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Abstract

In ruin theory, the conjecture given in DeVylder and Goovaerts (2000) is an open problem
about the comparison of the finite time ruin probability in a homogeneous risk model and
the corresponding ruin probability evaluated in the associated model with equalized claim
amounts. In this paper we consider a weaker version of the conjecture and show that the
integrals of the ruin probabilities with respect to the initial risk reserve are uniformly
comparable.
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1. Introduction

In [1] DeVylder and Goovaerts considered a homogeneous risk model on a fixed time interval
[0, t]. They proposed a conjecture about the uniform comparison of the ruin probability in the
homogeneous risk model and the corresponding ruin probability evaluated in the associated
model with equalized claim amounts. In this paper we consider a weaker version of the
conjecture and show that the integrals of the ruin probabilities with respect to the initial risk
reserve are uniformly comparable.

More formally, De Vylder and Goovaerts made the following assumptions.

(i) The point process is homogeneous.

Let Nt denote the number of claims in the interval [0, t], and let T1, T2, . . . , TNt be the arrival
times of the claims. For all n > 0 and fixed Nt = n > 0, the points T1, . . . , Tn are uniformly
distributed over (0, t], i.e. the conditional vector (T1, . . . , Tn) | Nt = n has a constant density
equal to tn/n! on the subset Wt,n = {(t1, . . . , tn) ∈ R

n : 0 < t1 < · · · < tn ≤ t}. We denote
the interarrival times of the claims by Ei = Ti − Ti−1 for i = 1, . . . , n, with T0 = 0, and
let En+1 = t − Tn. The homogeneous point process is an extension of the classical Poisson
process (see [3]).

(ii) The claim amounts X1, X2, . . . are independent and identically distributed, and they are
independent from the arrival times of the claims.

The risk reserve process is denoted by Rτ = u + cτ − Sτ (0 ≤ τ ≤ t), where u ≥ 0 is
the initial risk reserve, c > 0 is the premium income rate, and Sτ is the total claim amount in
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[0, τ ], i.e. Sτ = ∑Nτ
i=1Xi . We denote by ψ(t, u) the ruin probability before t for the initial risk

reserve u , and by ψn(t, u) the corresponding conditional probability of ruin for fixed Nt = n.
Then

ψ(t, u) = P

(
inf

0<τ≤t Rτ < 0
)

=
∞∑
n=1

P(Nt = n)ψn(t, u)

with
ψn(t, u) = P

(
inf

0<τ≤t Rτ < 0
∣∣∣ Nt = n

)
= P(Zn > u),

where Zn = max1≤k≤n(
∑k
i=1 Yi)

+ with Yi = Xi − cEi for i = 1, . . . , n.
The associated model is the model where each claim amount is replaced by the average

amount X∼
k = ∑Nt

i=1Xi/Nt = X̄Nt . The arrival times of the claims are the same as those in
the first model. The ruin probability is then given by

ψ∼(t, u) =
∞∑
n=1

P(Nt = n)ψ∼
n (t, u)

with
ψ∼
n (t, u) = P(Z∼

n > u),

where Z∼
n = max1≤k≤n(

∑k
i=1 Y

∼
i )

+ with Y∼
i = X∼

i − cEi for i = 1, . . . , n.
The conjecture proposed by De Vylder and Goovaerts in [1] is as follows.

Conjecture 1. ([1].) In any homogeneous risk model with time interval [0, t] and its associated
model with equalized claim amounts,

ψ∼(t, u) ≤ ψ(t, u), u ≥ 0.

As explained by De Vylder and Goovaerts, the conjecture is equivalent to the proposition
that ψ∼

n (t, u) ≤ ψn(t, u) for all n = 1, 2, . . .. They proved that ψ∼
1 (t, u) = ψ1(t, u) and that

ψ∼
2 (t, u) ≤ ψ2(t, u), but the general case has still to be established. Moreover, note that, by

Theorem 2 of [1], ψ∼(t, 0) = ψ(t, 0).

2. Main result

The conjecture is equivalent to the proposition that, for all n = 1, 2, . . . , Z∼
n is smaller

than Zn in stochastic dominance (see Definition 3.3.1 and Equation (3.7) of [2]), or to the
proposition that, for all n = 1, 2, . . . ,E[h(Z∼

n )] ≤ E[h(Zn)] for all nondecreasing functions h
such that the expectations exist (see Theorem 3.3.14 of [2]). In the next theorem we prove that
E[h(Z∼

n )] ≤ E[h(Zn)] for the subset of nondecreasing convex functions h, which is equivalent
to saying that Z∼

n is smaller than Zn in the stop-loss order (see Theorem 3.4.6 of [2]).

Theorem 1. For all n = 1, 2, . . . , Z∼
n is smaller than Zn in the stop-loss order. Therefore, for

all u ≥ 0, ∫ ∞

u

ψ∼(t, v) dv ≤
∫ ∞

u

ψ(t, v) dv. (1)

Proof. First, note that the statementZ∼
n is smaller thanZn in the stop-loss order is equivalent

to
πZ∼

n
(u) ≤ πZn(u), u ≥ 0,
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where πZ∼
n
(u) = E[(Z∼

n −u)+] = ∫ ∞
u

P(Z∼
n > v) dv = ∫ ∞

u
ψ∼
n (t, v) dv (see Definition 3.4.2

of [2]). Hence, to prove (1), it is sufficient to show that Z∼
n precedes Zn in the stop-loss order

for all n = 1, 2, . . ..
Second, (Ei)i=1,...,n+1 are exchangeable random variables, that is, the distribution of

(Ei)i=1,...,n+1 is the same as that of (Eσ(i))i=1,...,n+1 for every permutation σ of {1, . . . , n+1},
since there exist independent standard exponential random variables �i for i = 1, . . . , n + 1
such that

(E1, . . . , En+1)
d= t

(
�1∑n+1
i=1 �i

, . . . ,
�n+1∑n+1
i=1 �i

)
;

see, e.g. Theorem 1.6.7 of [5]. Moreover, the vectors of the random variables (Xi, Ei)i=1,...,n
are also exchangeable random vectors, as are those of (X∼

i , Ei)i=1,...,n. Then we derive that

E(h(Zn)) = 1

n!
∑
π

E

[
h

(
max

1≤k≤n

( k∑
i=1

Yπ(i)

)+)]
,

E(h(Z∼
n )) = 1

n!
∑
π

E

[
h

(
max

1≤k≤n

( k∑
i=1

Y∼
π(i)

)+)]
,

where π denotes a permutation of {1, . . . , n}.
Using Theorem 2.2 and Equation (1.1) of [6], we have

1

n!
∑
π

E

[
h

(
max

1≤k≤n

( k∑
i=1

Yπ(i)

)+)]

=
∗∑( n∏

ν=1

1

νkν (kν !)
)

E

[
h

( n∑
ν=1

kν∑
iν=1

( ν∑
jν=1

Ylv−1+(iν−1)ν+jν
)+)]

and

1

n!
∑
π

E

[
h

(
max

1≤k≤n

( k∑
i=1

Y∼
π(i)

)+)]

=
∗∑( n∏

ν=1

1

νkν (kν !)
)

E

[
h

( n∑
ν=1

kν∑
iν=1

( ν∑
jν=1

Y∼
lv−1+(iν−1)ν+jν

)+)]
,

where the summation
∑∗ extends over all n -tuples k = (k1, k2, . . . , kn) of non-negative

integers with the property that k1 + 2k2 + · · · + nkn = n, lj = k1 + 2k2 + · · · + jkj for
j = 1, . . . , n, and l0 = 0.

Let X = (X1, . . . , Xn), E = (E1, . . . , En), X∼ = (X∼
1 , . . . , X

∼
n ) = (X̄n, . . . , X̄n),

ρ(x, e; k, h) = h

( n∑
ν=1

kν∑
iν=1

( ν∑
jν=1

(xlv−1+(iν−1)ν+jν − celv−1+(iν−1)ν+jν )
)+)

,

and
	X(e; k, h) = E(ρ(X, e; k, h)).
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Since X and E are independent, we deduce that

E

[
h

( n∑
ν=1

kν∑
iν=1

( ν∑
jν=1

Ylv−1+(iν−1)ν+jν
)+)]

= E[	X(E; k, h)],

and since X∼ and E are independent,

E

[
h

( n∑
ν=1

kν∑
iν=1

( ν∑
jν=1

Ylv−1+(iν−1)ν+jν
)+)]

= E[	X∼(E; k, h)].

Let us now show that, for all e and k with the property that
∑n
i=1 iki = n, and all nonde-

creasing convex functions h,

	X∼(e; k, h) ≤ 	X(e; k, h).

If this is true, we obtain E[h(Z∼
n )] ≤ E[h(Zn)] for all nondecreasing convex functions h.

First, note that X∼ is smaller than X in the multivariate convex order because E[X | X∼] =
X∼ (see Definition 3.4.58 and Proposition 3.4.66 of [2]).

Second, let us show that g : (R+)n → R, defined by g(x) = ρ(x, e; k, h), is convex on
(R+)n. For λ ∈ [0, 1], x ∈ (R+)n, y ∈ (R+)n, since x 	→ (x − ce)+ is a convex function for
all e ≥ 0,

n∑
ν=1

kν∑
iν=1

( ν∑
jν=1

(λxlv−1+(iν−1)ν+jν + (1 − λ)ylv−1+(iν−1)ν+jν − celv−1+(iν−1)ν+jν )
)+

≤ λ

n∑
ν=1

kν∑
iν=1

( ν∑
jν=1

(xlv−1+(iν−1)ν+jν − celv−1+(iν−1)ν+jν )
)+

+ (1 − λ)

n∑
ν=1

kν∑
iν=1

( ν∑
jν=1

(ylv−1+(iν−1)ν+jν − celv−1+(iν−1)ν+jν )
)+
.

Since h is a nondecreasing function,

g(λx + (1 − λ)y)

= ρ(λx + (1 − λ)y, e; k, h)

= h

( n∑
ν=1

kν∑
iν=1

( ν∑
jν=1

(λxlv−1+(iν−1)ν+jν

+ (1 − λ)ylv−1+(iν−1)ν+jν − celv−1+(iν−1)ν+jν )
)+)

≤ h

(
λ

n∑
ν=1

kν∑
iν=1

( ν∑
jν=1

(xlv−1+(iν−1)ν+jν − celv−1+(iν−1)ν+jν )
)+

+ (1 − λ)

n∑
ν=1

kν∑
iν=1

( ν∑
jν=1

(ylv−1+(iν−1)ν+jν − celv−1+(iν−1)ν+jν )
)+)

,
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and since h is a convex function,

g(λx + (1 − λ)y) ≤ λρ(x, e; k, h)+ (1 − λ)ρ(y, e; k, h)

= λg(x)+ (1 − λ)g(y).

We deduce by the multivariate convex order property that

E[g(X∼)] ≤ E[g(X)],
which is equivalent to

	X∼(e; k, h) ≤ 	X(e; k, h)

and the result follows.

Remark 1. Another way to prove Theorem 1 is to use the property of Schur convexity.
A functionφ is said to be Schur convex on A ⊂R

n ifφ(x) ≤ φ(y) for every x = (x1, . . . , xn) ∈
A and y = (y1, . . . , yn) ∈ A such that x ≺ y, that is, such that

∑k
i=1 x[i] ≤ ∑k

i=1 y[i] for
1 ≤ k ≤ n−1 and

∑n
i=1 xi = ∑n

i=1 yi,where x[i] denotes the ith largest component in x (see,
e.g. Sections 1 and 3 of [4]).

By Theorem 2.2 of [6],

1

n!
∑
π

E

[
h

(
max

1≤k≤n

( k∑
i=1

Yπ(i)

)+)]
= 1

n!
∑
τ

E

[
h

(n(τ)∑
i=1

( ∑
k∈αi(τ )

Yk

)+)]
,

where τ = (α1(τ ))(α2(τ )) · · · (αn(τ)(τ )) is a permutation of {1, . . . , n} decomposed into
disjoint cycles.

Let θ : (R+)n → R be defined by

θ(x) = 1

n!
∑
τ

E

[
h

(n(τ)∑
i=1

( ∑
k∈αi(τ )

(xk − cEk)

)+)]
.

It is a symmetric function (with respect to any permutation). If h is also a nondecreasing convex
function then θ is convex and, therefore, Schur convex (see, e.g. Section 3.G of [4]). Since
(x̄, . . . , x̄) ≺ (x1, . . . , xn), where x̄ = n−1 ∑n

i=1 xi , it follows that

θ((x̄, . . . , x̄)) ≤ θ((x1, . . . , xn)),

and then

E(h(Z∼
n )) = 1

n!
∑
τ

E

[
h

(n(τ)∑
i=1

( ∑
k∈αi(τ )

Y∼
k

)+)]

= E[θ((X̄n, . . . , X̄n))]
≤ E[θ((X1, . . . , Xn))]

= 1

n!
∑
τ

E

[
h

(n(τ)∑
i=1

( ∑
k∈αi(τ )

Yk

)+)]

= E[h(Zn)].
Remark 2. The assumption that h is convex is crucial here and it seems difficult to weaken
this assumption with this method.
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