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A notion of limit for

enriched categories

Francis Borceux and G.M. Kelly

For a (/-category 8 , where f is a symmetric monoidal closed

category, various limit-like notions have been recognized:

ordinary limits (in the underlying category 8. ) preserved by

the f-valued representable functors; cotensor products; ends;

pointwise Kan extensions. It has further been recognized that,

to be called complete, 8 should admit all of these; for which

it suffices to demand the first two. Hitherto, however, there

has been no single limit-notion of which all these are special

cases, and particular instances of which may exist even when B

is not complete or even cotensored. In consequence it has not

been possible even to state, say, the representability criterion

for a f-functor T : 8 ->• 1/ , or even to define, say, pointwise Kan

extensions into 8 , except for cotensored 8 . (It is somewhat

as if, for ordinary categories, we had the notions of product and

equalizer, but lacked that of general limit, and could not

discuss pullbacks in the absence of products.) In this paper we

provide such a general limit-notion for l/-categories.

1 . Introduction

V is a symmetric monoidal closed category with tensor product ® ,

identity object I , and internal-hom [ , ] ; recall that [X, I] is

also the V-valued-hom V{X, Y) for the ^-category V . We write 8

for the ordinary category underlying the ^-category 8 ; in particular,
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5 0 F r a n c i s B o r c e u x a n d G . M . K e l l y

the ordinary category underlying V is V . For the basic facts about

l/-categories ve refer to Eilenberg and Kelly [4], Kelly [5] , Day and Kelly

[2] , and Dubuc [3].

All our classes of objects (for a category or for a (/-category) and

our classes of morphisms (for an ordinary category) are sets; small sets

are those in some universe chosen once for a l l ; Set is the category of

small sets; an ordinary category is looally small if i t s hom-sets are

small, that i s , if i t is a SeX-category; a (/-category is small if i t s

set of objects is small; an ordinary category is small if i t is a small

•Sat-category, that i s , if i t s set of morphisms is small.

I t has been recognized [2] that, for instance, the product of objects

B and C in a (/-category 8 should be an object B x C , with

projections in 8 to B and to C , such that for each A the

projections define an isomorphism

(1.1) B(A, B*C) S B(A, B) x B(A, C)

in (/ , the right side being the ordinary product in V . Applying the

underlying-set functor ^ 0 ^ ' "^
 f r o m "0 ^° (possibly large) sets, we

deduce that the projections also define an isomorphism

(1.2) EQ(A, B*C) & 80(A, B) x BQ(A, C)

of sets, so that B x c is a fortiori the ordinary product of B and C

in B . In general, however, (1.2) is far from implying (l.l); for

instance, when V is graded abelian groups, ^n(^> ®) contains only an

infinitesimal part of the information in B(4, B) . We call B x C

satisfying (l.l) the product in B ; if it merely satisfies (1.2) it is

what is classically called the product in 8 . The latter is, of itself,

clearly not the proper object of interest for V-categories. Another way

of saying that B x C is the product in 8 is to say that it is the

product in B and that it is preserved by the l/-valued representables

B(A, -) : B + V for all A . Similar remarks apply to the limit in B

and the limit in 8 of any ordinary functor Q : K •*• B . (Some authors

speak of strong and weak limits, or of (/-limits and limits.)
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The existence in B of such l imits for a l l small K and a l l Q is

not, however, enough t o allow us to prove the (/-analogues of those resu l t s

tha t , in the case of ordinary categories, would follow from completeness of

8 . We need also the notion [5] of the cotensor •product [X, B] € 8 of

X € 1/ with B £ 8 , namely the object giving a (/-representation

(1.3) 8(4, [X, B]) ^ [X, 8 U , 5)] .

When 1/ = SeX. t h i s i s just the product of X copies of B , or the X-th

power of B , and fa l l s under the ordinary notion of l imi t . For a general

1/ , however, i t i s an independent l imi t - l ike notion. We cal l 8

cotensored i f [X, B] exists for a l l X and B ; V i t s e l f is always

cotensored, [X, B] then being the internal-hom.

8 is called complete in [2] i f i t i s cotensored and admits a l l small

l imi t s ; various resu l t s are established in [ 2 ] , [ 3 ] , and [ I ] for such

complete B . Other l imi t - l ike notions of great u t i l i t y are also

introduced: ends in [2 ] , pointuise Kan extensions in [2] and [3] . The

former are shown to exist (for a small domain) i f 8 i s cotensored and

admits certain l imi t s ; the l a t t e r are not even defined (except for

ordinary categories - see Mac Lane [6 ] , p . 239) unless 8 i s cotensored

( [3] , p . 5*0-

For ordinary categories a l l l imits are , in the complete case,

combinations of products and equalizers; but in the incomplete case a

part icular l imit may exist although products do not. For ^-categories,

replacing "product" by "cotensor product" and "equalizer" by "limit in 8 " ,

the analogue of the f i r s t clause is t rue but that of the second is

meaningless - for there is no general l imit-notion containing cotensor

product and limit in B as special cases. Our purpose i s to provide such

a notion.

2. Outline

Ordinary limits involve a functor G : A -»• 8 and a cone over it; a

cone involves the idea of a constant functor A -+ I ->• 8 where I is the

unit category; and the last is lacking for (/-categories. We still have

the unit ^-category I with one object 0 and with 1(0, 0) = I , and

(/-functors I •*• 8 still correspond to objects of 8 ; but there is no

canonical l/-functor A -»• I . The limit-notion we propose for a
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l/-category 8 involves a V-functor G : A •*• B and, in place of a

constant functor, an arbitrary V-functor F : A -*•(/.

To these ve assign as our "limit" (when i t exists) an object {F, G}

of 8 . If B admits the cotensor products [FA, GA] for each A € A ,

i t will be the object

(2.1) {P, G} = f [FA, GA] ,
3A

existing whenever the integral (= end) on the right exists. So the name we

give i t is mean cotensor product of F and G . To define i t when the

indicated cotensor products do not exist, observe that applying B(B, -)

to (2.1) gives

(2.2) B(B, {F, G}) = f [FA, 8 (B, GA)] ;
>A

here the cotensor products on the r ight certainly ex i s t , being merely

internal-homs in V . If now the integral on the r ight exis ts for each

B , i t i s a l/-functor of B ; if moreover th i s (/-functor admits a

(/-representation as in (2 .2 ) , we ca l l the representing object IF, G) ;

which i s then said to ex i s t .

All the other l imit-notions are now special cases. Tajting A = I and

identifying for example G : I •+ 8 with an object G of 8 , we see that

{F, G} becomes the ordinary cotensor product [F, G] . Taking A to be

the free ^-category on the ordinary category K (which exis ts i f K i s

loca l ly small and V admits small copowers) , and taking G : A -»• 8 to be

the f-functor induced by the ordinary functor Q : K •*• 8 , we do now have

a canonical l/-functor * : A -»• V (induced by the functor K •* In-

constant at J ) , and {*, (?} is precisely the l imit of Q in 8 . For

A = P o p ® V and F = Konu : t?Op ® P •+ V , i t turns out that {Horn-, G] i s

precise ly the end G(D, D) . Final ly , i f we have a ^-functor
JD

K : A -*• C and set F = C(C, K-) , we recover the pointwise Kan extension

of G along K in the form

(2.3) (EanxG)C= {C(C, K-), G) .
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The dual notion involves f-functors H : A p -»• V and G : A -»• 8 ,

and i s the mean tensor product H * G € 8 ; defined by

(2.U) fl * C = {ff, G°V] ,

where G°P : A°P •+ 8°P , and given by

rA
(2.5) H * G = I fl4 ® 01

when the tensor products in the integrand exist .

The above approach uses the (very special) end on the right of (2.2)

to define (F, G) ; since ends are a special case of {F, G} th is offends

against economy or aesthetics; whence we give an account requiring no

prior knowledge of ends. To do so we have only to recognize that we get

something equivalent to (2.2) if we apply ^Q(^> ~) t ° *>°th sides, for an

arbitrary X € V , and then re-write the right side in terms of a set of

f-natural transformations.

3. The main d e f i n i t i o n

The mean cotensor product {F, G) of the l/-functors F : A •*• V and

G : A •+• B i s said to exist if there are an object (F, G] of 8 and a

l/-natural transformation

(3.1) A : F - B({F, G}, G-)

such that , for each 5 € 8 and each X (• \l , the function

(3.2) IT : VQ[X, 8(5, {F, G})) - l/-nat(F, {X, 8(5, G-)])

is bijective; here the codomain of (3.2) is the set of C-natural

transformations F •*• [X, 8(5, G-)] and IT sends / to the composite

(3.3) F -j+ B({F, G), G-) B(B>_}> [8(5, {F, G)), B(B, G-)]

TTTT+ f^' B(5, G-)] .

Taking X = I in (3.2) and simplifying, we get a bijection

(3.U) TT' : 80(5, {F, G}) - l/-nat(F, 8(5, G~)) ,

sending ^ to the composite
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(3.5) F -jf* 8 ( { F'

This exhibi ts {F, G} and A as the representing object and the

c h a r a c t e r i s t i c morphism for the functor given by the codomain of (3-k), and

shows t h e i r uniqueness, when they e x i s t , to within a unique isomorphism.

I t i s c lear tha t l/-natural transformations a : F' -*• F and

6 : G •*• G1 induce, when the domain and codomain e x i s t , a unique

(3.6) { a , 6} : {F, G} + {F1, G'}

with the appropriate relation to (3.2).

The following Yoneda-type result generalizes [2], 3.5, reducing to i t

when 8 is cotensored.

THEOREM 3 . 1 . Let S : A + B be a V-functor and let A € A . We

have

(3.7) {MA, -), G) = GA ,

the corresponding X being G : A(i4, - ) •+• B(GA, G-) .

Proof. Use the lower-level (/-Yoneda-Lemma of [ 4 ] , Chapter I , Theorem

8.6 to replace the codomain of (3.2) by ^ fl", [X, B(5, GA)]) , isomorphic

to VQ(X, B(B, GA)) . O

4. Cotensor products

As we said in §2, when A is the unit l/-category I we identify F

and G with objects of V and of B respectively, and call {F, G) the

coten8or product [F, G] of these objects. In this case the codomain of

(3.2) is just " 0 (^ . [X, 8(£, G)]) ; replacing this by i t s isomorph

VQ{X, [F, B(B, G)]) replaces ir in (3.2) by l/Q(l, a) , where

(U.I) e : B(B, [F, G]) - [F, 8(B, G)]

i s t h e c o m p o s i t e

( U . 2 ) B ( B , [F, G)) B ( _ > G ) > [ B ( [ F , G], G), 8 ( S , ff)] [ x > 1 ] » [F, B ( S , G)] .

Since (3.2) is an isomorphism for all X if and only if (U.l) is an

isomorphism, we conclude that the cotensor product [F, G] exists

precisely where [F, G] and X : F -*• B([F, G], G) provide a
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^-representation of the (/-functor B t-* [F, B(B, G) ] . This i s the

definition given in [5 ] .

When 8 i s cotensored, that is when [F, G] exis ts for a l l F and

G , (U.I) exhibits [-, G] as the l/-left-adjoint of B(-, G) : Bop -+ 1/ .

In t h i s case, by the resul t s of [5 ] , F, G i—»• [F, G] i s a l/-functor

l r p ® 8 •+ B in such a way that (U.l) i s (/-natural in a l l variables .

Similarly for the dual notion of tensor product fl ® G € 8 of ff € U

and G € B , for which (U.I) becomes

(U.3) B(flgG, B) S [5, 8(G, B)] .

Of course V i t s e l f i s tensored and cotensored, H ® G and [F, G]

being the usual tensor product and internal-horn.

5. The weaker definition

Returning to a general A , we call an object {F, G) of 8 along

with the l/-natural X of (3.1) the weak mean cotensor product of F and

G if the IT1 of (3.U) is a bijection; we then say that {F, G} exists

weakly. Thus by §3 existence implies weak existence; the converse is

false in general. The distinction is analogous to that of §1 between

limits in 8 and limits in B ; and, as there, weak existence is not in

itself of interest in the context of (/-categories. We introduce i t only

because in certain cases i t implies existence; and i t is easier to verify.

PROPOSITION 5 .1 . Weak existence implies existence if 8 is

tensored, and thus in particular if B = (/ .

P r o o f . R e p l a c i n g B b y X ® B i n ( 3 . U ) g i v e s ( 3 . 2 ) . D

PROPOSITION 5.2. Weak existence implies existence, for any 8 , if

V is the category of algebras for a monoidal monad on Szt ; for example,

if V = Set , or Ab , or R-Mod for a commutative ring R .

Proof. In these cases the underlying-set functor t/Q(-T> -) is

faithful and reflects isomorphisms; and [X, I] is made from V (X, Y)

by defining the operations element-wise.

Moreover V here is locally small, whence 8 too is so. Since
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(3.^) i s a bi ject ion by hypothesis, i t s codomain is a small se t . Element-

wise operations on ^-natural transformations (which, since the underlying-

set functor i s f a i th fu l , are just the natural ones) turn th i s l a t t e r set

in to an object Y of V , and it' i s easily seen to be a 1/ -morphism

B(B, {F, G}) -* Y . I t i s an isomorphism because 0̂(-T> -) ref lects

isomorphisms.

Finally the codomain of (3.2) i s easily identif ied with VQ(X, Y) ,

whereupon it becomes "n(l> ^ ' ) • a n isomorphism because it' i s . D

In the case f = SeX. we have introduced nothing transcending the

ordinary notion of l imi t ; for we have:

THEOREM 5 .3 . In the case 1/ = Set write I not only for the one-

point set but also for the functor I •+ Set sending the unique object 0

of I to I . Let I/F denote the comma category of I : I •+ Set and

F : A •* Set j commonly called the category of elements of F ; and let

d : I/F -*• A be the projection. Then for G •• A -»• 8 we have

(5 -D {F, G) = lim Gd ,

either side existing if the other does.

Proof. By Proposition 5-2 weak existence of {F, G) coincides with

existence. The codomain of (3.U) is easily identif ied with the set of

conves over Gd with vertex B • D

In analogy with the case of l imits in B discussed in §1, existence

reduces via the representables to weak existence in 1/ :

PROPOSITION 5.4. (F, G) and the X of (3.1) constitute the mean

coten8or product of F : A -*• V and G : 8 •+• V if and only if, for each

B € 8 } the object 8(B, {F, <?}) and the composite V-natural

transformation

( 5 . 2 ) F - j * 8 ({F , G}, G-) B ( B ) ' W<>B> &> ff>)> 8 ( s > G-M

constitute weakly the mean cotensor product {F, 8(2?, G-)} of F : A -»• V

and 8(B, G-) : A ->• V .

Proof. Compare (3.5) with (3.3). D

https://doi.org/10.1017/S0004972700023637 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700023637


A n o t i o n o f l i m i t 57

6. Preservation, representability, adjoints

Let {F, G) along with the X of (3.1) be the mean cotensor product

of F : A •+ V and G : A ->• 8 . A l/-functor T : 8 •*• C i s said to

preserve {F, G} i f T{F, G} , along with the ^-natural transformation

(6.1) F -f B({F, G), G-) -j+ C(T{F, G), TG-)

(which we write as T'\ ) , is the mean cotensor product {F, TG} of F

with TG : A •*• C .

When A = I this agrees with the definition of "preserving cotensor

products" given in [5].

If {F, G} exists weakly and if T{F, G} and T'X constitute

{F, TG} weakly, we say that T weakly preserves {F, G} .

THEOREM 6.1. The representdbles 8(S, -) : 8 -»• V preserve any

{F, G} that exists.

Proof. Proposition 5.1* and Proposition 5.1. D

By a left adjoint for a l/-functor we mean of course a l/-left-

adjoint. Recall from [5] that the l/-functor T : 8 •* C has a left

adjoint if and only if C(C, T-) is representable for each C € C .

THEOREM 6.2. If T : 8 -»• C has a left adjoint it preserves any

{F, G) that exists.

Proof. {F, G) is, by Theorem 6.1, preserved by C(C, T-) ; the

result follows on applying Proposition 5.U to T{F, G] and T'X . D

The notion of mean cotensor product enables us to give for the first

time a necessary and sufficient condition for representability of a

l/-functor, without extraneous conditions. (The necessary and sufficient

condition for the existence of a left adjoint, given in [3], Theorem I.U.I,

does not in general give a criterion for representability.) To cover

representability and adjoints in one theorem, it is convenient to prove the

following:

THEOREM 6.3. Let G : A * 8 be a V-functor, let B € 8 , and

denote by 1 the identity 1 : A -»• A . Then the following are equivalent:

(i) B(B, G-) : A -»• V is representable;

(ii) {B(B, G-), 1} exists and is preserved by G ;
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(iii) {B(B, G-), 1} exists weakly and is weakly preserved by

G .

Then the representing object is {8(23, G-), 1} and the corresponding

X : B(B, G-) •*• A({B(B, G-), 1}, -) provides the representation, being in

fact an isomorphism.

Proof, (i) implies (ii) by Theorems 3.1 and 6.1, and (ii) implies

(iii) trivially. To prove that (iii) implies (i) we construct, under the

hypotheses of (iii) , an inverse of X .

Since <?{8(B, G-), 1} and <?«X weakly constitute {8(B, G-), G} ,

there'is a unique g : B •*• G{B(B, G-), 1} such that the (/-natural

transformation

(6.2) 8(B, G-) y* A({8(B, G-), 1}, -) f B(c{8(B, G-), l}, G-)

is the identity. Writing U for the composite of the last two factors in

(6.2) we have yX = 1 . The other composite

Xp : A({B(B, G-), 1}, -) - A({B(B, G-), 1}, -)

i s , t>y the ordinary f-Yoneda-Lemma, of the form A(/, l ) for some

endomorphism / of {8(B, <?-), 1} . Since viX = 1 we have XyX = X or

A(/ , 1)X = A(i, l)\ . using the definition of weak existence of

{8(B, G-), 1} we conclude from this that / = 1 and hence that Xu = 1 .0

Taking 8 = 1 / and B = I in Theorem 6 .3 , we get:

THEOREM 6.4. For a V.funotor G : A * 1/ the following are

equivalent:

(i) G is representable;

(ii) {G, l) exists and is preserved by G ;

(iii) {G, l ) exists weakly and is weakly preserved by G .

Then X is an isomorphism and the representation is

X : G - A({G, l } , -) . O

Quantifying over B in Theorem 6.3 gives:

THEOREM 6.5. For a V-functor G : A •*• 8 the following are

equivalent:

https://doi.org/10.1017/S0004972700023637 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700023637


A not ion of I i mi t 59

(i) G has a left adjoint;

(ii) for each B , {B(B, G-), 1} exists and is preserved by

G ;

(iii) for each B , {E(B, G-), 1} exists weakly and is weakly

preserved by G .

Then the left adjoint S of G is given on objects by

SB = {8(B, G-), 1} . D

7. Ends

Given a (/-functor K : 0° P ® V -»• B we write Honu : P°P ® V •*• 1/ for

the (/-valued Horn-functor and define the end of K , written K(D, D) ,

h
by

( 7 . 1 ) [ K(D, D) =[

whenever the right side exists: in which case we say that the end (also

called the integral) exists. The dual notion is the co-end or co-integral

(D
(7.2) I K(D, D) = Homp * K .

The corresponding X : Homp(ZJ\ D") -f 8 | K(D, D), K(D', D")}

corresponds by the U-Yoneda-Leanna to a (/-natural

\1 : K(D, D) •* K(D', D') . (This is of course the "extraordinary"

IZ-naturality of [4], Chapter III, §5.) Weak existence of (7.1) merely asks

that \i he terminal among l/-natural v : C •*• K(D', D') ; true existence

demands a similar terminal property of B(S, y) among the 8(S, v) for

each B € 8 . Our definition of end, therefore, agrees precisely with the

original definition in [2], including the two levels at which it may exist.

Once again, we have no serious interest in weak existence except insofar as

it implies existence. Further, preservation in our sense of {HOHL,, K) by

T : B -»• C coincides with preservation of the end I K(D, D) as defined

h
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in [2]. We leave the reader to check the details.

Conversely, we get the expression (2.1) of our Outline above, for

{F, G} as an end, when the necessary cotensor products exist:

PROPOSITION 7 . 1 . Let F : A -<- V and G : A + B , and let the

ooteneor •product [FA, GA] exist for each A € A ; which it certainly

doee if B is cotensored and in particular if B = V . Then we have

(7.3) {F, G} = [ [FA, GA] ,
>A

either side existing if the other does.

Proof. Writing in for clarity the variable A € A in which there is

to be V-naturality, and admitting extraordinary l/-naturality into our

formulas, we transform as follows the codomain of (3.2) using the cotensor

products:

U-nat^, [X, B(5, GA)}) 2* l/-nat(x, [FA, B(B, GA)])

^ l/-nat(X, B(B, [FA, GA])) .

After similar transformations of the A of (3.1) and the IT of (3 .2) , the

r e s u l t i s immediate. O

For ends i t is par t i cu la r ly easy to establish the I '-functoriality of

K{D, D, E) in the extra variable E , where here K : Po p ® P ® E + B ;

re la ted resu l t s about the U-naturality of induced morphisms; and the

Fubini Theorem. These things are t rea ted in [2 ] , §3, and in more de ta i l in

[ ' ] , §2; the proofs can hardly be improved and we just take these resul ts

over.

In par t i cu la r , for F : A -»• 1/ and G : A •* B ,

(T.U) {F, B(S, G-)} = f [FA, 8(5, GA)]
>A

i s a f-functor in B i f i t exists for a l l B . We can now get the

defini t ion of {F, G} given in (2.2) of our Outline above.

THEOREM 7.2. (F, G) exists if and only if (7.*0 exists for each

B € 8 and is representable as a V-functor 8 p -*• 1/ ; the representing

object is {F, G} , so that we have
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(7.5) P : B(B, {F, G}) ^ f [FA, B(B, GA)] ,
>A

and the characteristic map I •*• [FA, B({F, G}, GA)] is just the
>A

transform of \ .

Proof. If {F, G} exists then, by Theorem 6.1, {F, B(B, G-)}

exists and is given by B(B, {F, G}) along with B(B, -)«X . It is easily

checked that the isomorphism (7-5) is given in terms of X as stated in

the theorem, and is therefore V-natural in B , as desired.

For the converse we have only to apply "n(-̂ > ~) to (7-5) and

transform the right side into the codomain of (3.2), at the same time

checking that the isomorphism becomes the IT given by (3.3). ^

The following lemma is "classical" and has been used in many special

cases, for instance in [5], 3.3 and 3.5; but there does not seem to be an

explicit reference in the literature:

LEMMA 7.3. If the V-functor T : Aop ® B •* V is such that we have

for each fixed B a representation p : A(A, SB) 3*r(4, B) of T{-, B) ,

then there is a unique way of making S into a V-functor S : 8 -»• A

rendering p V-natural in B .

Proof. By [4], Chapter III, Proposition 7.9, P is l/-natural in B

if and only if the characteristic morphism a : I •*• T{SB, B) is so. The

l a t t e r s a y s t h a t S D D , : B ( B , B ' ) ->• A ( S B , S B ' ) f o l l o w e d b y [ a , l ] T ( - , B ' )

s h o u l d e q u a l [ a , l ] 2 " ( 5 B , - ) . B u t [ a , l ] T ( - , B ' ) e q u a l s t h e i s o m o r p h i s m

i p : A ( S B , S B ' ) •* T ( S B , B ' ) •* [I, T ( S B , B ' ) ] . T h u s w e a r e f o r c e d t o

define 5™, as p~ i~ [a, l]T(SB, -) . We then easily verify the axioms

for a U-functor. Q

The lemma, with Theorem 7-2, at once allows us to transfer the

"dependence on extra variables" results from ends to arbitrary [F, G} :

PROPOSITION 7 . 4 . If F : A ® C •* V and G : A ® V -*• 8 , and if

{F(-, C), G(~, 25)} exists for each C and D , there is a unique way of

making this into a V-functor C^ ® V •*• 8 that renders the p of (7.5)

V-natural in C and D . O
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We leave to the reader the easy verifications in:

PROPOSITION 7.5. The {a, 3> of (3.6) is V-natural in any extra

variables in F and G . The isomorphism (3.7) is V-natural in A and

in any extra variables in G . Q

8. Kan extensions

The classical notion of Kan extension (as distinct from that of point-

wise Kan extension) can be defined in any 2-category. In our 2-category

of (/-categories, l/-functors, and (/-natural transformations, i t is as

follows.

Given (/-functors K : A -*• V and G : A •+ 8 , we understand by the

right Kan extension of G along K a l/-functor ran^G : V -*• 8 together

with a (/-natural transformation

(8.1) e : [vaxiKG]K •* G

such that, for each l/-functor P : V -»• B , the function

(8.2) 6 : l/-nat(P, ran f̂f) -»• l/-nat(PX, G)

is a bisection; where 6 sends a to the composite

(8.3) PK - ^ {renjflK - ^ - G .

Clearly ranJ? and e , if they exist, are unique to within a unique

isomorphism.

We say that the right Kun extension above is respected by a (/-functor

T : B -*• C if ^(ran^) and Te constitute ran^TC . It is classical

([3] , Proposition I.b.2) that right Kan extensions are respected by any T

that has a left adjoint, but need not be respected by the representables

B(S, -) : 8 •*• 1/ , even in the case V = SeX. .

Where we say that T respects a Kan extension, most authors say that

T preserves i t . The lat ter term is unfortunate and leads to confusion;

in the case 1/ = SeX , any limit notion should be preserved by

representables, and yet the usual terminology suggests otherwise for Kan

extensions. The truth of the matter is that the Kan extension lives not in

8 but in the functor-category [V, B] ; i t is a limit indeed, but in
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[V, B] not in B ; to say that it is reepeated by T is to say that it

is preserved by [1,2*] : [V, B] •*• [V, C] ; if T has a left adjoint so

does [1, T] , so that [1, T] preserves and T respects; but if T is

the representable B(B, -) it is not in general the case that [l, T] has

a left adjoint.

The point is sufficiently illustrated by considering, again in the

case 1/ = Set , an ordinary limit in a functor category [V, 8] . It is

said to exist pointwise if for each D € V the corresponding limit exists

in B ; the totality of these then automatically constitutes the limit in

[V, 8] . Yet a fortuitous relation between V and 8 may allow a limit

to exist without existing pointwise. Mere existence requires a certain

completeness of [V, B] ; pointwise existence requires a certain

completeness of B . The limit exists pointwise if it exists and is

preserved by the evaluations En : [V, 8] -»• B ; this is the same as asking

it to be preserved by [1, 8(B, -)] for each B € B , or to be respected

by the representables 'B(B, -) , as an easy calculation shows.

This suggests our definition below of pointwise Kan extension; in the

case V = S&t it reduces to that of Mac Lane ([61, p. 2Uo); for a general

V it has been defined by Dubuc ([3], p. 5U) only for cotensored 8 , where

there is an integral formula for it; our notion of mean cotensor product

extends this formula to the case of any B whatsoever. Results similar to

those of this section have been given by Zandarin-Vandenbeyvanghe [7].

We remark finally that we know of no important result involving Kan

extensions where these are not pointwise; pointwiseness, if not explicit

in the hypotheses, is at least a consequence of them. It is convenient to

indicate notationally that a right Kan extension exists pointwise by using

a capital R and writing RanJ? in place of Tanjfi •

We say, then, that Ran^G : V •*• B together with e : (Ran^?)X •*• G is

the pointwise right Kan extension of G along K if we have (i) and (ii) :

(i) Ran^C with e is the right Kan extension of G along K ;

(ii) this right Kan extension is respected by the representable

B(B, -) : 8 -»• V for each B € 8 .

We express the existence of this pointwiee Kan extension by saying
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"Ran̂ G exists". Let us re-write (ii) explicitly as:

(Hi) for each B € 8 , B(B, (Ran^c)-) with B(B, e-) is the

right Kan extension of B(B, G-) along K .

In d e t a i l , (Hi) means that for each B € B and for each (/-functor

Q : V •*• V , the function

(8.U) <J> : V-nat(«, B{B, (Ran^ff)-)) ->- l/-nat(«X, B(B, G-))

i s an isomorphism, where <$> sends 3 to the composite

(8.5) QK~J£-B{B, (Ran^X-) B ( B > e_ ) '
 B(g» C-) •

How in fact we can replace (i) and ("£•£,) as the definition by (Hi) alone,

since

PROPOSITION 8 .1 . (Hi) implies (i).

Proof. Given P : V -»• B take 6 in (8A) to be B(S, P-) . Then

the l/-Yoneda-Lemma, with [ 4 ] , Chapter I I I , Proposition 7.9» turns (8.U)

in to (8 .2 ) . •

A further simplification i s given by:

PROPOSITION 8.2. In order that the <f> of (8.10 he an isomorphism

for all Q } it suffices that it be so for all Q of the form

V{D, -) ® X , where D € V and X € V .

Proof. Taking Theorem 3.1 along with Proposition T.I and Proposition

(D
7.5, and dualizing, we express an arbitrary Q as V(D, -) ® QD ; the

result follows easily. D

This now yields the "formula" for pointwise right Kan extensions:

THEOREM 8.3. The pointwise right Kan extension (RaiyJ, E) of

G : A •+ B along K : A •*• V exists if and only if, for each D € V , the

mean ootensor product {{V(D, K-), G}, Xfl) exists. We have

(8.6) (Ran^fl = {V(D, K-), G) ,

while e. : (Ran J?)KA -*• GA corresponds under the Yoneda isomorphism to
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(8.7) X o ^ : V(D, KA) - B({V(D, K-), G}, GA) .

Proof. Proposition 8.2 allows us to replace Q by V(D, -) ® X in

(8.U), which then transforms under the f-Yoneda-Lemma into an isomorphism

(8.8) TT : Q[X, B[B, (Ean^O)) = V-nat{V{D, K-), [X, B(B, G-)]) .

Comparing this with (3.2) gives the "only if" part. For the "if" part we

have to use Proposition 7.U to make the right side of (8.6) V-functorial

in D ; we leave the easy details to the reader. D

By Theorem 7.2, i t comes to the same thing (of. [7]) to say that for

each D the V-functor of B given by [V(D, KA), B(5, GA)] exis ts
>A

and admits a representation

(8.9) 8(B, (Ran/:)!)) 2 f [V(D, KA), 8(5, GA)] .

The formula (8.6) contains as special cases the two classical ones:

for arbitrary 1/ if B is aoteneored Proposition 7.1 allows us to write

(8.6) as

= [ [ 0 ( 0 , KA), GA] ,
>A

(8.10)

RanJ? existing if and only if the right side exists for all V . Again for

V = Set and arbitrary B , Theorem 5.3 allows us to replace (8.6) by

(8.11) (Ran^O = UM[D/K -g- A -g- B) ,

RanjG again existing if> and only if the right side exists for all D .

(in (8.11) we have replaced the comma category I/V(D, K-) of Theorem 5.3

by the isomorphic comma category D/K , in which D denotes the unique

functor I •*• V with image D € V .)

In one case pointwiseness is automatic :

PROPOSITION 8.4. If B is tensored and ran^G exists, it exists

pointwise.

Proof. B(B, -) : B •*• V has a left adjoint and therefore respects all

right Kan extensions. •
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Since only the pointwise case is of real interest, we want the

correspondingly stronger notion of "respects". We say that T : 8 •+ C

respects Ran^S (as distinct from ranLG ) if 2"(Ran ;̂) with Te is

RanJPG (and not just raaJTG ) . Since the representables B(B, -) land

in V , which is tensored, i t follows from Proposition 8.1+ that they

actually respect Ran̂ G . In general, i t is clear from (8.6) that T

respects Ran-J? if and only if i t preserves {V{D, K-), G} for each D .

The classical elementary results about pointwise right Kan extensions

now follow without any hypothesis that 8 is cotensored; the next few

propositions give examples.

PROPOSITION 8.5. If Ran̂ /7 exists and K is fully faithful, e is

an isomorphism; so that Ran̂ C is indeed an "extension" of G .

Proof. By (8.6) we have (Ran^JM = {V(KA, K-), G} ; since K i s

fully fai thful as a V-functor, this i s isomorphic to {AU, - ) , G} , which

i s GA by Theorem 3 .1 . Q

We cal l K eodenae i f the canonical map

V(B, D) - [ [V(D, KA), V(B, KA)]
>A

is an isomorphism for a l l B, D 6 V .

PROPOSITION 8.6. To say that K is aodense is to say that
{V(D, K-), K] = D for all D , or equally to say that Ran̂ X exists and

is the identity 1 : V •*• V . 0

PROPOSITION 8.7. If K : A •+ V has a left adjoint L : V -* A then

Ran f̂f exists and is given by GL , while e : GLK -*• G comes from the

oounit of the adjunction. In this case Ran̂ ff is respected by any

T : B •+ C whatever.

Proof. The {V(D, K-), G} of (8.6) becomes {A(LD, - ) , G] , which is

GLD by Theorem 3 . 1 . The l a s t statement of the proposition i s evident. D

Our Theorem 6.5 t rans la tes into:

PROPOSITION 8.8. G : A •*• B has a left adjoint if and only if
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Ran_L exists and is respected by G } where 1 is the identity A -»• A . •

In fact the same i s t rue ( [3 ] , Theorem I.U.I) with ran^L replacing

Ran-J. . By Proposition 8.7, however, the extra strength of the l a t t e r

resul t i s only apparent.

9. Functor categories

On the existence of functor categories, we have nothing to add to the

account in [2]; we get from l/-categories A and 8 a (/-category

[A, 8] called the functor category if the end B(TA, SA) exists for
>A

a l l T, S : A -»• B ; then th i s end is [A, 8](T, S) . The underlying

ordinary category [A, 8] i s that of the (/-functors from A to 8 and

the l/-natural transformations between them.

When [A, V] exis ts we can write (7-5) as

(9-1) B(B, {F, G}) & [A, I/](F, B(S, G-)) ;

when [A , I/] exists we have the dual

(9.2) B(H*G, B) S [Aop, V][H, E(G-, B)) ;

these formulae have clearly influenced our choice of notation.

When the functor categories [A, V] and [A, 8] exis t , we can take

F and G themselves as the "extra variables" in Proposition T.k, so that

{ , } becomes a l/-functor

(9-3) { , } : [A, l /]o p® [A, 8] - 8 .

Again by Proposition 7.5 the isomorphism {A(4, - ) , C} = GA of Theorem

3.1 i s (/-natural in both A and G .

When [A, (/] exists write 1 : A -»• [A, l /]o p for the Yoneda embedding

sending A to A(A, - ) . For F : A -*• V the isomorphism

{A(4, - ) , F) ̂ FA becomes [A, l/](Z4, F) S FA , or [A, l/]op(F, U) 3* FA .

PROPOSITION 9 . 1 . Let [A, (/] exist, let Y : A-> [A, l / ] o p be the

Yoneda embedding, and let G : A -*• 8 be a V-functor. Then RanyG exists
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if and only if {F, G) exists for all F € [A, V] ; and

(9->0 (Raayff)F = (F, G) .

Proof. By (8.6) we have (Ran^JF = {[A, l/]Op(F, Y-), G} ; and

[A, V]op(F, Y-) = F . D

PROPOSITION 9.2. Let [A, I/] exis t and le t Y : A •+ [A, I /]0 5 i e

tfte Yoneda embedding. For each F € [A, V] we have

(9-5) {*, Y) = F .

Thus by the preceding proposition RanyY is the identity, or Y is

codense.

Proof. We use Theorem 7.2. We have

f [FA, [A, 1/]OP(2\ YA)] = f [FA, TA] = [A, l/]Op(r, F) . •
>A 'A

Finally we observe that Theorem T.2 together with Proposition 7.^

gives, using the Fubini Theorem for ends:

PROPOSITION 9 .3 . Let F : A -»• V , G : A -»• [K, B] ; and suppose

that G corresponds to H : A ® K •* 8 . If {F, H(-, K)} exists for each

K then {F, G} exists and {F, G}K = {F, H{-, K)} . D

10. Completeness and o r d i n a r y l i m i t s

We call the l/-category B complete if {F, G) exists for al l

F : A •* 1/ and G : A ->• 8 when A is small. Since I is small, this

implies that 8 is cotensored; and is equivalent to the assertion that 8

is cotensored and admits a l l ends with small domain.

If V is complete the functor category [A, B] exists whenever A

is small. The converse is also true: if a l l functor categories with small

domain exist, then [A, V] exists and thus, by Proposition 7.1, (F, G}

e x i s t s for F , G : A ->• V .

I t i s c l e a r from ( 8 . 6 ) t h a t , fo r K : k •+ V and G : A -*• 8 , Ran^G

e x i s t s i f A i s smal l and B i s complete . I f V i s complete , so t h a t

[A, I/] e x i s t s for small A , P ropos i t ion 9 . 1 provides a converse: 8 i s
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complete if and only if RanyC exists for all G : A -* 8 with A small,

y being the Yoneda embedding A •+ [A, l/]op .

To analyze completeness - that is, the existence of {F, G} - in more

familiar terms, we turn to the question of ordinary limits in B , as

adumbrated in §1. We have left these until last; for one thing they do

not arise until we mix ordinary categories with our ^-categories, and for

another they do not come as a special case of {F, G} without a mild

hypothesis on V .

Suppose we have an ordinary category K. , a C-category 8 , and

ordinary functors F : K. •*• V and G : K •+ 8 . We modify the definition

of §3 to define the mean ootensor -product {F, G}' of F and G ; it

is an object {F, G}' of B together with a (merely) natural

transformation A : F •*• B({F, G) ', G-) such that the function

TT : VQ[x, B(B, {F, a)
1)) + nat(F, [X, B(B, C-)])

i s an isomorphism, where IT s t i l l sends / to the composite (3 .3) .

The reader wil l easily verify that v i r tua l ly a l l we have said carries

over to th i s case without change. We s t i l l get the cotensor product by

taking K to be the unit (ordinary!) category I ; we s t i l l have weak and

strong existence; we s t i l l have Theorems 6.1 and 6.2; we can define ends

in 8 of an ordinary bifunctor into BQ ; we can define the l/-functor

RanJ? from the ordinary functors K and G by using (8.6) as a

definit ion; and the ordinary functors K •+ 8 form a U-category [K, 8]

(if the appropriate ends e x i s t ) , whose underlying ordinary category

[K, 8]Q i s the ordinary functor-category QC, B/j . The theorems that are

lacking are those involving the representable A(J4, - ) , which we no longer

have.

Of course in the case V = Stt there i s no .difference between

{F, G}' and {F, G) - except that the l a t t e r i s defined only for Set-

categories K , that i s , only for locally small ordinary categories K .

We can now express in terms of { , } ' the notion of the limit in

B (as d is t inc t from the l imit in 8 ) of an ordinary functor G : K •+ 8 ,
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as discussed in §1 . We write Lim G for the limit in 8 , retaining lim G

for the mere limit in B .

THEOREM 10.1.. Denote by * : K •* V the constant functor at I .

Then for G : K ->• Bo we have

(10.1) Lim G = {*, G}' ,

either side existing if the other does. We also have

(10.2) lim G = {*, G'}' ,

the left side existing precisely when the right side exists weakly.

Proof. For the second statement, observe that the codomain of (3.^),

with l/-nat now replaced by nat , may be identified with the set of cones

of vertex B over G . The first statement follows then by (the analogue

of) Proposition 5.U. •

Suppose now that VQ admits small copowers; in practice this is an

extremely mild condition, for the base category 1/ is usually highly

respectable; if it were not, one would anticipate some untidiness in the

notion of completeness for (/-categories. Then on any locally-small

ordinary category K we can form the free l/-category A , with the same

objects as K , by taking for A(A, B) the K.(A, B)-th copower of I .

There is now a bijection between ordinary functors G : K •*• B. and

l/-functors G : A •* B ; and we have

(10.3) {F, G}' = {F, G) ,

so that we do not need {F, G] ' as a separate notion after a l l . In

particular we have

(10.h) LimG = {*, G} ,

where now * : A •*• V is the constant (/-functor at I induced by

* : K •*• V . This justifies our claim that all hitherto-used limit notions

for (/-categories are subsumed under our notion {F, G) of mean cotensor

product.

Splitting up the existence of limits in B into their existence in

B and their preservation by the representables B(S, -) : 8Q -»• V , we
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have

THEOREM 10.2. For a ^-category B , consider the assertions

(a) B is complete in the above sense that all {F, G} exist

for small A ;

(b) 8 is cotensored, B_ admits small limits, and each

B(B, -) preserves them.

Then (b) implies (a), while (a) implies (b) if V admits small oopowers.

When B is tensored, (b) can be replaced by

(b') B is cotensored and B admits small limits.

When 8 is V itself, (b) can be replaced by

(b") fQ admits small limits.

Finally in the case 1/ = Szt , B is complete if and only if it

admits small limits.

Proof. We have seen that B is complete if and only if it admits

cotensor products and small ends. That the latter exist under the

hypotheses (b) is proved in [2], 3.3. When l/_ admits small copowers, the

converse implication (a) ** (b) follows from (10.h). Proposition 5-1 allows

the reduction of (b) to (b') , while the further reduction to (b") is

trivial since V is cotensored. The final remark about the case 1/ = SeX.

follows from (10.2) and Theorem 5.3. •

The usual definition of completeness has been the slightly stronger

(b); the case where VQ does not admit small copowers is too rare to

Justify an attempt to introduce separate names for (a) and (b) in this

general account.

With the remark that preservation of {*, G)' by T is precisely

what is normally meant by preservation of Lim G by T , we leave it to the

reader to formulate for preservation by T the analogue of Theorem 10.2.
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