ON NORMAL NUMBERS

C. E. M. PEARCE and M. S. KEANE

(Received 21 October 1980; revised 18 January 1981)

Communicated by A. J. van der Poorten

Abstract

Schmidt has shown that if r and s are positive integers and there is no positive integer power of r which is also a positive integer power of s, then there exists an uncountable set of reals which are normal to base r but not even simply normal to base s. We give a structurally simple proof of this result.

1980 Mathematics subject classification (Amer. Math. Soc): 10 K 05, 10 K 25.

I. Introduction

For $r, s \in Z^{+}$, we write $r \sim s$ if there exist $m, n \in Z^{+}$with $r^{n}=s^{m}$, otherwise $r \nsim s$. (As subsequently, we put $Z^{+}=\{1,2, \ldots\}, Z=\{0, \pm 1, \pm 2, \ldots\}$.) We have the following well-known results:

Theorem A. Assume $r \sim s$. Then any real normal to base r is normal to base s.

Theorem B. If $r \nsim s$, then the set of reals which are normal to base r but not even simply normal to base s has the cardinality of the reals.

This theorem has been established by Schmidt (1960). Theorem B is also established independently by Cassels (1959) for the case $s=3$. Part A is trivial and the treatments of Schmidt and Cassels of the non-trivial Part B utilise chains of number-theoretic lemmas. As noted by Pelling (1980), no simple proof

[^0]appears to exist. Theorem B admits an equivalent formulation in terms of weak convergence of measures. In this paper, by combining a version of a theorem of Serfling (1970) on almost sure convergence with two elementary number-theoretic lemmas of Schmidt we give a short and structurally simple proof of the proposition. Schmidt's proofs for Theorem A and these two lemmas are short, self-contained and do not involve his other lemmas.

Consider the set $E \subset[0,1]$ of points x with s-adic expansions

$$
x=\sum_{j=1}^{\infty} e_{j}(s-1) s^{-j}, \quad e_{j} \in\{0,1\}
$$

The set E consists of an uncountable collection of points which are clearly not even simply normal to base s if $s>2$. Theorem B is established for $s>2$ if we can show that E has an uncountable subset of points which are normal to base r.

Suppose we define a map V from E onto $[0,1]$ by $V x=y$, where

$$
y=\sum_{j=1}^{\infty} e_{j} 2^{-j}
$$

We note that this map is well-defined even thought a point with terminating s-adic expansion has an alternative non-terminating s-adic representation.

Through the map V Lebesgue measure λ and the Borel σ-field on $[0,1]$ induce a measure μ carried by E and an associated σ-field \mathscr{B}.

Let δ_{x} denote the measure concentrated at x and T the operator $T:[0,1) \rightarrow$ $[0,1)$ defined by

$$
T x=r x(\bmod 1), \quad x \in[0,1)
$$

To establish Theorem B it suffices to show for $r \nsim s$ that except for a μ-null subset of E, points x of E have the sequence $\left(x, T x, T^{2} x, \ldots\right)$ uniformly distributed on $[0,1)$, that is

$$
\frac{1}{n} \sum_{k=0}^{n-1} \delta_{T^{k} x} \rightarrow \lambda \quad \text { weakly almost everywhere }(\mu)
$$

by Weyl's criterion (see Cassels (1957), Chapter 4).
A necessary and sufficient condition for this to hold is that for each $l \in$ $Z \backslash\{0\}$ we have

$$
\frac{1}{n} \sum_{k=0}^{n-1} f\left(T^{k} x\right) \rightarrow \int_{[0,1)} f d \lambda \quad \text { almost everywhere }(\mu)
$$

where

$$
f(x)=\exp (2 \pi i l x)
$$

or equivalently that

$$
\begin{equation*}
\frac{1}{n} \sum_{k=0}^{n-1} X_{k} \rightarrow 0 \quad \text { almost everywhere }(\mu) \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
X_{k}(x)=\exp \left(2 \pi i l r^{k} x\right) \tag{2}
\end{equation*}
$$

We shall derive the stronger

Theorem 1. Suppose $r \nsim s$ with $s>6$. For X_{k} defined by (2), there exists an η, $0<\eta<1$, such that

$$
\begin{equation*}
n^{-\eta} \sum_{k=0}^{n-1} X_{k} \rightarrow 0 \quad \text { almost everywhere }(\mu) \tag{3}
\end{equation*}
$$

By virtue of the foregoing discussion, Theorem 1 has as an immediate corollary that Theorem B holds for $s>6$. The restiction $s>6$ may then be removed easily by an appeal to Theorem A, since $s \sim s^{k}$ and $s^{k}>6$ for all sufficiently large k.

2. Preliminaries to proofs

Suppose $\left(X_{n}\right)_{n=0}^{\infty}$ is a sequence of random variables on some probability space (X, \mathscr{B}, μ) and $F_{a, n}$ is the joint distribution function of X_{a+1}, \ldots, X_{a+n}. Then for $c>0,0<\delta<1$,

$$
\begin{equation*}
g\left(F_{a, n}\right) \equiv c n^{2-\delta} \tag{4}
\end{equation*}
$$

is a trivial functional in the sense of Serfling (1970) for which an inequality of the form

$$
\begin{equation*}
g\left(F_{a, n}\right) \leqslant K n^{2}\left(\log n \log _{2} n\right)^{-2} \quad(n \geqslant 1, a \geqslant 0) \tag{5}
\end{equation*}
$$

is satisfied. A theorem of Serfling (1970) (see also Stout (1974), pp. 204-5) establishes that if

$$
\begin{equation*}
E\left[\left(\sum_{i=a+1}^{a+n} X_{i}\right)^{2}\right] \leqslant g\left(F_{a, n}\right) \tag{6}
\end{equation*}
$$

we have

$$
\begin{equation*}
n^{-1} \sum_{k=0}^{n-1} X_{k} \rightarrow 0 \quad \text { almost everywhere }(\mu) \tag{7}
\end{equation*}
$$

It is easily seen that if $\left(X_{n}\right)$ is replaced by a complex-valued sequence defined on (X, \mathscr{B}, μ), relation (7) still holds provided (6) is replaced by

$$
\begin{equation*}
E\left[\left|\sum_{i=a+1}^{a+n} X_{i}\right|^{2}\right] \leqslant g\left(F_{a, n}\right) \tag{8}
\end{equation*}
$$

In fact, given the tighter constraint (4) in place of (5), the proof of Serfling's result may be modified to tell us that if

$$
q(n)=n^{\delta / 2}(\log n)^{-1-\delta / 2}\left(\log _{2} n\right)^{-(1+\phi) / 2}
$$

for ϕ an arbitrary positive constant, then (8) entails that

$$
[q(n)]^{-1} \sum_{k=0}^{n-1} X_{k} \rightarrow 0 \quad \text { almost everywhere }(\mu)
$$

It follows at once that there exists an $\eta, 0<\eta<1$, such that

$$
n^{-\eta} \sum_{k=0}^{n-1} X_{k} \rightarrow 0 \quad \text { almost everywhere }(\mu)
$$

Thus to prove Theorem 1, it suffices to show that for $\left(X_{k}\right)$ defined by (2),

$$
\begin{equation*}
E_{\mu}\left[\left|\sum_{i=a+1}^{a+n} X_{i}\right|^{2}\right] \leqslant c n^{2-\delta} \quad \text { for all } l \in Z \backslash\{0\} \tag{9}
\end{equation*}
$$

for some $\delta, 0<\delta<1$.
The argument is conveniently carried out in terms of the Fourier-Stieltjes coefficients $\hat{\mu}(n)$ corresponding to the measure μ and given by

$$
\hat{\mu}(n)=\int_{0}^{1} \exp (-2 \pi i n x) d \mu
$$

The set E is of Cantor type and the Fourier-Stieltjes coefficients corresponding to its natural measure μ are well known. We have

$$
\begin{equation*}
\hat{\mu}(n)=(-1)^{n}(2 \pi)^{-1} \prod_{k=1}^{\infty} \cos \left[(s-1) \pi n / s^{n}\right] \tag{10}
\end{equation*}
$$

(see Zygmund (1959), page 196).
In terms of the Fourier-Stieltjes coefficients,

$$
E_{\mu}\left[\left|\sum_{i=a+1}^{a+n} X_{i}\right|^{2}\right]=\sum_{i=a+1}^{a+n} \sum_{j=a+1}^{a+n} \hat{\mu}\left(\left(r^{i}-r^{j}\right) l\right)
$$

so that by (10) we have

$$
\begin{equation*}
E_{\mu}\left[\left|\sum_{i=a+1}^{a+n} X_{i}\right|^{2}\right] \leqslant n+\pi^{-1} \sum_{i=1}^{n-1} \sum_{j=a+1}^{a+n-i}\left|u_{j}\left(\left(r^{i}-1\right) l\right)\right| \tag{11}
\end{equation*}
$$

where

$$
\begin{equation*}
u_{j}(q)=\prod_{k=1}^{\infty} \cos \left[(s-1) \pi q r^{j} / s^{k}\right], \quad q \in Z \tag{12}
\end{equation*}
$$

From (9) and (11), Theorem 1 follows as a consequence of
Theorem 2. If $s>6, r \nsim s$, then for each $l \in Z \backslash\{0\}$ there exists ac>0, $0<\delta<1$ such that

$$
\begin{equation*}
\sum_{i=1}^{n-1} \sum_{j=a+1}^{a+n-i}\left|u_{j}\left(\left(r^{i}-1\right) l\right)\right|<c n^{2-\delta} . \tag{13}
\end{equation*}
$$

It is clear from (12) that without loss of generality we may take $l \in Z^{+}$.
The proof of Theorem 2, which is derived in section 4 , utilises three simple number-theoretic lemmas given in the next section.

3. Number-theoretic notation and lemmas

For $m, n \in Z^{+}$, denote by $\operatorname{ord}_{n} m$ the order of $m \bmod n$, that is, the smallest positive integer t such that

$$
m^{t} \equiv 1(\bmod n)
$$

Following Schmidt, we use the notation ($m)_{n}$ for the " n part" of m, the largest power of n dividing m, so that for some positive integers k, m^{\prime}

$$
m=n^{k} m^{\prime}, \quad(m)_{n}=n^{k}, \quad n \nmid m^{\prime}
$$

Lemma 1. Assume p is a prime with $p \nmid r$. Then for all positive integers k

$$
\operatorname{ord}_{p^{k}} r \geqslant c_{1}(r, p) p^{k}
$$

where, as subsequently the notation $c_{1}(r, p)$ is used to denote a constant depending only on r and p, not on k.

COROLLARY 1. Let n run through a residue system modulo p^{k}. Then at most $c_{2}(r, p)$ of the numbers r^{n} will fall into the same residue class modulo p^{k}.

Corollary 2. For p, r as above and any positive integer n

$$
\left(r^{n}-1\right)_{p}<c_{3}(r, p) n
$$

Proofs. Lemma 1 and Corollary 1 are Lemma 4 of Schmidt and its corollary, proved by him (page 666) by elementary number theory.

For Corollary 2, suppose $\left(r^{n}-1\right)_{p}=p^{k}$. Then $r^{n} \equiv 1\left(\bmod p^{k}\right)$ and hence

$$
\operatorname{ord}_{p^{k}} r \mid n
$$

Thus

$$
\operatorname{ord}_{p^{k}} r \leqslant n
$$

from which the result follows from the lemma.

In (12) we may, without loss of generality, replace r^{j} by the number ρ_{j} defined as $r^{j} /\left(r^{j}\right)_{s}$, that is,

$$
\begin{equation*}
r^{j}=\left(r^{j}\right)_{s} \rho_{j}, \quad s \nmid \rho_{j} \tag{14}
\end{equation*}
$$

This gives

$$
\begin{equation*}
u_{j}(q)=\prod_{k=1}^{\infty} \cos \left[(s-1) \pi q \rho_{j} / s^{k}\right], \quad q \in Z \tag{15}
\end{equation*}
$$

Suppose r, s factorise as

$$
\begin{aligned}
& r=p_{1}^{d_{1}} p_{2}^{d_{2}} \cdots p_{h}^{d_{n}}, \\
& s=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{h}^{e_{h}},
\end{aligned}
$$

where we may assume that never both $d_{i}=0, e_{i}=0$. The primes p_{i} are so ordered that $e_{1} / d_{1} \geqslant e_{2} / d_{2} \geqslant \cdots \geqslant e_{h} / d_{h}$, and we put $e_{i} / d_{i}=+\infty$ if $d_{i}=0$.

Lemma 2. Suppose $r \nsim s$ and $q \in Z^{+}$. If j runs through a complete residue system modulo s^{m}, then at most $c_{4}(r, p)(s / p)^{m} q_{p}$ of the numbers $q \rho_{j}$ are in the same residue class modulo s^{m}. Here ρ_{j} is defined by (14) and p is the prime p_{1} defined above.

Proof. This is Theorem 5A of Schmidt (1960) and is deduced by him (page 667) from Corollary 1 above.

Lemma 3. If $e, f \in\{0,1, \ldots, s-1\}$ and $e \neq f$, then $\mid \cos [(s-1) \pi \times 0$. ef. $\cdot] \mid \leqslant \theta=\cos \left(\pi / s^{2}\right)$.

The proof is elementary.
Let Y be the set of all ordered m-tuples $y=\left(y_{m-1}, \ldots, y_{1}, y_{0}\right)$ with $y_{i} \in$ $\{0,1, \ldots, s-1\}$ and let $\tau: Z^{+} \cup\{0\} \rightarrow Y$ be the natural projection operator defined as follows:

If $n \in Z^{+} \cup\{0\}$ has the representation

$$
n=e_{0}+e_{1} s+e_{2} s^{2}+\cdots, \quad e_{i} \in\{0,1, \ldots, s-1\}
$$

in the scale of s, then $\tau n=\left(e_{m-1}, \ldots, e_{1}, e_{0}\right)$. Further, define

$$
\begin{aligned}
\sigma(n) & =\operatorname{card}\left\{i: e_{i} \neq e_{i+1}, i \geqslant 0\right\} \\
\sigma_{0}(y) & =\operatorname{card}\left\{i: y_{i} \neq y_{i+1}, 0<i<m-1\right\}
\end{aligned}
$$

With this notation we are in a position to establish Theorem 2.

4. Proof of Theorem 2

By definition $\sigma_{0}(\tau v)>\sigma$ entails $\sigma(v)>\sigma$ for any $v \in Z^{+} \cup\{0\}$. From (15) and Lemma 3, we thus have that $\sigma_{0}\left(\tau\left(q \rho_{j}\right)\right)>\sigma$ implies $\left|u_{j}(q)\right|<\theta^{\circ}$. Equation (15) also gives that $\left|u_{j}(q)\right| \leqslant 1$ for all $j, q \in Z^{+}$so that

$$
\begin{aligned}
\left|u_{j}(q)\right| & <\theta^{\sigma}\left\{1-H\left[\sigma-\sigma_{0}\left(\tau\left(q \rho_{j}\right)\right)\right]\right\}+H\left[\sigma-\sigma_{0}\left(\tau\left(q \rho_{j}\right)\right)\right] \\
& <\theta^{\sigma}+H\left[\sigma-\sigma_{0}\left(\tau\left(q \rho_{j}\right)\right)\right] \text { for all } j \in Z^{+}, \sigma \in Z^{+} \cup\{0\}
\end{aligned}
$$

where H denotes the Heaviside function $H(x)=1(x>0), 0$ otherwise. Hence, for all $\boldsymbol{\sigma} \geqslant 0$

$$
n^{-1} \sum_{j=a+1}^{a+n}\left|u_{j}(q)\right| \leqslant \theta^{\sigma}+n^{-1} \sum_{j=a+1}^{a+n} H\left[\sigma-\sigma_{0}\left(\tau\left(q \rho_{j}\right)\right)\right] .
$$

By Lemma 2, we have for $n=s^{m}$ that

$$
\begin{aligned}
\sum_{j=a+1}^{a+n} H\left[\sigma-\sigma_{0}\left(\tau\left(q \rho_{j}\right)\right)\right] & <c_{4}(r, s)(s / p)^{m} q_{p} \operatorname{card}\left\{y Y: \sigma_{0}(y)<\sigma\right\} \\
& =c_{4}(r, s)(s / p)^{m} q_{p} \sum_{j=0}^{\sigma}\binom{m-1}{j} s(s-1)^{j}
\end{aligned}
$$

It follows that for $n \geqslant s^{m}$ and $\sigma \geqslant 0$

$$
\begin{align*}
n^{-1} \sum_{j=a+1}^{a+n}\left|u_{j}(q)\right| \leqslant & \theta^{\sigma}+2 c_{4}(r, s)(s / p)^{m} q_{p} \\
& \times \sum_{j=0}^{o}\binom{m-1}{j}((s-1) / s)^{j}(1 / s)^{m-1-j} \tag{16}
\end{align*}
$$

If we choose $m=\left[\log _{s} n\right]$, the constraint $n \geqslant s^{m}$ is automatically satisfied and we have (16) holding for all $n \in Z^{+}$. We shall further choose

$$
\sigma=\left[-\frac{\alpha \log _{s} n}{\log _{s} \theta}\right]
$$

with $\alpha>0$ small and certainly $\alpha<-\log _{s} \theta$ so that $\sigma<m$. Since $s \theta=$ $s \cos \left(\pi / s^{2}\right)>1$ for $s \geqslant 2$ we have in any case that $\alpha<-\log _{s} \theta$ implies $\alpha<1$. The normal approximation to the binomial distribution supplies the asymptotic estimate

$$
\begin{equation*}
2 c_{4}(r, s)(s / p)^{m} q_{p} \Phi\left[-\{(1-\beta)(s-1)(m-1)\}^{1 / 2}\right] \tag{17}
\end{equation*}
$$

for the second term on the right hand side of (16), where

$$
\Phi(-x)=(2 \pi)^{-1 / 2} \int_{x}^{\infty} \exp \left(-t^{2} / 2\right) d t \simeq x^{-1} l \exp \left(-x^{2} / 2\right) \quad \text { for } x \text { large }
$$

and β can be made as small as we please by taking α sufficiently small. Hence the estimate (17) is bounded above by

$$
\begin{equation*}
q_{p} c_{5}(r, s) \exp \left[(m-1)\left\{\log _{e}(s / p)-(1-\beta(s-1) / 2)\right\}\right] \tag{18}
\end{equation*}
$$

or, as $p \geqslant 2$, by

$$
\begin{equation*}
q_{p} c_{6}(r, s) \exp \left(R \log _{e} n\right) \tag{19}
\end{equation*}
$$

for $m(n)$ large and suitable constants c_{5}, c_{6}, where

$$
R=\left[\log _{e}(s / 2)-(1-\beta)(s-1) / 2\right] / \log _{e} s
$$

The expression R is strictly monotone decreasing in s for $s>2$ and for $\gamma>0$ we have $R<-1-\gamma$ for all sufficiently large s. In fact, if we take $\beta<1-$ $(2 / 7) \log _{e} 32 \simeq 0.0098 R$ is bounded above away from -1 for $s>7$.

Thus for $s>7$ we can, if β is sufficiently small, replace the upper bound (19) by

$$
\begin{equation*}
q_{p} c_{6} n^{-1-\gamma} \tag{20}
\end{equation*}
$$

for all n sufficiently large and some $\gamma>0$. In fact, for $s=7$ we have $p=7$ and arguing directly from the tighter bound (18) we see that (18) may be replaced by a bound of form (20) in this case also.

Thus for $s>6$ and suitable choice of m, σ the second term on the right hand side of (16) can be made less than an expression of the form $q_{p} c_{7} n^{-1-\gamma}$ for all $n \geqslant 1$. Our choice of σ also implies $\theta^{\sigma} \simeq n^{-\alpha}$. Taking these estimates together we have that if $s>6$, then for $\alpha>0$ sufficiently small and some $\gamma>0$

$$
\sum_{j=a+1}^{a+n}\left|u_{j}(q)\right|<c_{8} n^{1-\alpha}+c_{7} q_{p} n^{-r}
$$

for all $n, q \geqslant 1$. Hence

$$
\begin{aligned}
\sum_{i=1}^{n-1} \sum_{j=a+1}^{a+n-i}\left|u_{j}\left(\left(r^{i}-1\right) l\right)\right| & \leqslant \sum_{i=1}^{n-1}\left[c_{8}(n-i)^{1-\alpha}+c_{7}\left(\left(r^{q}-1\right) l\right)_{p} /(n-i)^{\gamma}\right] \\
& \leqslant c_{8} n^{2-\alpha}+c_{9} \sum_{i=1}^{n-1} i /(n-i)^{\gamma} \quad(\text { by Corollary 2) } \\
& \leqslant c_{8} n^{2-\alpha}+c_{9} n \sum_{i=1}^{n-1}(n-i)^{-\gamma} \\
& \leqslant c n^{2-\delta} \text { for all } n \geqslant 1
\end{aligned}
$$

for $\delta=\min (\alpha, \gamma)$ and some $c=c(l, r, s)$. This establishes Theorem 2.

Acknowledgement

The authors wish to thank Dr. Jane Pitman for a careful reading of the manuscript and some helpful suggestions.

References

J. W. S. Cassels (1957), An introduction to diophantine approximation (Cambridge Tracts in Math. \& Math. Physics 45, C.U.P., Cambridge).
J. W. S. Cassels (1959), 'On a problem of Steinhaus about normal numbers', Colloq. Math. 7, 95-101. M. J. Pelling (1980), 'Nonnormal numbers', Amer. Math. Monthly 87, No. 2, 141-2.
W. Schmidt (1960), 'On normal numbers', Pacific J. Math. 10, 661-672.
R. J. Serfling (1970), 'Convergence properties of S_{n} under moment restrictions', Ann. Math. Statist. 41, 1235-2248.
W. F. Stout (1974), Almost Sure Convergence (Acad. Press, New York).
A. Zygmund (1959), Trigonometrical Series, Vol. 1 (C.U.P., Cambridge).

University of Adelaide
Université de Rennes
Adelaide
Rennes
Australia
France

[^0]: © Copyright Australian Mathematical Society 1982

