zeta_{S N}-1\right)^{\omega(\sigma)} . \tag{26}
\end{equation*}
$$

Writing $S=l_{1} \cdots l_{s}$, the extension K_{S} is a compositum of the fields $K_{l_{i}}$ which are linearly disjoint over K. Hence there is a canonical direct product decomposition

$$
\begin{equation*}
\Gamma_{S}=\Gamma_{l_{1}} \times \cdots \times \Gamma_{l_{s}} \tag{27}
\end{equation*}
$$

which gives inclusions $\Gamma_{T} \subset \Gamma_{S}$ for all divisors T of S. We will implicitly identify elements of Γ_{T} with their images in Γ_{S}. For any T dividing S, the partial norm operator \mathbf{N}_{T} in the group ring $\mathbf{Z}\left[\Gamma_{S}\right]$ is defined by

$$
\begin{equation*}
\mathbf{N}_{T}=\sum_{\sigma \in \Gamma_{T}} \sigma \tag{28}
\end{equation*}
$$

These operators act on the field K_{S} in the natural way. Given $T \in S$ and l a prime in S which is prime to T, let $\sigma_{l, T} \in \operatorname{Gal}\left(K_{T} / \mathbf{Q}\right)$ be the automorphism sending the roots of unity to their l-th powers.

Proposition 5.1.

$$
N_{l}(\alpha(T l))=\left(1-\sigma_{l, T}^{-1}\right) \alpha(T)
$$

Proof. We can write

$$
\begin{equation*}
\zeta_{T l}=\zeta_{T S_{l}^{a}}^{a}, \tag{29}
\end{equation*}
$$

where $a l+b T=1$. Hence

$$
N_{l}\left(1-\zeta_{T l}\right)=\left(1-\zeta_{T}^{a l}\right) /\left(1-\zeta_{T}^{a}\right)=\left(1-\sigma_{l, T}^{-1}\right)\left(1-\zeta_{T}\right)
$$

and the proposition follows from the definition of the circular units $\alpha(T)$ and $\alpha(T l)$.
PROPOSITION 5.2. $\alpha(T l) \equiv \sigma_{l, T}^{-1} \alpha(T)(\bmod \lambda)$, where λ is any prime of $K_{T l}$ above l.
Proof. This follows from equation (29) together with the fact that a is an inverse for l in $(\mathbf{Z} / T \mathbf{Z})^{*}$ and that $\zeta_{l} \equiv 1(\bmod \lambda)$.

Propositions 5.1 and 5.2 make up the axioms of an Euler system in the sense of Kolyvagin [Ko].
6. Divisibility properties of the circular units. In addition to the norm operator \mathbf{N}_{l} defined in the previous section, the following derivative operators in the group ring $\mathbf{Z}\left[\Gamma_{S}\right]$ are a key ingredient in Kolyvagin and Thaine's method. For each prime l in \mathcal{S}, choose a generator γ_{l} for Γ_{l} and let

$$
\begin{equation*}
\mathrm{D}_{l}=\sum_{i=1}^{l-2} i \gamma_{l}^{i}, \quad \mathrm{D}_{T}=\prod_{l \mid T} \mathrm{D}_{l}, \tag{30}
\end{equation*}
$$

the product being taken in the group ring $\mathbf{Z}\left[\Gamma_{T}\right]$.
Lemma 6.1. $\left(\gamma_{l}-1\right) \mathrm{D}_{l}=(l-1)-\mathbf{N}_{l}$.

Proof. A direct computation.
The group ring $\mathbf{Z}\left[\Gamma_{T}\right]$ operates on the group K_{T}^{*} in a natural way. Let

$$
\begin{equation*}
\beta(T)=\mathrm{D}_{T} \alpha(T) \in K_{T}^{*}, \tag{31}
\end{equation*}
$$

and let $n(T)$ be the largest odd divisor of $\operatorname{gcd}_{l \mid T}(l-1)$.
From now on, we will assume that T is a product of primes which are split in K / \mathbf{Q}. Although $\beta(T)$, unlike $\mathbf{N}_{T} \alpha(T)$, need not be invariant under the action of Γ_{T}, it is invariant modulo $n(T)$-th powers.

Lemma 6.2. $\beta(T)$ belongs to $\left(K_{T}^{*} / K_{T}^{* n(T)}\right)^{\Gamma_{T}}$.
Proof. By induction on the number of primes dividing T. Assume the lemma for all proper divisors of T, and write $T=l Q$. Modulo $n(T)$, one has:

$$
\begin{aligned}
\left(\gamma_{l}-1\right) \mathrm{D}_{T} \alpha(T) & =\left(l-1-\mathbf{N}_{l}\right) \mathrm{D}_{Q} \alpha(T) \quad \text { (Lemma 6.1) } \\
& =\left(\sigma_{l, Q}^{-1}-1\right) \mathrm{D}_{Q} \alpha(Q) \quad \text { (Proposition 5.1) } \\
& =0 \quad \text { by the induction hypothesis. }
\end{aligned}
$$

In the last step we use the fact that $\sigma_{l, Q}=1$ in $\operatorname{Gal}(K / Q)$, so that $\sigma_{l, Q}$ belongs to Γ_{Q}.
Lemma 6.3. The natural map $K^{*} / K^{* n(T)} \rightarrow\left(K_{T}^{*} / K_{T}^{* n(T)}\right)^{\Gamma_{T}}$ is an isomorphism.
Proof. The group of $n(T)$-th roots of unity in K_{T} is trivial. Hence the sequence

$$
\begin{equation*}
1 \longrightarrow K_{T}^{*} \xrightarrow{n(T)} K_{T}^{*} \longrightarrow K_{T}^{*} / K_{T}^{* n_{T}} \longrightarrow 1 \tag{32}
\end{equation*}
$$

is exact. Taking Γ_{T}-invariants gives rise to the cohomology exact sequence

$$
\begin{equation*}
1 \longrightarrow K^{*} / K^{* n(T)} \longrightarrow\left(K_{T}^{*} / K_{T}^{* n(T)}\right)^{\Gamma_{T}} \longrightarrow H^{1}\left(\Gamma_{T}, K_{T}^{*}\right)_{n(T)} \longrightarrow 1, \tag{33}
\end{equation*}
$$

and the lemma follows from Hilbert's Theorem $90\left(H^{1}\left(\Gamma_{T}, K_{T}^{*}\right)=0\right)$.
Let $\kappa(T)$ denote the preimage of $\beta(T)$ by this isomorphism. For each prime l in S, choose a place λ of K above it. Write

$$
\begin{equation*}
v_{\lambda}: K^{*} \longrightarrow \mathbf{Z} \tag{34}
\end{equation*}
$$

for the valuation map at λ, and \tilde{v}_{λ} for the induced map on $K^{*} / K^{* n(T)}$, making the following diagram commute:

Let u_{l} denote the image of γ_{l} by the isomorphism $\Gamma_{l} \rightarrow(\mathbf{Z} / l \mathbf{Z})^{*}$. Given κ in K^{*}, let $\operatorname{red}_{\lambda}(\kappa) \in k_{\lambda}^{*}$ be the reduction of $\kappa \bmod \lambda$, in the residue field $k_{\lambda}=\mathbf{Z} / l \mathbf{Z}$. Finally, let

$$
\begin{equation*}
\log _{u_{l}}: k_{\lambda}^{*} \longrightarrow \mathbf{Z} /(l-1) \mathbf{Z} \tag{35}
\end{equation*}
$$

be the logarithm map to the base u_{l}. The following proposition contains the information that we will need on the ideal factorization of the $\kappa(T)$.

Proposition 6.4. 1. If l does not divide T, then $\tilde{v}_{\lambda}(\kappa(T))=0$.
2. If l is split in K_{T} / \mathbf{Q}, then

$$
\tilde{v}_{\lambda}(\kappa(T l))=-\log _{u_{l}}\left(\operatorname{red}_{\lambda}(\kappa(T))\right)(\bmod n(T l)) .
$$

Proof. 1. If l does not divide T, then λ is unramified in K_{T} / K, and hence the valuation map \tilde{v}_{λ} extends from $K^{*} / K^{* n(T)}$ to $K_{T}^{*} / K_{T}^{* n(T)}$. But clearly $\tilde{v}_{\lambda}(\beta(T))=0$, since $\beta(T)$ is a unit in K_{T}^{*}.
2. Let λ^{\prime} be a prime of K_{T} above λ, and let $\lambda^{\prime \prime}$ be the prime of $K_{T l}$ above λ^{\prime}. Let $v_{\lambda^{\prime}}$ (resp. $v_{\lambda^{\prime \prime}}$) be the valuations on K_{T} (resp $K_{T l}$) normalized to be 1 on uniformizing elements, so that

$$
\begin{equation*}
v_{\lambda^{\prime}}(\kappa)=\frac{1}{l-1} v_{\lambda^{\prime \prime}}(\kappa), \quad \kappa \in K_{T}^{*} . \tag{36}
\end{equation*}
$$

Writing

$$
\begin{equation*}
\kappa(T l)=\beta(T l) \rho^{-n(T l)}, \quad \rho \in K_{T l}, \tag{37}
\end{equation*}
$$

and using the fact that $\beta(T l)$ is a unit, one finds

$$
\begin{equation*}
v_{\lambda}(\kappa(T l))=-\frac{n(T l)}{l-1} v_{\lambda^{\prime \prime}}(\rho) . \tag{38}
\end{equation*}
$$

By definition of u_{l}, one has

$$
\begin{equation*}
v_{\lambda^{\prime \prime}}(\rho)=\log _{u_{l}}\left(\operatorname{red}_{\lambda^{\prime \prime}}\left(\left(\gamma_{l}-1\right) \rho\right)\right)(\bmod l-1) . \tag{39}
\end{equation*}
$$

But

$$
\begin{aligned}
\left(\gamma_{l}-1\right) \rho & =\frac{1}{n(T l)}\left[\left(\gamma_{l}-1\right) \beta(T l)\right] \\
& =\frac{1}{n(T l)}\left[(l-1) \mathrm{D}_{T} \alpha(T l)+\left(1-\sigma_{l, T}^{-1}\right) \mathrm{D}_{T} \alpha(T)\right] \\
& =\frac{l-1}{n(T l)} \mathrm{D}_{T} \alpha(T l), \quad \text { since } \sigma_{l, T}=1 .
\end{aligned}
$$

Hence by Proposition 5.2,

$$
\begin{equation*}
\operatorname{red}_{\lambda^{\prime \prime}}\left(\left(\gamma_{l}-1\right) \rho\right)=\operatorname{red}_{\lambda^{\prime}}\left(\frac{l-1}{n(T l)} \mathrm{D}_{T} \alpha(T)\right) \tag{40}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\log _{u_{l}} \operatorname{red}_{\lambda^{\prime \prime}}\left(\left(\gamma_{l}-1\right) \rho\right) \equiv \log _{u_{l}} \operatorname{red}_{\lambda^{\prime}}\left(\frac{l-1)}{n(T l)} \beta(T)\right)(\bmod l-1) . \tag{41}
\end{equation*}
$$

Combining equations (38), (39) and (41), one obtains

$$
\begin{equation*}
\tilde{v}_{\lambda}(\kappa(T l)) \equiv-\log _{u_{l}}\left(\operatorname{red}_{\lambda} \kappa(T)\right)(\bmod n(T l)) \tag{42}
\end{equation*}
$$

as desired.
If M is a \mathbf{Z}-module and m belongs to M, we say that $n \in \mathbf{Z}$ divides m if there exists $m^{\prime} \in M$ with $n \cdot m^{\prime}=m$. Given a rational prime p, one defines $\operatorname{ord}_{p}(m)$ to be the integer M such that p^{M} divides m, but p^{M+1} does not. (If this integer does not exist one sets $\operatorname{ord}_{p}(m)=\infty$.) Recall that $C_{S}(K)$ is defined to be the quotient of the ideal class group of K by the subgroup generated by the prime ideals lying above S, and that $h_{S}(K)$ denotes its order. The main result of Thaine and Kolyvagin gives a bound on the order of $C_{S}(K)$ in terms of the divisibilty of the elements $\kappa(S)$.

Theorem 6.5 (Thaine, Kolyvagin). The greatest common divisor of $n(S)$ and $h_{S}(K)$ divides $\kappa(S)$.

Proof. We prove this by induction on $h_{S}(K)$. If $h_{S}(K)=1$, then the theorem is trivially true. Otherwise, choose a prime p dividing $h_{S}(K)$. Suppose that $\operatorname{ord}_{p}(\kappa(S))=M_{0}<\infty$, and let $M=M_{0}+1$. We must show that p^{M} does not divide $\operatorname{gcd}\left(n(S), h_{S}(K)\right)$. If p^{M} does not divide $n(S)$, we are done. Hence, suppose that p^{M} divides $n(S)$. (So that in particular, p is odd). Now, choose a prime l in S not dividing S, such that

1. l splits in K / \mathbf{Q}; let λ denote a prime of K lying above it.
2. $l \equiv 1\left(\bmod P^{M}\right)\left(\right.$ i.e., l splits in $\left.\mathbf{Q}\left(\mu_{p^{M}}\right) / \mathbf{Q}\right)$.
3. $\operatorname{ord}_{p}\left(\operatorname{red}_{\lambda}(\kappa(S))\right)=M_{0}$.
4. The image of λ in $C_{S}(K) \otimes \mathbf{Z}_{p}$ is non trivial, and the exact sequence

$$
0 \longrightarrow\langle\lambda\rangle \longrightarrow C_{S}(K) \otimes \mathbf{Z}_{p} \longrightarrow C_{S l}(K) \otimes \mathbf{Z}_{p} \longrightarrow 0
$$

is split (and hence in particular $\operatorname{ord}_{p}(\lambda)=0$).
Let $F=K\left(\mu_{p^{M}}, \kappa(S)^{1 / p^{M}}\right)$. Conditions 2 and 3 are equivalent to the condition that Frob ${ }_{\lambda}$ in $\operatorname{Gal}(F / K)$ belongs to the subgroup $\operatorname{Gal}\left(F / K\left(\mu_{p^{\mu}}\right)\right)$ and is non-trivial. Condition 4 is equivalent to a condition on $\operatorname{Frob}_{\lambda}$ in $\operatorname{Gal}\left(H_{S} / K\right)$ where H_{S} is a non-trivial subfield of the Hilbert class field H of K. Since F and H are linearly disjoint over K (as can be seen for example by ramification considerations), it follows from the Chebotarev density theorem that conditions $1-4$ can be imposed simultaneously.

Let $m=\operatorname{ord}_{p}(\kappa(S l))$. By combining Proposition 6.4 with condition 3 satisfied by l, one has

$$
\begin{equation*}
\operatorname{ord}_{p}\left(\tilde{v}_{\lambda}(\kappa(S l))\right)=M_{0} \tag{43}
\end{equation*}
$$

and hence a fortiori $m \leq M_{0}$. Moreover, since p^{M} divides $l-1$, it also divides $n(S l)$. Let ρ be the natural projection of $\kappa(S l)$ to $K^{*} / K^{* p^{M}}$, and let $\kappa^{\prime}(S l)=\rho^{1 / p^{m}}$ which is well defined in $K^{*} / K^{* p^{M-m}}$. By equation 43 and condition 3 , one has

$$
\begin{equation*}
\tilde{v}_{\lambda}\left(\kappa^{\prime}(S l)\right)=u \cdot p^{M_{0}-m}, \tag{44}
\end{equation*}
$$

where u is a unit in $\mathbf{Z} / p^{M-m} \mathbf{Z}$. Hence $p^{M_{0}-m}$ annihilates the class of λ in $C(S) \otimes \mathbf{Z} / p^{M-m} \mathbf{Z}$. Because of condition 4, we have

$$
\begin{equation*}
\#\langle\lambda\rangle \leq p^{M_{0}-m} \tag{45}
\end{equation*}
$$

In particular, $m<M_{0}$, and by the induction hypothesis,

$$
\begin{equation*}
\# C_{S l}(K) \otimes \mathbf{Z}_{p} \leq p^{m} \tag{46}
\end{equation*}
$$

Combining the inequalities (45) and (46) gives

$$
\begin{equation*}
\# C_{S}(K) \otimes \mathbf{Z}_{p} \leq p^{M_{0}} \tag{47}
\end{equation*}
$$

so that p^{M} does not divide $h_{S}(K)$, as was to be shown.
7. Formal properties of $\theta^{\prime}(\omega, S)$. We now turn to the study of the element $\theta^{\prime}(\omega, S)$ defined by

$$
\begin{equation*}
\theta^{\prime}(\omega, S)=\sum_{\sigma \in \Gamma_{S}} \sigma \alpha(S) \otimes \sigma \in K_{S}^{*} \otimes \mathbf{Z}\left[\Gamma_{S}\right] . \tag{48}
\end{equation*}
$$

Given

$$
\gamma \in \operatorname{Gal}\left(K_{S} / \mathbf{Q}\right)=\Gamma_{S} \times \operatorname{Gal}(K / \mathbf{Q})
$$

let $\gamma(T)$ denote its natural projection in Γ_{T}.
The group $\operatorname{Gal}\left(K_{S} / \mathbf{Q}\right)$ acts on the left of $K_{S}^{*} \otimes \mathbf{Z}\left[\Gamma_{S}\right]$ by the Galois action, and Γ_{S} acts on the right by multiplication in the group ring.

Lemma 7.1. $\gamma \theta^{\prime}(\omega, S)=\omega(\gamma) \cdot \theta^{\prime}(\omega, S) \cdot \gamma(S)^{-1}$.
Proof. A change of variable argument.
Given a divisor T of S, let $P_{S, T}: K_{S}^{*} \otimes \mathbf{Z}\left[\Gamma_{S}\right] \rightarrow K_{S}^{*} \otimes \mathbf{Z}\left[\Gamma_{S}\right]$ be the map induced by the projection $\Gamma_{S} \rightarrow \Gamma_{T} \subset \Gamma_{S}$.

Lemma 7.2 .

$$
P_{S, T}\left(\theta^{\prime}(\omega, S)\right)=\theta^{\prime}(\omega, T) \cdot \prod_{l \mid S / T}\left(1-\omega(l) \cdot \sigma_{l, T}\right) .
$$

Proof. One has

$$
\begin{equation*}
P_{S, T}\left(\theta^{\prime}(\omega, S)\right)=\sum_{\sigma \in \Gamma_{T}}\left(\mathbf{N}_{S / T} \cdot \sigma \alpha_{S} \otimes \sigma\right) \tag{49}
\end{equation*}
$$

Hence by Proposition 5.1

$$
\begin{equation*}
P_{S . T}\left(\theta^{\prime}(\omega, S)\right)=\left(\prod_{l \mid S / T}\left(1-\sigma_{l, T}^{-1}\right)\right) \theta^{\prime}(\omega, T), \tag{50}
\end{equation*}
$$

which is equal to $\theta^{\prime}(\omega, T) \cdot \Pi\left(1-\omega(l) \sigma_{l, T}\right)$ by Lemma 7.1.
8. The order of vanishing of $\theta^{\prime}(\omega, S)$. Let us write S as $S=P Q$, where $P=l_{1} \cdots l_{s}$ is a product of split primes in K / \mathbf{Q}, and Q is a product of inert primes. When σ runs over Γ_{S}, write

$$
\begin{equation*}
\sigma=\sigma_{1} \cdots \sigma_{s} \tau \tag{51}
\end{equation*}
$$

for its unique decomposition as a product with $\sigma_{i} \in \Gamma_{l_{i}}$, and $\tau \in \Gamma_{Q}$.
Lemma 8.1.

$$
\begin{aligned}
\theta^{\prime}(\omega, S)= & \sum_{\sigma \in \Gamma_{S}} \sigma \alpha_{S}\left(\sigma_{1}-1\right) \cdots\left(\sigma_{s}-1\right) \tau \\
& -\sum_{T \mid P, T \neq P}\left(\mu(P / T) \cdot \theta^{\prime}(\omega, T Q) \cdot \prod_{\| P / T}\left(1-\sigma_{l, T Q}\right)\right) .
\end{aligned}
$$

Proof. By direct computation,

$$
\begin{equation*}
\sum_{\sigma \in \Gamma_{S}} \sigma \alpha_{S}\left(\sigma_{1}-1\right) \cdots\left(\sigma_{s}-1\right) \tau=\theta^{\prime}(\omega, S)+\sum_{T \mid, T \neq P} \mu(P / T) P_{S . T Q}\left(\theta^{\prime}(\omega, S)\right) . \tag{52}
\end{equation*}
$$

The formula now follows from Lemma 7.2.
We are now ready to prove Theorem 4.2.
Theorem 4.2 (ORder of Vanishing). The element $\theta^{\prime}(\omega, S)$ belongs to $K_{S}^{*} \otimes I^{s}=$ $K_{S}^{*} \otimes I^{r-1}$.

Proof. By induction on s, using Lemma 8.1 for the induction step.
9. The leading coefficient. We now turn to the study of the element $\tilde{\theta}^{\prime}(\omega, S)$ defined by projecting $\theta^{\prime}(\omega, S)$ to the value group $K_{S}^{*} \otimes\left(r_{2}^{r-1} / I_{2}^{r}\right)$.

LEMMA 9.1. The leading coefficient $\tilde{\theta}^{\prime}(\omega, S)_{2}$ belongs to the subgroup of elements in $\left(K_{S}^{*} \otimes\left(I_{2}^{r-1} / I_{2}^{r}\right)\right)^{\Gamma_{S}}$ fixed by the left (Galois) action of Γ_{S}.

Proof. Given σ in Γ_{S}, by Lemma 7.1 we have

$$
\begin{equation*}
(\sigma-1) \tilde{\theta}^{\prime}(\omega, S)_{2}=\tilde{\theta}^{\prime}(\omega, S)_{2}\left(\sigma^{-1}-1\right) \tag{53}
\end{equation*}
$$

and Lemma 9.1 follows.
LEmma 9.2. Let Γ be a finite abelian group of odd order, and let Γ_{S} act on the module $K_{S}^{*} \otimes \Gamma$ by the Galois action. Then the natural map

$$
K^{*} \otimes \Gamma \rightarrow\left(K_{S}^{*} \otimes \Gamma\right)^{\Gamma_{S}}
$$

is an isomorphism.
Proof. By decomposing Γ as a direct product of cyclic groups, one reduces the proof of Lemma 9.2 to the case where Γ is cyclic of odd order n. If K_{S} contains no n-th roots of unity, then we are in the situation of Lemma 6.3. In general, one uses the fact that the restriction map

$$
\begin{equation*}
H^{1}\left(K, \mu_{n}\right) \longrightarrow H^{1}\left(K_{S}, \mu_{n}\right)^{\Gamma_{S}} \tag{54}
\end{equation*}
$$

is an isomorphism.
Lemma 9.3. $n(S)\left(\gamma_{l_{1}}-1\right) \cdots\left(\gamma_{l_{s}}-1\right)=0\left(\bmod I_{2}^{r}\right)$.

Proof. We can write $\left(\gamma_{l_{1}}-1\right) \cdots\left(\gamma_{l_{s}}-1\right)$ as a sum of terms of the form $\left(\gamma_{l_{1}}^{(p)}-1\right) \cdots\left(\gamma_{l_{s}}^{(p)}-1\right)\left(\bmod I_{2}^{r}\right)$, where the $\gamma_{l_{i}}^{(p)}$ are of order a power of p (p an odd prime) and at least one of the $\gamma_{l_{j}}^{(p)}$ is of order exactly $q=p^{\operatorname{ord}_{p}(n(S))}$. Hence it suffices to show the theorem when $n(S)=q$ is a power of a prime. In that case, one has

$$
0=\gamma_{l_{j}}^{q}-1=\sum_{i=1}^{q}\binom{q}{i}\left(\gamma_{l_{j}}-1\right)^{i},
$$

so that $q\left(\gamma_{l_{j}}-1\right) \in I_{2}^{2}$. The result follows.
The following proposition gives an inductive formula for the leading coefficient $\tilde{\theta}^{\prime}(\omega, S)_{2}$.

PROPOSITION 9.4.

$$
\begin{aligned}
\tilde{\theta}^{\prime}(\omega, S)_{2}= & 2^{\not \#(l \mid Q)} \kappa(P) \otimes\left(\gamma_{l_{1}}-1\right) \cdots\left(\gamma_{l_{s}}-1\right) \\
& -\sum_{T \mid P, T \neq P} \mu(P / T) \cdot \tilde{\theta}^{\prime}(\omega, T) \cdot \Pi\left(1-\sigma_{l, T}\right) .
\end{aligned}
$$

Proof. This follows from Lemma 8.1 together with the fact that

$$
\begin{equation*}
\sum_{\sigma \in \Gamma_{S}} \sigma \alpha_{S} \otimes\left(\sigma_{1}-1\right) \cdots\left(\sigma_{s}-1\right) \tau=2^{\#(l \mid Q)} \beta(P) \otimes\left(\gamma_{l_{1}}-1\right) \cdots\left(\gamma_{l_{s}}-1\right) \tag{55}
\end{equation*}
$$

in $K_{S}^{*} \otimes\left(I^{r-1} / I^{r}\right)$. Because $\left(\gamma_{l_{1}}-1\right) \cdots\left(\gamma_{l_{s}}-1\right)$ is killed by $n(P)$ in I_{2}^{r-1} / I_{2}^{r} (Lemma 9.3), one can replace $\beta(P)$ by $\kappa(P)$ in the formula.

In the remainder of this section we will prove Theorem 4.5 which we first recall:
Theorem 4.5. 1. Conjecture 4.3 is true when $r=1$. 2. $\tilde{\theta}^{\prime}(\omega, S)_{2}$ belongs to $K^{*} \otimes$ I_{2}^{r-1} / I_{2}^{r}.
3. If $\operatorname{gcd}\left(h_{S}(K), n(T)\right)=1$ for all $T \mid S$, then $\tilde{\theta}^{\prime}(\omega, S)_{2}$ belongs to $O_{s}^{*} \otimes\left(I_{2}^{r-1} / I_{2}^{r}\right)$.
4. $h_{S}(K)$ divides $\tilde{\theta}^{\prime}(\omega, S)_{2}$.
5. Suppose that $\Gamma_{S}=\Gamma_{l}$ is cyclic, and that lis split in K / \mathbf{Q} so that $r=2$. Let λ be a prime of K above l, and let $k_{\lambda} \simeq \mathbf{F}_{l}$ denote the residue field at λ. If the fundamental unit of K / \mathbf{Q} is a generator for k_{λ}^{*}, and $\operatorname{gcd}(h(K), n(l))=1$, then

$$
\tilde{\theta}^{\prime}(\omega, l)_{2}= \pm 2 h_{l} R_{l}\left(\bmod I_{2}^{2}\right)
$$

Proof. 1. When $r=1$, we have $\tilde{\theta}^{\prime}(\omega, S)=P_{S, 1}\left(\theta^{\prime}(\omega, S)\right)$, where $P_{S, 1}: \mathbf{Z}\left[\Gamma_{S}\right] \rightarrow \mathbf{Z}$ is the augmentation map. By lemma 7.2,

$$
\begin{equation*}
P_{S, 1}\left(\theta^{\prime}(\omega, S)\right)=\alpha(1) \prod_{l \mid S}(1-\omega(l))=2^{\#(l \mid S)} \alpha(1), \tag{56}
\end{equation*}
$$

since all the l dividing S are inert in K / \mathbf{Q}. We know from Dirichlet's analytic class number formula that $\alpha(1)=2 h_{1} R_{1}$, and hence the result follows.
2. Combine Lemmas 9.1 and 9.2.
3. By Proposition 6.4 , we have $v_{\lambda}(\kappa(T))=0(\bmod n(T))$ for all places λ which do not lie above S. Let $\left(K^{*} / K^{* n(T)}\right)(S)$ denote the subgroup of elements in $K^{*} / K^{* n(T)}$ satisfying this property. There is a natural exact sequence

$$
\begin{equation*}
0 \longrightarrow O_{S}^{*} / O_{S}^{* n(T)} \longrightarrow\left(K^{*} / K^{* n(T)}\right)(S) \longrightarrow C_{S}(K) \otimes \mathbf{Z} / n(T) \mathbf{Z} \tag{57}
\end{equation*}
$$

The assumption that $\left(h_{S}(K), n(T)\right)=1$ for all $T \mid S$ implies that the natural map from $O_{S}^{*} / O_{S}^{* n(T)}$ to $\left(K^{*} / K^{* n(T)}\right)(S)$ is an isomorphism, so that the $\kappa(T)$ are S-units modulo $n(T)$-th powers. The result follows from Proposition 9.4.
4. This is a direct consequence of Theorem 6.5 combined with Proposition 9.4.
5. The fact that $\operatorname{gcd}\left(h_{l}(K), n(l)\right)=1$ implies, by the previous fact, that $\kappa(l)$ is an l-unit of K modulo $n(l)$-th powers, and hence $\tilde{\theta}^{\prime}(\omega, l)$ belongs to $O_{l}^{*} \otimes\left(I_{2} / I_{2}^{2}\right)$. We want to prove the equality of two objects in $O_{l}^{*} \otimes\left(I / I^{2}\right)$. For this, we use two maps:

$$
\begin{equation*}
\phi_{1}: O_{l}^{*} \otimes\left(I_{2} / I_{2}^{2}\right) \longrightarrow I_{2} / I_{2}^{2}, \quad \phi_{2}: O_{l}^{*} \otimes\left(I_{2} / I_{2}^{2}\right) \longrightarrow I_{2}^{2} / I_{2}^{3} \tag{58}
\end{equation*}
$$

The first is induced from the map $v_{\lambda}: O_{l}^{*} \rightarrow \mathbf{Z}$, and the second from the map rec ${ }_{\lambda}: O_{l}^{*} \rightarrow$ $\Gamma_{l} \rightarrow I_{2} / I_{2}^{2}$ given by the reciprocity law of local class field theory. Because $\operatorname{gcd}(h(K), n(l))=1$, the kernel of the map ϕ_{1} is just $O_{K}^{*} \otimes\left(I_{2} / I_{2}^{2}\right)$. The assumption that the fundamental unit for K is a generator of k_{λ}^{*} means that ϕ_{2} is injective on $O_{K}^{*} \otimes\left(I_{2} / I_{2}^{2}\right)$. Hence, if two elements in $O_{l}^{*} \otimes\left(I_{2} / I_{2}^{2}\right)$ have the same image by ϕ_{1} and ϕ_{2}, then they are equal.

Recall that $u_{l} \in k_{\lambda}^{*}$ denotes the element which corresponds to the chosen generator γ_{l} of Γ_{l} by the reciprocity law of local class field theory. By Proposition 9.4, we have

$$
\begin{equation*}
\tilde{\theta}^{\prime}(\omega, l)_{2}=\kappa(l) \otimes\left(\gamma_{l}-1\right) . \tag{59}
\end{equation*}
$$

Hence, by Proposition 6.4,

$$
\begin{equation*}
\phi_{1}\left(\tilde{\theta}^{\prime}\left(\omega, l_{2}\right)=v_{\lambda}(\kappa(l)) \otimes\left(\gamma_{l}-1\right)=\log _{u_{l}}(\kappa(1))\left(\gamma_{l}-1\right)\right. \tag{60}
\end{equation*}
$$

Let u be a fundamental unit for K. By Dirichlet's class number formula, we can write

$$
\begin{equation*}
\kappa(1)=u^{ \pm 2 h} \tag{61}
\end{equation*}
$$

so that $\log _{u_{l}}(\kappa(1))= \pm 2 h \log _{u_{l}}(u)$. It follows that

$$
\begin{equation*}
\phi_{1}\left(\tilde{\theta}^{\prime}\left(\omega, I_{2}\right)= \pm 2 h \log _{u_{l}}(u)\left(\gamma_{l}-1\right)= \pm 2 h(\operatorname{rec}(u)-1)\right. \tag{62}
\end{equation*}
$$

Since $\kappa(l)=\beta(l) x^{n(l)}$, where x belongs to K_{l}^{*}, and since

$$
\operatorname{norm}_{K_{l} / K}(\beta(l))=1
$$

by Proposition 5.1, we have by taking norms:

$$
\begin{equation*}
\kappa(l)^{l-1}=\operatorname{norm}_{K_{l} / K} x^{n(l)} \tag{63}
\end{equation*}
$$

Hence $\kappa(l)^{(l-1) / n(l)}= \pm \operatorname{norm}_{K_{l} / K} x$, so that $\kappa(l)^{2 a}$ is a norm for some $a \geq 0$. Since norms lie in the kernel of the local reciprocity map, we find that

$$
\begin{equation*}
\phi_{2}\left(\tilde{\theta}^{\prime}\left(\omega, l_{2}\right)=0 .\right. \tag{64}
\end{equation*}
$$

We choose a Z-basis for O_{l}^{*}, given by a fundamental unit u and an l-unit $u(l)$. This can be done in such a way that

$$
\begin{equation*}
v_{\lambda}(u(l))=h / h_{l}, \tag{65}
\end{equation*}
$$

since this number is the order of the class of λ in the ideal class group of K. The regulator R_{l} can be written explicitly as

$$
\begin{equation*}
R_{l}= \pm(u \otimes(\operatorname{rec}(u(l))-1)-u(l) \otimes(\operatorname{rec}(u)-1)) \tag{66}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
\phi_{1}\left(2 h_{l} R_{l}\right)= \pm 2 h_{l} \nu_{\lambda}(u(l)) \otimes(\operatorname{rec}(u)-1)= \pm 2 h(\operatorname{rec}(u)-1) . \tag{67}
\end{equation*}
$$

It is immediate from the definition of R_{l} that

$$
\begin{equation*}
\phi_{2}\left(4 h_{l} R_{l}\right)=0 . \tag{68}
\end{equation*}
$$

Combining equations (62), (64), (67), and (68) we find that

$$
\tilde{\theta}^{\prime}\left(\omega, l_{2}= \pm 2 h_{l} R_{l}\left(\bmod I_{2}^{2}\right),\right.
$$

as claimed.

References

[DR] P. Deligne and K. Ribet, Values of abelian L-functions at negative integers over totally real fields, Invent. Math. 59(1980), 227-286.
[Gr] B. H. Gross, On the values of abelian L-functions at $s=0$, J. Fac. Sci. Univ. Tokyo Sect. IA Math. (1) 35(1988), 177-197.
[H1] Alfred W. Hales, Augmentation terminals of finite abelian groups. In: SLN 1006, 1983, 720-733.
[H2] _ Stable augmentation quotients of abelian groups, Pacific J. Math. (2) 118(1985), 401-410.
[Iw] K. Iwasawa, On \mathbf{Z}_{l}-extensions of algebraic number fields, Ann. of Math. (2) 98(1973).
[Ko] V. A. Kolyvagin, Euler Systems, Birkhäuser volume in honor of Grothendieck, to appear.
[La] S. Lang, Cyclotomic fields I and II, combined second edition, Graduate Texts in Math. 121, SpringerVerlag, 1990.
[MT] B. Mazur and J. Tate, Refined conjectures of the "Birch and Swinnerton-Dyer type", Duke Math. J. (2) 54(1987), p. 711.
[Pa] I. B. S. Passi, Group rings and their augmentation ideals, SLN 715, Berlin, New York, 1979.
[Ru] K. C. Rubin, Global units and ideal class groups, Invent. Math. 89(1987), 511-526.
[Sch] R. Schoof, preprint.
[Th] F. Thaine, On the ideal class groups of real abelian number fields, Ann. of Math. 128(1988), 1-18.
[Wa] L. Washington, Introduction to cyclotomic fields, Graduate Texts in Math. 83, Springer-Verlag, New York, 1982.

Department of Mathematics

Princeton University
Princeton, New Jersey 08540
U.S.A.

[^0]: This work was supported at different stages by a Sloan Doctoral Dissertation fellowship, an NSERC postdoctoral fellowship, and by NSF grant \# DMS-8703372.A04.

 Received by the editors April 6, 1993.
 AMS subject classification: 11R11, 11R04, 11R18, 11R27, 11 R29.
 (c) Canadian Mathematical Society, 1995.

