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We present numerical and theoretical results concerning the properties of turbulent
flows with strong multi-scale helical injection. We perform direct numerical
simulations of the Navier–Stokes equations under a random helical stirring with
power-law spectrum and with different intensities of energy and helicity injections. We
show that there exists three different regimes where the forward energy and helicity
inertial transfers are: (i) both leading with respect to the external injections, (ii) energy
transfer is leading and helicity transfer is sub-leading and (iii) both are sub-leading
and helicity is maximal at all scales. As a result, the cases (ii)–(iii) give flows with
Kolmogorov-like inertial energy cascade and tuneable helicity transfers/contents. We
further explore regime (iii) by studying its effect on the kinetics of point-like isotropic
helicoids, particles whose dynamics is isotropic but breaks parity invariance. We
investigate small-scale fractal clustering and preferential sampling of intense helical
flow structures. Depending on their structural parameters, the isotropic helicoids either
preferentially sample co-chiral or anti-chiral flow structures. We explain these findings
in limiting cases in terms of what is known for spherical particles of different densities
and degrees of inertia. Furthermore, we present theoretical and numerical results for
a stochastic model where dynamical properties can be calculated using analytical
perturbation theory. Our study shows that a suitable tuning of the stirring mechanism
can strongly modify the small-scale turbulent helical properties and demonstrates
that isotropic helicoids are the simplest particles able to preferentially sense helical
properties in turbulence.

Key words: multiphase and particle-laden flows, turbulent flows

1. Introduction

Helicity is an invariant of the Navier–Stokes equations (NSE) in three spatial
dimensions when neglecting the effects of viscous dissipation and external forcing
(Moffatt & Tsinober 1992; Frisch 1995; Chen, Chen & Eyink 2003a; Alexakis
& Biferale 2018). It is connected to the topological structure of vortex lines,
characterized in terms of twist, writhe and linking numbers (Scheeler et al. 2014;
Kerr 2015; Laing, Ricca & Witt 2015; Kedia et al. 2016). Helicity can be introduced
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in a flow by a stirring mechanism that breaks mirror symmetry and its effects on
the turbulent energy cascade in three spatial dimensions have been widely studied
since the pioneering work of Brissaud et al. (1973) (see Pelz et al. (1985), Kerr
(1987), Kit et al. (1987), Kholmyansky et al. (1991), Borue & Orszag (1997) for
other contributions). In geophysical flows, helicity plays an important role in the
atmospheric Ekman layer, where there exist arguments supporting a turbulent helicity
cascade in the logarithmic range of the boundary layer (Koprov et al. 2005; Deusebio
& Lindborg 2014; Kurgansky 2017). Recent experimental advancements allowed the
production of vortex bundles with a different prescribed topology (Kleckner & Irvine
2013) and the combination of shear and helicity has been studied experimentally
and numerically (Herbert et al. 2012; Qu, Naso & Bos 2018). Concerning the dual
energy–helicity cascade, it is widely believed that for the case of NSE in three
spatial dimensions forced on a limited range of scales, both energy and helicity
cascade forward (Chen et al. 2003a,b; Sahoo, Bonaccorso & Biferale 2015). This
is a dual co-directional cascade according to the classification given in Alexakis
& Biferale (2018). The mirror-symmetry breaking induced by the helical stirring
mechanism tends to become weaker and weaker by going to smaller and smaller
spatial scales: the energy transfer is the leading mechanism and small-scale turbulence
recovers a neutral statistics with zero helicity on average. On the contrary, if only
one homochiral sector is dynamically active, one can prove that NSE admit a dual
counter-directional cascade (with energy flowing backward and helicity forward). For
this case the flow has global solutions (Waleffe 1992; Biferale, Musacchio & Toschi
2012; Biferale & Titi 2013) and small-scale turbulence is strongly (maximally) helical.
In addition, there are analytical and numerical hints (Linkmann 2018) that helicity
induces a non-trivial decrease in the drag coefficient of turbulent flows.

In this paper we further investigate the statistical properties of the dual energy–
helicity transfers by adopting a power-law multi-scale stirring mechanism, which
allows us to explore three different regimes concerning the relative intensity of
energy and helicity injections. In particular, we show that there exists a suitable
range of forcing spectral exponents, where the energy transfer is not affected by
the stirring term while helicity can be controlled, leading to a turbulent realization
with tuneable small-scale helicity content. Furthermore, in a regime where both
small-scale energy and helicity contents are controlled by the forcing, leading
to maximal-helicity flow configurations, we study the preferential concentration
of isotropic helicoids (Kelvin 1872; Gustavsson & Biferale 2016), i.e. point-like
particles whose dynamics is isotropic but breaks mirror symmetry. By using both
direct numerical simulations (DNS) and a stochastic model for the Eulerian advecting
velocity field (Gustavsson & Mehlig 2016), we show that isotropic helicoids possess
highly non-trivial preferential sampling of the underlying helical flow properties
depending on the particle parameters. The paper is organized as follows. In § 2
we describe the Eulerian part, discussing the different regimes for different helical
injection power spectra and we present numerical simulations of the different regimes.
In § 3 we introduce the isotropic helicoids and their dynamical equations. We discuss
the existence of two new scales of the Stokes number, St±, which depend on the
coupling between translational and rotational degrees of freedom. Furthermore, we
present results on the preferential sampling of the flow helicity for different particle
parameters, including two asymptotic limits where the Stokes number St is either
much smaller than St+ or much larger than St−. We conclude the paper in § 4.
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2. Helical turbulent flows: Eulerian properties
2.1. Theoretical background

We start by considering the forced NSE for the fluid velocity u and the pressure p in
three spatial dimensions:

∂tu+ u · ∇u=−∇p+ ν1u+ f , ∇ · u= 0, (2.1)

where ν is the kinematic viscosity and f is a parity-breaking external forcing with
energy injection rate ε = 〈u · f 〉 and helicity injection rate h= 〈u · (∇ × f )+ 2Ω · f 〉,
where 2Ω = ∇ × u denotes the flow vorticity. It is useful to adopt an exact
decomposition of the velocity field in positive and negative Fourier helical waves
(Constantin & Majda 1988; Waleffe 1992):

u(x, t)=
∑

k

[u+k (t)h
+

k + u−k (t)h
−

k ]e
−ik·x, (2.2)

where h±k are the eigenvectors of the curl operator. In terms of such decomposition the
total energy, E=

∫
d3x u2, and the total helicity, H = 2

∫
d3x u ·Ω , take the forms:

E=
∑

k

|u+k |
2
+ |u−k |

2, H =
∑

k

k(|u+k |
2
− |u−k |

2). (2.3a,b)

We can further consider the energy content of positive and negative helical modes,
E±(k) =

∑
|k|=k |u

±

k |
2, where 1k = 2π/L, such that the energy and helicity spectra

become

E(k)= E+(k)+ E−(k), H(k)= k[E+(k)− E−(k)]. (2.4a,b)

Supposing that there exists a dual co-directional forward cascade of energy and
helicity and that the typical time at scale r ∼ k−1 is dominated by the energy eddy
turnover time τE(r)∼ ε−1/3r2/3, we have for the semi-sum and semi-difference of the
spectral components (Chen et al. 2003a):

E+(k)+ E−(k)∼CEε
2/3k−5/3, E+(k)− E−(k)∼CHhε−1/3k−8/3, (2.5a,b)

where CE and CH are two constants of dimension inverse length. Hence the two energy
components can be written as:

E±(k)∼CEε
2/3k−5/3

±CHhε−1/3k−8/3. (2.6)

It is known that for large-scale energy and helicity injection the Kolmogorov-like
scaling (2.5) is observed, implying a recovery of mirror symmetry at small scales,
see for example Sahoo et al. (2015), Vallefuoco et al. (2018) for recent studies about
this issue with and without rotation. In order to have strong multi-scale helicity, it is
necessary to resort to a power-law injection (Forster, Nelson & Stephen 1977; Seoud
& Vassilicos 2007).
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(I) (II) (III)

y> 2 1< y< 2 y< 1
ε(k)= const. ε(k)= const. ε(k)∼ k1−y

h(k)= const. h(k)∼ k2−y h(k)∼ k2−y

TABLE 1. Energy and helicity injection regimes depending on the forcing spectrum
in (2.8).

2.2. Multi-scale energy and helicity injections
Let us suppose a Gaussian white-in-time helical forcing,

f (x, t)=
∑

k

f+k (t)h
+

k e−ik·x, (2.7)

whose two-point correlation is isotropic, and with a power-law spectrum (Sain, Manu
& Pandit 1998; Biferale, Lanotte & Toschi 2004; Kessar et al. 2015):

〈 f+k (t)f
+

k′ (t
′)〉 =D0k1−d−yδ(t− t′)δk,k′, (2.8)

where d is the space dimension and D0 defines the typical forcing intensity at the
smallest wavenumber that we will always assume to be k0 = 2π/L= 1. For the sake
of numerical implementation we cut off the power-law at a maximum wavenumber
of the order of the Kolmogorov scale, kmax ∼ kη. Using this forcing, the energy and
helicity injection rates up to the scale k< kmax can be estimated as:

ε(k)∼
∑
|q|<k

|q|1−d−y, h(k)∼
∑
|q|<k

|q|2−d−y. (2.9a,b)

By considering spherical symmetry, the sums in (2.9) can be easily estimated and
we distinguish three different regimes depending on the forcing spectrum: (I) when
y> 2 both energy and helicity injections are dominated by the infrared range, ε(k)→
const. and h(k)→ const. when k→∞, and the system behaves as if it is forced
at large scales only. In this case, we obtain a dual energy–helicity cascade because
both quantities are transferred by the nonlinear inertial terms of the NSE (2.1); (II)
when 1 < y < 2 the energy injection sum is still dominated by the infrared range,
while the helicity injection depends on the ultra-violet limit, h(k)∼ k2−y. In this regime
we obtain an energy cascade and helicity multi-scale injection; (III) when y< 1 both
energy and helicity transfer are dominated by the multi-scale injection, ε(k)∼ k1−y and
h(k)∼ k2−y. The three regimes are summarized in Table 1.

As a result, the spectral properties (2.6) are valid only for regime (I), and we can
summarize the scaling for all three different regimes as follows:

E±(k)∼CI
Eε

2/3k−5/3
±CI

Hhε−1/3k−8/3, y> 2,

E±(k)∼CII
E ε

2/3k−5/3
±CII

Hk2−yε−1/3k−8/3, 1< y< 2,

E±(k)∼CIII
E k2(1−y)/3k−5/3

±CIII
H k2−yk−(1−y)/3k−8/3, y< 1,

 (2.10)

where the prefactors depend on the forcing intensity (2.8). From the expressions (2.10)
we can evaluate the mirror-symmetry recovery ratio, R(k)= |E+(k)−E−(k)|/(E+(k)+
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E−(k)) in the three regimes as:

RI(k)∼ k−1, y> 2,

RII(k)∼ k1−y, 1< y< 2,
RIII(k)∼ const., y< 1,

 (2.11)

from which it follows that regime (III) is a flow with a maximal helical content at all
scales where the injection is acting. Before concluding this section it is important to
stress again that the prediction leading to regime III is obtained under the assumption
that the typical time scale guiding the transfer is the scale-dependent generalization
of the eddy turnover time: τE(k) ∝ k−2/3ε(k)−1/3, which is not necessarily the only
possibility. In order to have a quantitative assessment of the scaling properties at high
Reynolds numbers one could resort to Fourier closures based on the eddy-damped
quasi-normal Markovian (EDQNM) approximation as in Briard & Gomez (2017).
In the following, we resort to direct numerical simulations and we present a first
numerical investigation of the flow properties under multi-scale helical injection
without any approximation.

2.3. Numerical simulation

In this section we show the results of a series of DNS with resolution of 5123 grid
points to explore properties of the energy and helicity of the three fluid regimes
identified in the previous section. We implement a hyper-viscosity method to extend
the inertial range (Borue & Orszag 1995). In particular we set να∆αu as the viscous
term, with α= 2. The external forcing f in (2.1) has been implemented as a Langevin
process with correlation time proportional to a fraction of the Kolmogorov time.
As detailed in the previous section, to obtain a fully helical flow, we project the
forcing only on velocity modes with positive helicity with energy injection at all
wavenumbers up to dissipative scales k ∈ [1 : 70]. Three representative values for
the three regimes have been selected: y = 4, 3/2, −1. Details about the 5123 DNS
set-ups are summarized in Table 2. In figure 1, we present four panels with the
results for (a) the energy spectrum, (b) the helicity spectrum, (c) the energy flux and
(d) the helicity flux as functions of k and for the three representatives values of y.
In the insets of panels (a,b) the total energy and helicity as functions of time in the
stationary regime are shown. The predictions for spectra (2.10) and energy fluxes
(2.9) are verified with good accuracy, except for ultraviolet effects induced by the
cutoff wavenumber where we stop to act with the external forcing to avoid stability
issues in the code. Note that the power-law forcing smooths down the presence of
the high-wavenumber bottleneck expected in the spectrum when using hyper-viscosity
(Frisch et al. 2008). Overall, we conclude that by changing the spectral properties of
the helically forced NSE we can achieve a flow evolution with tuneable energy/helicity
ratios as theorized by (2.11). In particular, in figure 2(a) we show both the positive
and negative helical spectral components E±(k) for y = −2/3 (case III). The major
contribution to the energy spectrum is given by the velocity modes with positive
helicity E+(k) for all wavenumbers. As a result the Navier–Stokes flow develops a
dominant positive helical dynamics at all scales. The right panel of figure 2 shows
that |E+(k)−E−(k)| ∼ (E+(k)+E−(k)) which implies that mirror symmetry is broken
at all scales. We remark that in this regime, the scaling behaviour of |E+ − E−|
and E+ + E− are less steep than the Kolmogorov prediction that is in both cases
dominated by the external injection as predicted by (2.10).
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FIGURE 1. Time average of the energy and helicity spectra (a,b) and fluxes (c,d) for the
three regimes y= 4 (I), y= 3/2 (II) and y=−1 (III). The small discontinuity at the high
wavenumbers is due to the end of the range where the forcing is applied. Inset: time
evolution of the total energy (a) and total helicity (b) in the stationary regime where all
averages are performed. Parameters are given in Table 2. In (a), the curve for y= 3/2 (E)
has been shifted with respect to the curve for y= 4 (@) for the sake of presentation. We
also superpose the scalings predicted by the relations in (2.10) and (2.9).

Regime N3 η 1x 1t ν τη τS y α Nh

(I) 5123 0.008 0.012 0.0003 1.9× 10−7 0.03 1 4 2 —
(II) 5123 0.008 0.012 0.0003 1.9× 10−7 0.03 1 3/2 2 —
(III) 5123 0.008 0.012 0.0003 1.9× 10−7 0.012 1 −1 2 —
(III) 2563 0.016 0.024 0.0006 0.0052 0.025 500 −2/3 1 2.4× 106

TABLE 2. Parameters of the numerical simulations: grid resolution N3, Kolmogorov length
scale η in simulation units (SU), grid spacing 1x = 2π/N (SU), time step 1t (SU),
kinematic viscosity ν (SU), Kolmogorov eddy turnover time τη = (ν/ε)

1/2 with ε the
energy dissipation rate (SU), forcing correlation time τS (in units of 1t), forcing power-law
exponent y, hyper-viscosity parameter α, number of helicoids per each family Nh.

2.4. Stochastic helical flows

The fully helical flow described by the regime (III) can be considered a sort
of multi-scale flow dominated by the external forcing, where the Navier–Stokes
nonlinear evolution is sub-leading with respect to the forcing effects at all scales.
In order to have an analytical control and variability of the governing flow, we
study also surrogate dynamics given by simpler stochastic evolution without any
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FIGURE 2. (a) Time average of positive and negative helical spectral components for
the direct numerical simulations with parameters of the fourth parameter set in Table 2.
Inset: time evolution of the helical spectral components in the stationary regime. (b) Total
energy E+(k) + E−(k) and rescaled total helicity E+(k) − E−(k) = H(k)/k. The scaling
−5/9 predicted by relation (2.10) and the Kolmogorov −5/3 power laws are also shown
for comparison. Inset: time evolution of total energy and rescaled total helicity.

underlying structure coming from NSE. This approximation is also necessary to
perform analytical estimates for the dynamics of particles in the flow as discussed
later. To follow this idea, we consider a random incompressible, homogeneous and
isotropic single-scale velocity field, u = ∇ × A. Here the components of the vector
potential A(x, t) are independent Gaussian random functions with zero mean, a
spatial correlation function decaying on a scale of order η0 and an exponential
time-correlation function with decay rate, τ0 (see appendix A for more details). The
velocity field is normalized such that 〈u2

〉 = u2
0. The flow is characterized by a

dimensionless Kubo number

Ku= u0τ0/η0, (2.12)

the ratio between the Eulerian flow decorrelation time τ0 and the advecting time,
η0/u0. The Kubo number can be seen as a dimensionless correlation time of the flow.
If Ku tends to zero a white-noise flow is approached and if Ku is large a persistent
flow is obtained. The latter case is important because the particle dynamics often
agrees qualitatively or even quantitatively with the dynamics in a real turbulent flow
(Gustavsson et al. 2015; Gustavsson & Mehlig 2016; Gustavsson et al. 2017). The
former case is important because it allows for an analytical perturbative analysis in
the Kubo number (Gustavsson & Mehlig 2011, 2016), and to understand the particle
dynamics quantitatively at small Ku and qualitatively at large Ku or in DNS. In order
to control the probability distribution function of the parity-breaking structures in
the flow, we adopt the exact helical decomposition of each Fourier mode given by
(2.2). Weighting the positive modes h+k with a factor µ leads to flows where positive
(µ > 1, 〈H〉flow > 0) or negative (µ < 1, 〈H〉flow < 0) helical structures are dominant.
The resulting flow has the following exponential-like distribution of helicity (see
appendix A for details):

P0(H)=
9
π

η2
0

u4
0

|H| exp
[

3H0

5−H2
0

Hη0

u2
0

]
K1

[
3
√

5
5−H2

0

|H|η0

u2
0

]
√

5[5−H2
0]

, (2.13)
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H

P 0
(H

)
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FIGURE 3. (Colour online) Distribution of helicity of the flow P0(H) for DNS with
parameters given by the fourth case in Table 2 (black crosses) and for the stochastic model
(2.13) with H0= 0.85 (red line). The helicity is made dimensionless using the Kolmogorov
scales η and τη.

where Kν(x) is the modified Bessel function of the second kind and H0 is the average
dimensionless helicity

H0 ≡
η0

u2
0
〈H〉flow =

8
3

√
2
π

µ2
− 1

µ2 + 1
. (2.14)

Figure 3 shows a comparison to 2563 DNS (fourth case in Table 2) using H0 = 0.85
(µ ≈ 1.5) to make the shape of the distribution (2.13) similar to that of the DNS
described above. In order to compare to DNS, it is necessary to take into account that
the smooth length scale of the dissipation range in DNS is larger than the Kolmogorov
length by a factor proportional to

√
Reλ for not too large Reλ (Calzavarini et al. 2009).

In our DNS we have Reλ ∼ 100 and we therefore use η0 ∼ 10ηK for the comparison.
We observe that the distributions in figure 3 agree well for small values of H, but
slightly disagree in the right tail. This is not surprising, we cannot expect to reproduce
the exact shape of the helicity distribution in NSE with a single-scale stochastic flow.

3. Helical turbulent flows: suspensions of helicoidal particles
The helical flows described in § 2 break parity invariance (chiral symmetry): in

configurations dominated by positive helicity, as the flow in figure 3, structures where
the flow velocity and vorticity align are dominant. Heavy, inertial spherical particles
are not able to distinguish the chirality of the underlying flow, they centrifuge out
of vortex structures independent of their sign of helicity. We therefore study the
dynamics of so-called isotropic helicoids (Kelvin 1872; Happel & Brenner 2012).
These are the simplest idealized generalization of spherical particles, their dynamics
breaks parity, but remains isotropic. One example of isotropic helicoids suggested by
Lord Kelvin (Kelvin 1872) is illustrated in figure 4. Twelve planar vanes are attached
perpendicular to the surface of a sphere at equal distances on three great circles. All
vanes either form the angle +45◦ (anti-chiral helicoid) or −45◦ (co-chiral helicoid)
with the great circle traversed clockwise, see figure 4. The vanes cause a coupling
between translational and rotational motion. The dynamics of isotropic helicoids was
studied in stationary ABC flows in Gustavsson & Biferale (2016). It was shown that
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Flow configuration
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FIGURE 4. (Colour online) (a) Illustration of two isotropic helicoids with opposite
helicoidality as suggested by Lord Kelvin (Kelvin 1872), anti-chiral (C0 < 0, left panel)
and co-chiral (C0 > 0, right panel). The initial response to two simple flow configurations
are illustrated with arrows. In response to an applied vertical difference in velocity, both
helicoids accelerate in the direction of relative velocity, while their angular accelerations
depend upon the sign of C0. Similarly, in response to an applied vertical difference in
vorticity, the helicoids obtain the same angular acceleration, but they are accelerated in
opposite directions. (b) Snapshot in the stationary state for two types of helicoids of
opposing helicoidality in DNS of the helical turbulent flow given by the fourth case in
Table 2. Points show particle positions in a slice of height 5η. Parameters: St ≈ St−,
S = 0.1, a = 30, and C0 = −1.6 (anti-chiral, light blue) or C0 = 1.6 (co-chiral, blue).
Inset shows a zoom to highlight that particles of different chirality accumulate in different
regions.

the spatial distribution of isotropic helicoids depends on the relative chirality between
the particle and the underlying flow. We anticipate that this is also what happen in
helical turbulence as illustrated in figure 4 where we show that isotropic helicoids
move to different flow regions depending on their helicoidality also in our DNS of
the NSE (2.1). In this section we use DNS, the stochastic model and theoretical
approaches to analyse the motion of isotropic helicoids in helical turbulence.

3.1. Isotropic helicoids
The dynamics of an isotropic helicoid with position x, velocity v and angular velocity
ω suspended in a fluid with velocity u and vorticity 2Ω =∇× u is governed by the
following equations (Kelvin 1872; Happel & Brenner 2012; Gustavsson & Biferale
2016):

v̇ =
1
τp

[
u(x(t), t)− v +

2ã
9

C0(Ω(x(t), t)−ω)
]
, (3.1)

ω̇=
1
τp

[
10
3

S(Ω(x(t), t)−ω)+
5
9ã

C0(u(x(t), t)− v)

]
. (3.2)

Here dots denote time derivatives and u and Ω are evaluated at the particle position
x(t). The dynamics of isotropic helicoids couples individual vector components of
translational and rotational motion, but does not mix different components. The
dynamics is governed by four parameters. First, τp is a relaxation time quantifying
particle inertia. In the limit of τp→ 0 the particle approaches the dynamics of a tracer,
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v = u and ω = Ω . Second, ã =
√

5I0/2m is a measure of the particle size defined
by its mass m and moment of inertia I0. Third, C0 is the helicoidality. It quantifies
the strength of the coupling between translational and rotational degrees of freedoms.
Finally, S is the structural number that quantifies how much the rotational inertia
of the isotropic helicoid differs from that of a spherical particle. When C0 = 0, the
particle dynamics is that of an isotropic particle, and if further S = 1, the dynamics
is that of a spherical particle with Stokes relaxation time τp. When C0 6= 0, invariance
of the particle dynamics under mirror reflections of the particle is broken. Depending
on the relative sign between C0 and components of Ω , the particle accelerates either
along the vorticity component, or opposite to it, see figure 4. The only constraint
on the parameters is |C0| <

√
27S, required for the kinetic energy of the particle to

remain finite. The actual size of the particle, ∼ã, should also be less than the smooth
scale of the flow (a multiple of the Kolmogorov length η) for the point-particle
approximation to be valid. The governing equations (3.1) and (3.2) exemplify why
isotropic helicoids are simpler extensions to spherical particles than spheroids: the
dynamics of spheroids depends on their instantaneous direction in addition to v and
ω and it couples different components of the velocity and angular velocity. Moreover,
in the limit of inertialess spheroids, the particle angular velocity does not simply
follow Ω , but is also affected by the strain rate of the flow (Jeffery 1922).

Rescaling to dimensionless units t′= t/τη, x′= x/η, u′=uτη/η, v′= vτη/η, ω′=ωτη,
and Ω ′ =Ωτη and dropping the primes in what follows, we can write the equations
of motion for each pair of components vi and ωi in dimensionless form:

(
v̇i
ω̇i

)
= D

(
ui − vi
Ωi −ωi

)
, D =

1
St

 1
2C0a

9
5C0

9a
10
3

S

 . (3.3a,b)

Here we have introduced the dimensionless size a = ã/η and the Stokes number
St = τp/τη. Interpreting the two-tensor D as a matrix, it has two eigenvalues d± and
corresponding eigenvectors ξ± given by

d± =
1

18St

(
9+ 30S±

√
40C2

0 + 9(3− 10S)2
)
≡

St±
St
, (3.4)

ξ± =
1√

(2C0a)2 + 81(St± − 1)2

(
2C0a

9(St± − 1)

)
. (3.5)

These equations are well defined for all parameter values, but in the limit of isotropic
particles, C0→ 0, there is a complication. Taking the limit C0→ 0 in (3.4) and (3.5)
we need to distinguish the two cases of S < 3/10 and S > 3/10, resulting in the
eigenvalues and eigenvectors given in Table 3. The reason is that when C0 = 0, the
eigenvalues cross at S= 3/10, meaning that the translational eigenvalue switches from
being the largest (d+) when S< 3/10 to the smallest (d−) when S> 3/10. Moreover,
the translational and rotational degrees of freedom decouple when C0 = 0 and the
eigenvector (1, 0) corresponding to the translational dynamics must be ξ+ for S< 3/10
and ξ− for S > 3/10 with a discontinuous jump at S = 3/10. In the same way, the
eigensystem corresponding to the rotational dynamics has a discontinuity at S= 3/10.
When C0 = 0 the translational dynamics has a single scale of inertia. When S ∼ 1
this scale is St ∼ 1, see Table 3. This has been observed in simulations of inertial
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Condition St− St+ ξ− ξ+

S> 3/10 1 10S/3 (1, 0) (0, 1)
0< S< 3/10 10S/3 1 (0,−1) (1, 0)

TABLE 3. Rescaled eigenvalues St± = d±St and corresponding eigenvectors ξ± in (3.4)
and (3.5) for isotropic particles, C0 = 0.

particles, where the most interesting dynamics occurs around values of St of order
unity, see for example Fessler, Kulick & Eaton (1994), Bec et al. (2007), Falkovich &
Pumir (2007). The translational dynamics of isotropic helicoids on the other hand has
two characteristic inertial scales St− and St+ that depend on the helicoid parameters
C0 and S. These scales may be well separated in the meaning that St+/St− can
take arbitrarily large values. We therefore expect that isotropic helicoids may show
significantly different behaviour depending on whether the Stokes number St is of the
order of St− or St+. Below, we illustrate this by numerical simulations and analysis
of two different limiting cases. We remark that all statistical measurements have
been made after that the particle dynamics and the flow velocity reached stationarity.
Moreover, all considered statistical quantities are related to clustering in sub-viscous
scales where we expect weak dependence on the Reynolds number (Bec et al. 2007).

3.2. Preferential sampling of vorticity and helicity
Inertial spherical particles are subjected to preferential sampling of particular flow
structures as well as small-scale fractal clustering (Maxey 1987; Fessler et al. 1994;
Bec 2003; Gustavsson & Mehlig 2016). In the limit of small Stokes numbers
the mechanism for clustering can be explicitly related to preferential sampling. In
Gustavsson & Biferale (2016) the divergence of the velocity field along the trajectory
of an isotropic helicoid was derived for small values of St (St� St−):

∇ · v ∼−
St

27S−C2
0

(
27STr[A2

] −
9aC0

5
Tr[AV ]

)
+ o(St), (3.6)

where A and V are matrices with elements Aij = ∂jui and Vij = ∂jΩi. Depending on
the sign of ∇ · v trajectories of close-by particles may either converge (∇ · v < 0) or
diverge (∇ · v > 0). It is expected that particles cluster in regions where ∇ · v < 0,
i.e. where 27STr[A2

] > 9aC0Tr[AV ]/5. For heavy spherical particles C0 is zero and
particles cluster in straining regions of the flow where Tr[A2

]> 0 (Maxey 1987). For
helicoids the structures in which particles with small values of St converge are more
intricate and depend in addition on the particle parameters, a, C0, S, combined with
the local flow helicity as expressed in the last term, ∝ Tr[AV ], on the right-hand
side of (3.6). As observed by Gustavsson & Biferale (2016), for a flow region with
strong helical coherence, V ∼ cA, particles cluster where (27S − 9acC0/5)Tr[A2

] is
positive. As a consequence, particles of opposite helicoidality (different signs of C0)
may accumulate in flow regions of opposite sign of helicity c. As a result, even
if the helicoids are heavier than the surrounding flow, they may cluster in vortical
regions where Tr[A2

]< 0, similar to light spherical particles. In order to quantify the
preferential sampling of helical flow structures, we simulate the dynamics (3.3) for
a number of parameters summarized in Table 4 using the flows described in § 2.3.
For each set of parameters, once the fluid reaches its statistically stationary state it
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FIGURE 5. (Colour online) (a,b): fraction of particles in rotational flow regions (∆> 0)
as functions of (a) St/St− and (b) St/St+ for the DNS given by the fourth case in
Table 2. (c,d): mean fluid helicity 〈H〉 = 2〈u ·Ω〉 along particle trajectories as functions
of (c) St/St− and (d) St/St+ for the DNS. The data are normalized by the helicity of the
flow, 〈H〉flow which is chosen to be positive in all our simulations. The parameters of the
simulations are given in Table 4 and the simulation results are displayed as interconnected
markers. Results for neutral particles, C0 = 0, are shown as black asterisks. Results for
S = 1, a = 10 helicoids are shown as hollow orange circles (anti-chiral, C0 = −5) and
filled red circles (co-chiral, C0 = 5). Results for S = 0.1, a = 30 helicoids are shown as
hollow light blue boxes (anti-chiral, C0=−1.6) and filled blue boxes (co-chiral, C0= 1.6).
Black dashed lines show P(∆> 0) and 〈H〉 for tracer particles.

is seeded with 2.4 × 106 particles. The initial velocity and angular velocity of each
particle are given by the fluid velocity and half the fluid vorticity evaluated at the
particle position. Figure 4 illustrates that isotropic helicoids of opposing chirality
preferentially sample different flow regions in DNS of a helical turbulent flow.
Figure 5(a,b) shows the fraction of particles in rotational regions of the flow. The
data are plotted against St/St− in figure 5(a) and St/St+ in figure 5(b), i.e. against the
inverse of the two eigenvalues (3.4) of the dynamics (when C0 = 0 the data are only
plotted against St/St− because for this case the preferential sampling cannot depend
on St+). In rotational regions of a flow, the fluid gradient matrix A has complex
eigenvalues, or equivalently, the sign of the discriminant

∆=

(
detA

2

)2

−

(
tr[A2
]

6

)3

, (3.7)
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Helicoids type C0 S a St− St+ βeff

Anti-chiral −5 1 10 0.058 4.3 −0.1
−1.6 0.1 30 0.013 1.3 −0.2

Neutral 0 1 — 1 3.3 0

Co-chiral 1.6 0.1 30 0.013 1.3 1.7
5 1 10 0.058 4.3 0.5

TABLE 4. Overview of the five parameter families in the simulations in figure 5. For
each family, St varies over a few decades. The dynamics of the helicoids is driven by the
helicoidality C0, shape factor S and particle size a = ã/η which define the characteristic
scales St−, St+ and βeff as introduced in (3.4) and (3.16) respectively; for details see § 3.1.
The notion of being co-chiral or anti-chiral is made in terms of the flow helicity which
is always taken as on average positive in this paper. The parameter c entering in the
definition of βeff is obtained as c= (〈Ω2

〉/〈u2
〉)1/2 = 0.1 in DNS.

is positive (Chong, Perry & Cantwell 1990). We observe that isotropic helicoids with
the same helicoidality (positive) of the underlying flow, C0 = 1.6 (filled blue boxes),
depend intricately on the Stokes number: for small values of St they behave similar
to light particles that oversample rotational regions where ∆ > 0, while for larger
values of St they instead behave as heavy inertial particles that oversample strain
regions where ∆< 0. In contrast, for the other considered values of C0, the helicoids
always behave as heavy particles and oversample strain regions to different degrees
depending on the particle parameters. Figure 5(c,d) shows the mean value of fluid
helicity evaluated along particle trajectories, 〈H(x(t))〉 = 2〈u · Ω〉, as functions of
St/St− (figure 5c) and St/St+ (figure 5d). Comparing figure 5(a) and (c) shows that
the behaviour is quite similar: helicoids with C0 = 1.6 oversample rotational regions
and have larger helicity than the underlying flow if the Stokes number is small enough.
This is consistent with these particles spending long time in rotational regions of the
flow where helicity is high and mainly of a given sign due to the helical nature
of the underlying flow. Particles with the other investigated parameter values on the
other hand, experience a fluid helicity that is lower than that of tracer particles. This
is consistent with these particles aggregating in fluid strain regions where helicity is
small. We also observe a transition at intermediate Stokes numbers: for small values
of St, isotropic helicoids with negative values of C0 are more likely to sample flow
regions with low degree of helicity, while for large values of St helicoids with positive
values of C0 on average sample lower degree of helicity.

3.3. Small-scale fractal clustering
The previous section shows that helicoids of different chirality may go to very
different regions in the flow. This is exemplified in figure 4 which shows that the
helicoids of opposite chirality distribute in different flow regions. It is also visible
in figure 4 that the spatial clustering is different in nature, close-by helicoids with
C0 = −1.6 seem to distribute on different kinds of structures compared to helicoids
with C0 = 1.6. It is known that spherical particles show small-scale fractal clustering
due to preferential sampling and due to the dissipative nature of the dynamics. We
investigate the degree of spatial clustering of helicoids by computing the spatial
correlation dimension, D2, which defines the probability distribution P(r) to find two
helicoids within a small spatial distance r:

P(r)∼ rD2, r� 1. (3.8)
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FIGURE 6. (Colour online) Spatial correlation dimension D2 as function of (a) St/St−
and (b) St/St+ for the DNS and parameters of figure 5. Insets show local slope
d log(P(r))/d log(r).

Figure 6(a,b) shows the behaviours of D2 as a function of (a) St/St− and (b) St/St+
for DNS with the same parameters as in figure 5. Starting at small St/St−, the
correlation dimension is close to the spatial dimension and clustering is weak. As
St/St− is increased, the clustering increases until it reaches a maximum around
St/St− ∼ 1. Finally, as St/St− is further increased, the clustering becomes weaker
and saturates at the spatial dimension for large values of St/St−. The helicoids with
C0 = 1.6 show stronger clustering around St/St− ∼ 1 compared to the other cases.

3.4. Limiting cases
We now explain the main features of the data shown in figures 5 and 6 by analysing
three limiting cases of the system parameters. The first two limiting cases, St� St+
and St� St−, apply to both DNS and the stochastic model, while the third limit is
obtained for small values of Ku and therefore only applies to the stochastic model.

We use (3.4) and (3.5) to write the dynamics (3.3) in its diagonal basis as

ζ̇−,i =
St−
St
(u−,i − ζ−,i), (3.9)

ζ̇+,i =
St+
St
(u+,i − ζ+,i). (3.10)

Here we have changed basis for each component i using(
vi
ωi

)
= X

(
ζ−,i
ζ+,i

)
and

(
ui
Ωi

)
= X

(
u−,i
u+,i

)
, (3.11a,b)

where the columns of the 2× 2 matrix X consist of the eigenvectors ξ− and ξ+.
The dimensionless parameter groups in (3.9) and (3.10) can be viewed as ratios of

the time scales, τ±/τη ≡ St/St±, where τη is the Kolmogorov time of the flow and
τ± are two particle time scales (τ+ 6 τ−) of the isotropic helicoid (τ+ = τ− = τp for
a spherical particle). Equations (3.9) and (3.10) are only implicitly coupled through
the trajectory dependence in u− and u+. We therefore expect that the two limiting
cases St� St+ and St� St− can be taken, to a lowest-order approximation, in one of
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(3.9) and (3.10) independent from the second equation. In summary, when St� St+
(τ+� τη), equation (3.10) becomes overdamped and the remaining equation (3.9) gives
rise to strong preferential sampling when St/St−∼ 1 (τ−∼ τη) in analogue to the case
St∼ 1 (τp∼ τη) for inertial spherical particles. In the second limit St� St− (τ−� τη),
equation (3.9) becomes underdamped and ζ− can to lowest order be approximated
by its mean value. The remaining equation (3.10) gives rise to strong preferential
sampling when St/St+∼ 1 (τ+∼ τη). Below we discuss the two limiting cases in more
detail.

3.4.1. Case St� St+
Consider first St� St+ with general values of St−. For the acceleration to remain

finite in (3.10) in this limit, we must have 0 ∼ u+,i − ζ+,i. In terms of the original
coordinates, this condition gives the following constraint:

ω−Ω =
9

2C0a
(1− St−)(u− v). (3.12)

Using (3.12) and its time derivative to replace ω and ω̇ in (3.9), and reverting to the
original coordinates, we obtain

v̇ =
St−
St
(u− v)+

1
3(St− − St+)

[
3(St− − 1)u̇−

2C0a
3
Ω̇

]
. (3.13)

Thus, a single equation determines the velocity of the isotropic helicoid in the limit
St � St+ and the angular velocity is given by (3.12). It can be noted that for the
case of C0 = 0, the constraint (3.12) becomes singular because velocity and angular
velocity are uncoupled. However, equation (3.13) still shows the same results as
those obtained by letting C0 = 0 and St� St+ in the original equation (3.3). When
C0=0 and S> 3/10, equation (3.13) simplifies to v̇ = (u− v)/St while the rotational
dynamics is overdamped, ω−Ω = 0. When C0 = 0 and S< 3/10 on the other hand,
the condition St� St+ = 1 implies that the translational dynamics is overdamped and
(3.13) simplifies to v̇= (u− v)/St+ u̇. This equation relaxes to the overdamped limit
v = u after a short initial transient on the time scale of order St� 1.

The dynamics (3.13) can be further simplified using one or both of the following
two assumptions. First, for small enough values of St/St−, we approximate u̇∼ Dtu
and Ω̇ ∼DtΩ , where Dt ≡ ∂t + (u · ∇) are advective derivatives. Second, in a helical
flow Ω and u tend to be aligned and we may approximate Ω ∼ cu with some
proportionality constant c. Using these approximations, equation (3.13) simplifies to

v̇ =
St−
St
(u− v)+

9(St− − 1)− 2cC0a
9(St− − St+)

Dtu. (3.14)

If we define an effective Stokes number Steff and an effective density parameter βeff :

Steff =
St

St−
, (3.15)

βeff =
9(St− − 1)− 2cC0a

9(St− − St+)
, (3.16)
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then (3.14) becomes identical to the equation of motion of small spherical particles
(Maxey & Riley 1983) with sub-dominant terms neglected:

v̇ =
1
St
(u− v)+ βDtu. (3.17)

For spherical particles the density is characterized by β: 0 6 β < 1 corresponds to
heavy particles more dense than the fluid, β = 1 corresponds to neutrally buoyant
particles and 1<β 6 3 corresponds to particles lighter than the fluid. We remark that
βeff in (3.16) is not constrained to the interval 0 6 β 6 3 as the case of spherical
particles, βeff may also take negative values as well as values larger than 3.

Comparison to DNS
Although being a crude first-order approximation, equation (3.14) allows us to use
what is known from spherical particles to explain the main features of the behaviour
of helicoids in DNS for St� St+ in figure 5(a). The values of the effective density
parameter βeff in (3.16) are quoted in Table 4 for our parameters. Only the case
C0 = 1.6 has βeff larger than one, corresponding to spherical particles lighter than
the fluid. Such particles are expected to preferentially sample rotational flow regions
when the effective Stokes number Steff = St/St− is of order unity, which is consistent
with the data in figure 5(a). The cases of helicoids with C0 = −1.6 or C0 = −5
can be viewed as heavy particles because βeff is close to zero. In these cases the
helicoids preferentially sample strain regions of the fluid with strongest effect around
Steff ∼O(1). Finally, the case C0= 5 has βeff ≈ 0.5, making it heavy but not as heavy
as the cases with negative values of C0. This is consistent with a maximal preferential
sampling of straining regions around Steff ∼ O(1) that is somewhat lower than for
the case C0 = −5, but inconsistent for the case of C0 = −1.6 where the maximal
preferential sampling is of the same order, see figure 5(a).

The approximation (3.14) allows us to also explain the observed clustering in
figure 6(a). The helicoids with C0 = 1.6 show stronger clustering around St/St− ∼ 1
compared to the other cases. This can be explained by the observation that the
dynamics of helicoids with C0 = 1.6 is similar to that of light spherical particles and
that the other types of helicoids have dynamics similar to that of heavy spherical
particles with effective Stokes numbers St/St−. Light spherical particles cluster
in rotational regions of the flow and show more clustering than heavy spherical
particles (Bec 2003; Toschi & Bodenschatz 2009). This explains why the helicoids
with C0 = 1.6 have a smaller fractal dimension, close to D2 = 1.6, than the other,
effectively heavy spherical particles. It also explains why the correlation dimension for
the helicoids with C0 =−1.6 and C0 =±5 approximately collapse on the correlation
dimension of spherical particles when plotted against St/St−.

Comparison to stochastic model
Below we study in detail the validity of the approximations leading to (3.14). Since
DNS is slow, it is hard to reach the steady state for helicoids with St� St− and to
get good statistics in this limit. We therefore use the stochastic model to study the
approximations.

Figure 7(a,b) shows simulation results for isotropic helicoids with St � St+ in
the stochastic model described in § 2.4 (solid lines). We choose parameters that
are expected to correspond well with the DNS parameters in figure 5. We use a
large Kubo number, Ku = 10, corresponding to the persistent flow limit where the
dynamics most resembles the small scales in turbulence. As described in § 2.4 we
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FIGURE 7. (Colour online) Comparison of stochastic model simulations for (a) the
probability of being in a rotational region, P(∆ > 0), and (b) the average helicity, 〈H〉,
to results in the limiting case St� St+ discussed in § 3.4.1. Markers show results from
simulations of the full dynamics (3.1) and (3.2) and solid lines show the approximation
(3.13) evaluated using stochastic model simulations. The upper bound St/St− ∼ 20
corresponds to St ∼ 0.2St+. (c,d) An enlargement of the region where St � St− � St+.
Solid lines and markers as in (a) and (b). Dashed lines show the approximation (3.13)
with u̇ and Ω̇ replaced by Du/Dt and DΩ/Dt. Dash-dotted lines show the approximation
(3.14). Helicoid parameters corresponding to Table 4 and figure 5: S= 1, a= 10, hollow
orange circles (anti-chiral, C0 = −5) and filled red circles (co-chiral, C0 = 5). S = 0.1,
a = 30 hollow light blue boxes (anti-chiral, C0 = −1.6) and filled blue boxes (co-chiral,
C0 = 1.6). Black dashed lines show results for tracer particles.

fix H0 = 0.85 to match the distribution of flow helicity to that of the DNS and we
take η0/η = 10 to compensate for the difference between the smooth length scale of
the dissipation range and the Kolmogorov length in DNS. Finally, similarly to the
DNS we base the Stokes number in the stochastic model on the Lagrangian time
scale of tracer particles, τη ≡ 〈Tr(AAT)〉

−1/2
flow = η0/(

√
5u0). In previous studies similar

schemes have resulted in qualitative agreement between stochastic model simulations
and DNS for the dynamics of spherical particles, elongated particles and gyrotactic
microswimmers (Gustavsson et al. 2015; Gustavsson & Mehlig 2016; Gustavsson
et al. 2017). Comparing figure 7(a) and (b) to figure 5(a) and (c) we obtain a
qualitative agreement with the DNS also for the isotropic helicoids. The general
trends as functions of St for the different values of C0 agree, but the detailed values
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FIGURE 8. (Colour online) Snapshot of positions of isotropic helicoids in stochastic model
simulations for a flow with Ku = 10 and maximal helicity H0 ≈ 2.1 (µ → ∞), and
particle parameters St= 0.9St−, a= 30, S= 0.1 and C0 =−1.6 (a) and C0 = 1.6 (b). The
history of the underlying flow is identical for the two simulations. Coordinate axes are
non-dimensionalized using η0.

disagree in some ranges. One example is the probability of finding helicoids with
C0 = 1.6 in rotational regions with ∆> 0. Although being larger than the probability
for other parameter values, it is not larger than the probability of the underlying flow
as for the DNS case. One possible explanation for this is that the life time of vortex
regions is longer in DNS than in the stochastic model.

Figure 7(a,b) also compares stochastic model simulations of the approximation
(3.13) to the full simulation data of (3.3). We observe a quantitative agreement of
the approximation in the expected limit St � St+. Figure 7(c,d) shows numerical
simulations of (3.13) with u̇ and Ω̇ replaced by Dtu and DtΩ , which approach the
results of (3.13) when St/St− � 1 as expected. Finally, figure 7(c,d) also shows
the approximation (3.14) using Ω = cu with c = (〈Ω2

〉/〈u2
〉)1/2 =

√
5/20 for the

stochastic model (rescaled using η0 = 10η). We observe that the prediction using
spherical particles reproduces the average sampling of helicity well for St � St−
(figure 7d), while it does not work as well for the probability of being in vortex
regions (figure 7c). Discrepancies in this approximation are expected because the fluid
velocity and vorticity are not perfectly aligned in the helical flow with H0 = 0.85. In
particular, the approximation fails for the probability of being in vortex regions for
the cases with C0 ± 1.6: for C0 = 1.6 the helicoids do not oversample vortex regions
to the degree that is predicted by (3.14) and for C0 = −1.6 the helicoids show a
larger probability than is predicted. As discussed above, this is in contrast to DNS
which agrees better with the trends predicted by (3.14).

Figure 8 shows the positions of isotropic helicoids in a strongly helical flow in the
stochastic model. Similar to the DNS in figure 4, helicoids of opposing chirality go
to different regions in the flow and close-by anti-chiral particles form structures of a
different kind than co-chiral helicoids. Figure 9(a) shows stochastic model results for
the correlation dimension D2 with parameters corresponding to the DNS in figure 6.
We observe qualitative agreement between figure 9(a) and the DNS.

Using D2 to quantify the fractal dimension of clustering may be problematic
because it often converges slowly and consequently very small scales must be resolved
in the distribution P(r). An alternative quantification of fractal clustering which is
easier to evaluate accurately is provided by the Lyapunov dimension (Kaplan–Yorke
dimension) DL (Frederickson, Kaplan & Yorke 1983). Denoting by λ1 > λ2 > · · ·> λ9
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FIGURE 9. (Colour online) Stochastic model simulations of (a) correlation dimension
D2, (b) phase-space Lyapunov dimension DL and (c) the relative amplitude of average
compressibility along particle trajectories estimated using the sum of the first three
Lyapunov exponents, 〈∇ · v〉 = λ1 + λ2 + λ3 and the approximation (3.6), 〈∇ · v(1)〉.
Parameters as in figure 7 with the addition of spherical particles (black asterisks).

the nine Lyapunov exponents of the equation system (3.1) and (3.2) together with
ẋ= v, the Lyapunov dimension is

DL =K +
K∑

i=1

λi/|λK+1|, (3.18)

where K is the largest integer such that
∑K

i=1 λi > 0. Figure 9(b) shows numerical
evaluation of the Lyapunov dimension for the stochastic model. For DL < 3 it shows
similar trends as the correlation dimension D2. The values of DL are somewhat higher
than D2, consistent with the fractal attractor in turbulence being a multifractal with
DL >D2 (Bec 2005). Finally, we remark that the Lyapunov dimension defined in (3.18)
describes the dimension of the fractal in phase space, and it is therefore not bounded
by the spatial dimension 3 as is the case for the spatial correlation dimension. For
large values of St, the Lyapunov dimension is expected to approach the dimensionality
D of phase space. This is consistent with the data in figure 9(b) (D= 9 for helicoids
and D= 6 for spherical particles).

Evaluation of the Lyapunov exponents also allows us to validate the approximation
(3.6) of the local compressibility in the stochastic model. The long-term average
of the compressibility along particle trajectories is identical to the sum over the
first three Lyapunov exponents, 〈∇ · v〉 = λ1 + λ2 + λ3. Using this relation, we
verify in figure 9(c) the small St approximation given by (3.6). We remark that the
limit used to obtain (3.6) is the same as in this section (St � St+), but requires
first-order corrections in St/St+ to the condition in (3.12). Moreover, we need to
consider St/St− � 1. Consistently with this limit, we find that the average of the
approximation (3.6) tends to approach 〈∇ · v〉 as St/St− is reduced and that the two
expressions agree approximately for St/St− ∼ 0.1.

3.4.2. Case St� St−
We now consider the second limiting case, St � St− with general values of St+.

In this limit ζ−,i in (3.9) responds slowly to changes in the flow compared to ζ+,i.
Due to the symmetries of the underlying flow, we expect the averages of u−,i and
consequently of ζ−,i to vanish. We therefore replace ζ−,i by its vanishing average,
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ζ−,i = 0, which gives the following constraint on ω:

ω=
9(St+ − 1)

2aC0
v. (3.19)

Inserting this constraint and its time derivative into (3.10), gives the following
equation for the velocity:

v̇ =
St+
St

[
3(3St+ − 10S)u+ 2aC0Ω

9(St+ − St−)
− v

]
. (3.20)

As for the first limiting case we can consider a helical flow with Ω ∼ cu to obtain

v̇ =
St+
St
[βeff u− v], (3.21)

where βeff is the parameter in (3.16) occurring in the limit of St� St−. Thus, in the
limit St� St− the equation of motion for helicoids in a helical flow is like a Stokes
drag with effective Stokes number St/St+ and with a rescaled amplitude of the fluid
velocity.

Comparison to DNS
The limiting dynamics in (3.21) allows us to explain the DNS results in figure 5(b).
For helicoids with negative values of C0, the coupling to the flow, βeff u in (3.21), is
small, see Table 4. The particle motion is thus expected to be only weakly correlated
to the underlying flow structures, which is consistent with the data: the particles with
negative values of C0 have approximately the same statistical properties as the flow
(black dashed lines in figure 5b). The helicoids with positive values of C0 on the other
hand have βeff ∼ 1 and are therefore expected to have preferential sampling similar to
spherical particles with effective Stokes number St+/St. This is what we observe for
C0 = 1.6, the shape and magnitude of the curve around St ∼ St+ is similar to that
of spherical particles. However, the approximation (3.21) does not work as well for
C0 = 5: even though βeff ≈ 0.5 the preferential sampling is only slightly larger than
the case C0 =−5. Since C0 = 5 also only show small agreement with the predictions
in the first limiting case St� St+, we conclude that the approximations (for example
Ω ∼ cu) leading to (3.14) and (3.21) may not be so accurate for C0 = 5 in DNS.

Using the approximation (3.21) to explain the fractal clustering observed in
figure 6(b), we would expect that the anti-chiral helicoids, having small coupling
to the flow, should show small clustering (D2 ≈ d) and that the co-chiral helicoids
should show larger clustering of the same order as the spherical particles. The
numerical data for C0 = 1.6 indeed show a second peak of clustering (minimum of
D2) around St∼ St+. However, we remark that the result for D2 is measured at finite
separation which might not reflect the true asymptotic scaling for r→ 0. Indeed, as
seen in the inset of figure 6(b), the local slope of D2 for C0 = 1.6 seems to drift
towards larger values as r is decreased in the range of r we can resolve. This can
be explained by the fact that deviations from the approximation (3.21) depend on the
flow histories experienced by the particles and are therefore different for two close-by
particles, which results in a uniform distribution of particles for small enough scales.
In contrast, deviations from the overdamped approximation (3.14) mainly depend on
the instantaneous flow and are therefore approximately the same for the two particles.
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FIGURE 10. (Colour online) Comparison of stochastic model simulations for (a) the
probability of being in a rotational region, P(∆ > 0), and (b) the average helicity, 〈H〉,
to results in the limiting case St� St− discussed in § 3.4.2. Markers show results from
simulations of the full dynamics (3.1) and (3.2), same parameters as in figure 7, solid lines
show the approximation (3.20) and dash-dotted lines show the refined approximation (3.21)
for flows where fluid vorticity and velocity align. The lower bound St/St+ ∼ 0.05
corresponds to St∼ 5St−.

Comparison to stochastic model
Figure 10 shows simulation results in the range St � St− for isotropic helicoids in
the stochastic model, plotted against St/St+. Similar to the case St� St+, comparison
between the full model data in figure 10(a) and (b) to the corresponding DNS data
in figure 5(b) and (d) shows similar trends as functions of St, while the details differ
in some ranges. The co-chiral helicoids, having βeff ∼ 1 show preferential sampling
of straining regions with St ∼ St+, while the anti-chiral helicoids have negligible
preferential sampling of straining regions.

We compare stochastic model simulations of the approximation (3.20) (solid lines)
to simulations of (3.1) and (3.2) in figure 10. When St�St− we observe a quantitative
agreement for C0 = ±1.6 and qualitative agreement when C0 = ±5. Figure 10 also
shows that the approximation (3.21) based on Ω = cu (dash-dotted lines) does not
work equally well. Equation (3.21) reproduces that co-chiral helicoids have larger
preferential sampling of straining regions around St ∼ St+ than anti-chiral helicoids,
but the degree of preferential sampling does not come out correctly in general. We
conclude by remarking that, as expected, in the underdamped limit of St� St+ the
preferential sampling for all parameter cases in Table 4 converges to that of the flow
(not shown).

As seen in figure 9(a) the correlation dimension D2 increases monotonously towards
the spatial dimension d= 3 after the peak at St∼ St−. As a consequence, D2 does not
show any clustering around St∼ St+. The deviations from the DNS data in figure 6(b)
can be explained by the fact that the observed data are better resolved in the stochastic
model: the correlation dimension around St ∼ St+ shows a scaling P(r) ∼ rD2(r) with
local exponent D2(r)<3 for a range of r�1 (similar to the DNS in this range), while
for small enough values of r, the uniform D2 = 3 scaling is approached (not shown).

3.4.3. Small values of Ku
In the stochastic model the properties of the flow can be modified by changing the

value of the Kubo number (2.12). In general, this allows exploration of the robustness
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of results with respect to the nature of the flow. In the limit of small Ku we can solve
the dynamics analytically in terms of the full set of model parameters St, C0, S, a
and H0 using the method in Gustavsson & Mehlig (2011, 2016). The calculation is
outlined in appendix B. The resulting mean helicity becomes to second order in Ku,

〈H〉 = H0 +
3Ku2St

4(5C2
0 − 27(1+ 2St)(5S+ 3St))(10C2

0 − 27(1+ St)(10S+ 3St))2

×
{
−(25+ 6H2

0)C0a
[
50C4

0 + 135C2
0(10S(St− 2)+ 3St(5St− 1))

− 729(50S2(St− 1)+ 18St3
+ 15SSt(5St− 1))

]
+ 30H0

[
a2(90C4

0St− 486C2
0(5SSt− 3St3))+ 50C4

0(10S+ 9St)

− 675C2
0(40S2

+ 42SSt+ 9St2)+ 729(5S+ 3St)(10S+ 3St)2
]}
, (3.22)

where a= ã/η0 (velocity and position are made dimensionless in terms of u0 and η0).
Figure 11(a) shows the analytical solution for the mean helicity together with data
for Ku = 10. In order to compensate for the different magnitudes of relevant time
scales in flows with Ku= 10 and flows with small values of Ku, the parameters Ku
and St which depend on the correlation time of the flow have been rescaled in (3.22).
We found that multiplying the Stokes number by 4 and the Kubo number by 1/9
gives qualitative agreement (the effect of the former scaling is a horizontal shift of
all curves and the effect of the latter scaling is a constant prefactor of the deviation
from H0). Figure 11(a) shows that the small Kubo results have the same trends as
those of the DNS in figure 5(b) and the stochastic model in figure 7(b). This shows
that the trends shown in figure 5 are robust, they do not depend on the particular
nature of the underlying flow. Using this observation, we can use the theoretical
solution of the stochastic model to get an estimate of the parameter dependence of
preferential sampling of helicity for general values of the five model parameters. Two
examples of this dependence are illustrated in figure 11(b,c). Figure 11(b) shows how
the observed Stokes-dependent preferential sampling of helicity depends on C0. For
not too small values of |C0| the preferential sampling is similar to that observed in
figure 5(b,d): co-chiral helicoids oversample helicity for small Stokes numbers, while
anti-chiral helicoids oversample helicity for large Stokes numbers. Helicoids with
small |C0| behave similar to neutral particles and undersample helicity. Similar trends
are observed in a neutral flow (see figure 11c). In a neutral flow helical structures of
opposite signs are equally likely, which imposes a symmetry under the simultaneous
change of H and C0 to −H and −C0. This symmetry is clearly seen in figure 11(c):
upon changing C0 to −C0 the average helicity changes sign. As a consequence of
this symmetry neutral particles (C0 = 0) in neutral flows may not show preferential
sampling of helicity, there is a thin line of no preferential sampling at C0 = 0 in
figure 11(c).

We end the discussion on small Kubo numbers by remarking that we have applied
the perturbation theory developed in appendix B to calculate the Lyapunov exponents
and Lyapunov dimension of particle clustering for small values of Ku, similar to the
expansions for the Lyapunov exponents of spherical particles (Gustavsson & Mehlig
2011, 2016). The theory relies on the additional constraint St�St− in order for caustic
singularities to be rare. In this limit we observe good agreement between theory and
numerical simulations of the stochastic model (not shown).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

23
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.237


668 L. Biferale, K. Gustavsson and R. Scatamacchia

St St St
10-2 10-1 100 101 10-2 100 102

0.4

0.6

0.8
¯H˘

1.0
(a) (b) (c)

-0.2

-0.1
0

0.1
0.2

-0.2

-0.1

0

0.1

0.2

-1

0

1

H0 = 0H0 > 0

10-2

-1

0C0 C0

1

100 102

¯H
˘ -

 H
0

¯H
˘ -

 H
0

FIGURE 11. (Colour online) Evaluation of theory (3.22) for mean helicity 〈H〉 for small
values of Ku with rescaled parameters Ku and St, see text. (a) Comparison of the theory
(3.22) to simulation data for Ku = 10. Markers correspond to the data in figure 7(b)
(without division by H0 and plotted against St). Solid lines show (3.22). The five parameter
combinations of C0, S and a are plotted as five lines with the colours of the corresponding
markers. (b) Heat map of the theory (3.22) for the deviation of average helicity, 〈H〉, from
that of the flow, 〈H〉flow=H0, plotted against St and C0 for S= 0.1, a= 30 and H0= 0.85.
Dashed lines correspond to the curves with C0 = −1.6 (light blue), C0 = 0 (black) and
C0 = 1.6 (blue) shown in (a). (c) Same as (b) but for a neutral flow, H0 = 0.

4. Discussion and conclusions
We have presented a series of numerical and theoretical results concerning the

properties of turbulent flows under strong multi-scale helical injection. We performed
direct numerical simulations of the NSE up to resolution 5123 and at changing the
exponent of the power-law helical injection, in the limit of white-in-time noise. We
first showed that there exists three different regimes for the forward energy and
helicity nonlinear transfers: (i) when both transfers are directed toward small scales
and the external multi-scale injection is negligible, leading to a −5/3 spectrum for
both energy and helicity; (ii) when the energy cascade is fully nonlinear and helicity
is dominated by the forcing; and (iii) when both cascades are dominated by the
forcing at all scales. Finally, let us note that the theoretical prediction (2.10) is
qualitatively well reproduced by our DNS results as shown in figure 1. Nevertheless,
we must stress that for the dominant regime (case III in Table 2) the power law is
not extremely clean. For the latter case, it would in future studies be important to
extend the numerical resolution, such as to reduce spurious sub-leading terms.

For the case of turbulence under condition (III) and for a surrogate stochastic flow
we studied the evolution of isotropic helicoids, presenting a systematic assessment
of preferential sampling and small-scale fractal clustering for helicoids with different
properties. In particular, we showed that a suitable tuning of the chirality of the
helicoids may lead to particles that behave either as being lighter or heavier than the
surrounding flow. The comparison between the turbulent and stochastic model shows
very similar degree of preferential sampling for all parameters considered. Due to
the different nature of the flows, this implies that the studied preferential sampling
is mainly a kinematic effect: it depends on the dynamical equations (3.1) and (3.2)
rather than on the existence and evolution of flow structures. This suggests that the
observed effects are robust to changes in the details or nature of the flow, with
interesting applications also at low or moderate Reynolds numbers. Other observables
such as large-scale clustering or higher-order moments of helicity are likely to have
a stronger dependency on the flow properties.

At a first glance the numerical data observed in figures 5 and 6 have sensitive
and complicated parameter dependence. Nevertheless, it is remarkable that the crude
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approximations (3.14) and (3.21) allow us to give a first qualitative hint about the
helicoid properties in terms of the relatively simpler dynamics of spherical particles,
using the effective parameters Steff (3.15), βeff (3.16) and St/St+. The only term that
is odd in c or C0 in these effective parameters, as well as in (3.6), is proportional to
acC0. This implies that helicoids with opposite helicoidality behave more differently
the larger acC0 is. For the flows and helicoids considered in this paper we have
acC0 ∼ 5. This implies an estimated helicoid size ã larger than the smooth scale
(approximately 10η), where the point-particle approximation may not be fully correct
anymore. A fully systematic analysis of finite-size effects for the helicoid properties
is still lacking. This apparent problem can be resolved by constructing helicoids with
large effective ã while the size of the particle interacting with the fluid remains small,
for example by attaching small but heavy satellite particles to the helicoid (Gustavsson
& Biferale 2016). Another solution is to consider flows or particles with larger values
of c or |C0| (such that acC0 is significant for small particle sizes). On one side, the
magnitude of acC0 determines how much helicoids with opposite helicoidality are
different. On the other side, preferential sampling is also strongly dependent on the
value of βeff , as exemplified by comparing |C0| = 5 and |C0| = 1.6 in figure 5. By
optimizing βeff it is possible to find helicoids with smaller values of a that behave
as light particles, i.e. have βeff > 1. We conclude by remarking that the construction
in figure 4 is just one possible way to construct isotropic helicoids and what is the
most general isotropic structure which breaks mirror symmetry with a given set of
parameters C0, S and a remains an open question.
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Appendix A. Stochastic model for helical turbulence
To construct the incompressible, homogeneous and isotropic stochastic velocity field,

u=∇×A, used in the article, we generate the components of the vector potential A
as a Fourier sum

Ai(r, t)=
(2π)3/4
√

3(1+µ)
η

5/2
0 u0

L3/2

∑
k

3∑
j=1

[(h−j,k)
∗aj,k(t)h−i,k +µ(h

+

j,k)
∗aj,k(t)h+i,k]e

ik·r−(k2η2
0/4).

(A 1)

Here L= 10 is the system size (we use L= 10η0 in our simulations), the wave vector
k is summed over the components kj = 2πnj/L with nj = −20, −19, . . . , +20 and
j= 1, 2, 3. For each k, the vector of Fourier coefficients, ak(t), has been expanded in
terms of the eigenmodes h±k of the curl operator, weighted by a factor µ to give a
bias to positive helical modes if µ > 1, and to negative helical modes if 0 6 µ < 1.
The coefficients ai,k(t) are complex random Gaussian numbers fulfilling the condition
a∗i,k = ai,−k and having the statistics

〈ai,k(t)〉 = 0 and 〈ai,k1(t1)a∗j,k2
(t2)〉 = δijδk1k2e

−|t1−t2|/τ0 . (A 2a,b)
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The exponential time correlation in (A 2) is generated from an underlying Ornstein–
Uhlenbeck processes:

ai,k(t+ δt)= e−δt/τ0ai,k(t)+ bi,k(t), (A 3)

where δt is the time step of the simulation and bi,k(t) are independent random
Gaussian numbers that are white noise in time with statistics

〈bi,k(t)〉 = 0 and 〈bi,k1(t)b
∗

j,k2
(t)〉 = δijδk1k2(1− e−2δt/τ0). (A 4a,b)

The Gaussian cutoff for large k in (A 1) ensures a Gaussian spatial correlation function
with correlation length η0. When L� η0, (A 1) implies the correlation function

〈Ai(r1, t1)Aj(r2, t1)〉 =
η2

0u2
0

6
e−|r1−r2|

2/(2η2
0)−|t1−t2|/τ0 . (A 5)

From this correlation function the statistics of u and its spatial derivatives follows. To
obtain the distribution P0(H) of helicity H = 2u ·Ω for the stochastic flow in (A 1),
we start from the joint distribution of u and Ω:

P=
1

8π3
√

det C
e−XTC−1X, (A 6)

where X = (u1, u2, u3, Ω1, Ω2, Ω3)
T and C is the corresponding covariance matrix

(velocity is made dimensionless in terms of u0 and position in terms of η0)

Cij = 〈XiXj〉 =
1
12


4 0 0 2H0 0 0
0 4 0 0 2H0 0
0 0 4 0 0 2H0

2H0 0 0 5 0 0
0 2H0 0 0 5 0
0 0 2H0 0 0 5

 (A 7)

obtained from (A 5) with H0 ≡
√

2/π8(µ2
− 1)/(3(µ2

+ 1)). After a change of
coordinates Ωz = (H/2 − Ωxux − Ωyuy)/uz and integration over Ωx and Ωy the
remaining joint distribution of H, ux, uy and uz depends only on H and the

combination
√

u2
x + u2

y + u2
z . Changing to spherical coordinates in u-space and

integrating them away gives the final distribution of helicity, equation (2.13):

P0(H)=
9
π

|H| exp
[

3H0H
5−H2

0

]
K1

[
3
√

5|H|
5−H2

0

]
√

5[5−H2
0]

, (A 8)

where Kν(x) is the modified Bessel function of the second kind. The average helicity
of the flow is determined from the helicity bias µ as follows:

〈H〉flow =

∫
∞

−∞

dHHP0(H)=H0 =
8
3

√
2
π

µ2
− 1

µ2 + 1
. (A 9)
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Appendix B. Expansion around deterministic trajectories

Here we outline the series expansion used to calculate the mean helicity (3.22)
of isotropic helicoids for small values of Ku in the statistical model. The expansion
follows the method introduced in Gustavsson & Mehlig (2011) and reviewed in
Gustavsson & Mehlig (2016). We want to expand the dynamics in the dimensionless
equations of motion (equation (3.3) together with ṙ = Kuv) around the deterministic
solution r(d) obtained without flow, i.e. when u=Ω = 0. Since we in this work only
consider homogeneous steady-state statistics, we can put all initial conditions to zero
for simplicity. We therefore expand around the simple deterministic solution r(d) = 0.
An implicit solution to the dynamics in (3.3) together with ṙ = Kuv can be found
by first solving the diagonal equations for ζ in (3.9) and (3.10), then transforming
back to v and finally integrating to obtain r. We find that the following is an exact
implicit solution to the dynamics:

rt =−Ku
∫ t

0
dt1

∫ t1

0
dt2[eSt+(t2−t1)/StU+(rt2, t2)+ eSt−(t2−t1)/StU−(rt2, t2)], (B 1)

where

U± =
St±

St± − St∓

1
St

[
(St∓ − 1)u−

2C0a
9
Ω

]
. (B 2)

A series expansion of the flow velocity (and spatial derivatives thereof) around the
deterministic trajectory r(d) = 0 gives

ui(rt, t)= ui(0, t)+
∂ui

∂rj
(0, t)rj,t +

1
2
∂2ui

∂rj∂rk
(0, t)rj,trk,t + · · · . (B 3)

Equation (B 3) is an expansion of the flow velocity in terms of the displacement from
r= 0. Recursively substituting u(rt, t) (and derivatives thereof) from (B 3), and rt from
(B 1) into (B 3), we obtain an increasingly refined approximation of the flow evaluated
along the true trajectory rt. Since rt is of order Ku in (B 1), we can use Ku to keep
track of the order of rt in the expansion. Truncating the recursive expansion of (B 3)
at some order in Ku, one obtains the approximate expression for u along a trajectory
rt to this order in Ku. To evaluate an approximation for the helicity along a particle
trajectory, we do a similar expansion for Ω(rt, t) to form H = 2u(rt, t) · Ω(rt, t).
Finally, we evaluate the steady-state average 〈H〉 = 2〈u(rt, t) · Ω(rt, t)〉, where the
average is taken over an ensemble of trajectories and can be explicitly evaluated for
the stochastic model in terms of the known Eulerian correlation function in (A 5),
see Gustavsson & Mehlig (2011, 2016) for more details. As a result, we obtain the
expression in (3.22).
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