SUMS OF FRACTIONS WITH BOUNDED NUMERATORS

B. M. STEWART AND W. A. WEBB

1. Introduction. The general problem considered in this paper is that of sums of a finite number of reduced fractions whose numerators are elements of a finite set S of integers, and whose denominators are distinct positive integers. Egyptian, or unit, fractions are merely the case $S = \{1\}$. Problems concerning these fractions have been treated extensively. Another specific case $S = \{1, -1\}$ has been treated by Sierpinski (2).

2. General results. The following theorem completely characterizes those sets $S = \{a_1, \ldots, a_n\}$ for which every rational number can be expressed in the form

(1)
$$\frac{a'_1}{b_1} + \frac{a'_2}{b_2} + \ldots + \frac{a'_m}{b_m}, \quad a'_i \in S,$$

where the b_i are distinct positive integers such that $(a'_i, b_i) = 1$. The b_i are taken to be positive, since allowing them to be negative is equivalent to including $-a_i$ in S.

THEOREM 1. If $S = \{a_1, \ldots, a_n\}$, then every rational number a/b can be expressed in the form (1) if and only if $(a_1, \ldots, a_n) = 1$ and not all of the a_i are of the same sign. Moreover, a/b can be expressed in this way using each a_i equally often.

Proof. For the sufficiency proof we construct integers A_i by specifying their prime factorizations.

Let q_1, \ldots, q_n be distinct primes such that $(q_1 q_2 \ldots q_n, ba_1 a_2 \ldots a_n) = 1$, and let $q_i | A_i$. To be definite, let $q_i | | A_i$. Note that the q_i may be chosen arbitrarily large.

If p is a prime that divides at least one of b, a_1, \ldots, a_n , then since $(a_1, \ldots, a_n) = 1$, there is at least one j such that $p \nmid a_j$. To be definite, let j be minimal.

(i) If $p^{\alpha} || b, \alpha \ge 1$, let $p^{\alpha} || A_j$ and $p \nmid A_i, i \ne j$.

(ii) If $p \nmid b$, let $p || A_j$ and $p \nmid A_i$, $i \neq j$.

Define $A = A_1 A_2 ... A_n$ and $K = a_1(A/A_1) + ... + a_n(A/A_n)$.

If a > 0, we want K > 0. (We assume b > 0.) There is at least one a_i , say a_k , that is positive. Since the q_i may be chosen arbitrarily large, we choose

Received August 27, 1965. This research was partially supported by National Science Foundation Grant GE 2775.

 $q_1, \ldots, q_{k-1}, q_{k+1}, \ldots, q_n$ so large that

$$|a_1|/A_1 + \ldots + |a_{k-1}|/A_{k-1} + |a_{k+1}|/A_{k+1} + \ldots + |a_n|/A_n < a_k/A_k.$$

This guarantees K > 0. Similarly, if a < 0, we choose the q_i such that K < 0.

For each p defined above we have $p \nmid a_j(A/A_j)$, but $p|a_i(A/A_i), i \neq j$, so $p \nmid K$. Thus $(a_i, K) = 1, i = 1, ..., n$. By construction $(a_i, A_i) = 1$. Hence $(a_i, A_i K) = 1, i = 1, ..., n$. Also by construction if $p^{\alpha}||b$, then $p^{\alpha}||A_j$ (for some j); therefore b|A, and we write A = bc.

Combining the above we see that

$$\frac{1}{bc} = \frac{1}{A} = \frac{a_1}{A_1K} + \ldots + \frac{a_n}{A_nK}.$$

If a > 0, express ac as a finite sum of distinct unit fractions whose denominators are elements of the arithmetic progression $|a_1 \dots a_n|q_1 \dots q_n x + 1$ with x > 0. This is possible by a theorem of P. J. van Albada and J. H. van Lint (5, p. 172, Theorem 3.4); see also R. L. Graham (1). If a < 0, express -ac in this form. Thus

$$ac = \sum_{j=1}^{N} \frac{1}{v_j}$$

where the v_i are of the same sign as a. Then

(2)
$$\frac{a}{b} = \frac{ac}{bc} = \sum_{i=1}^{n} \left(\frac{a_i}{A_i K} \left(\sum_{j=1}^{N} \frac{1}{v_j} \right) \right).$$

Note that, for either a > 0 or a < 0, all denominators are positive when the sums are multiplied out, since all $A_i > 0$, and both K and v_j are of the same sign as a.

Since $(a_i, v_j) = 1$ for all *i* and *j*, and since $(a_i, A_i K) = 1$, each fraction in (2) is reduced. The denominators are distinct: for if $i \neq k$, then $A_i Kv_\tau \neq A_k Kv_s$ because $q_i | A_i$ but $q_i \notin A_k Kv_s$; and if $r \neq s$, then $A_i Kv_\tau \neq A_i Kv_s$, because $v_\tau \neq v_s$. We also note that each a_i is used the same number of times, namely N.

It remains to discuss the case a = 0. By the above arguments if $a \neq 0$, then a/b can be represented in the form (2) with each numerator repeated N times. Similarly, it is possible to represent -a/b in the form (2) with each numerator repeated N' times, using primes q'_i so large that every denominator used in representing -a/b exceeds every denominator used in representing a/b. Hence a representation of 0 = a/b + (-a/b) in the form (1) is available with each numerator repeated N + N' times.

For the necessity proof, first we assume that $(a_1, \ldots, a_n) = d > 1$. Suppose a/b to be represented in the form (1). Let B be the least common multiple of the b_i . Note that (d, B) = 1 because $d|a'_i$ and $(a'_i, b_i) = 1$. From a/b = dC/B we have dbC = aB. Since (d, B) = 1, it follows that d|a. Hence if $d \nmid a$, then a/b cannot be represented in the form (1).

1000

SUMS OF FRACTIONS

Secondly, even if $(a_1, \ldots, a_n) = 1$, but the a_i are all of one sign, it is obvious that fractions a/b of the other sign cannot be represented by (1).

COROLLARY. If all the a_i are positive (negative), then any fraction a/b > 0(a/b < 0) can be expressed in the form (1) if and only if $(a_1, \ldots, a_n) = 1$.

Proof. The proof is exactly the same as for Theorem 1, except that the sign of K becomes irrelevant.

3. The number of summands. Theorem 1 tells us when a fraction a/b can be expressed in the form (1). The next question that might be asked is: How many fractions of the desired type are necessary to express a given fraction? Obviously the number used in the proof of Theorem 1 is very large. The number of fractions necessary clearly depends on S, but we might ask if there is any set S such that for some fixed n_0 all fractions in some interval can be expressed in the form (1) using fewer than n_0 summands. In Theorem 2 we prove that no such set S exists.

Let $A_m(S)$ be the set of all a/b which can be expressed in the form (1) using *m* or fewer fractions.

LEMMA 1. The set $A_m(S)$ is nowhere dense.

Proof. Our original proof for any S followed the method of Sierpinski (2) for the case $S = \{1, -1\}$. For the case $S = \{1\}$ this method can be traced to the work of H. J. S. Smith (3). The referee has suggested an alternative proof, which we present here.

If A is a set of real numbers, let $L(A) = L^1(A)$ be the set of limit points of A. Define $L^{s+1}(A) = L(L^s(A))$, $s \ge 1$. For the sets A and B define

$$A + B = \{a + b \, | \, a \in A, \, b \in B\}.$$

It can be shown that if at least one of the sets A or B is bounded, and if $L^{s}(A) = \emptyset$ and $L^{t}(B) = \emptyset$, then $L^{s+t-1}(A + B) = \emptyset$.

Let $H_1 = \{0, \pm 1, \pm 1/2, \pm 1/3, \ldots\}$ and let

$$H_k = \{d_1 + d_2 + \ldots + d_k | d_i \in H_1\}, \quad k \ge 1.$$

Since $L^2(H_1) = \emptyset$ and $H_{k+1} = H_1 + H_k$, it follows from the above result, by induction on k, that $L^{k+1}(H_k) = \emptyset$.

For the set $S = \{a_1, \ldots, a_n\}$ let M be the maximum value of $|a_i|$. Then $A_m(S) \subseteq H_{mM}$. Since $L^{mM+1}(H_{mM}) = \emptyset$, it follows that $A_m(S)$ is nowhere dense.

THEOREM 2. For any given set S, in every interval there exist rational numbers a/b whose representation in the form (1) requires arbitrarily many fractions.

Proof. If all rational numbers in an interval were expressible in the form (1) using m or fewer fractions, then $A_m(S)$ would include the set of all rational numbers in the interval. But by Lemma 1 we know that $A_m(S)$ is nowhere dense, while the rational numbers are dense.

B. M. STEWART AND W. A. WEBB

4. A specific case. In this section we consider the case $S = \{1, -1\}$.

LEMMA 2. a/b is expressible in the form $(\pm 1/r_1) + (\pm 1/r_2)$ if and only if there exist d_1, d_2 such that $d_1|b, d_2|b$, and $d_1 \pm d_2 = ka$, $k \neq 0$.

Proof. If such d_1 and d_2 exist, then $a/b = (1/k(b/d_1)) \pm (1/k(b/d_2))$.

Conversely, since a/b and -a/b are both expressible, or both not expressible, we consider only the signs in the case $a/b = 1/r \pm 1/s$. Let (r, s) = d, r = r'd, s = s'd, so that $a/b = (s' \pm r')/r's'd$. Since (r', s') = 1, it follows that $(s' \pm r', r's') = 1$. Let $k = (s' \pm r', d)$. Since we may assume a/b to be reduced, it follows that $a = (s' \pm r')/k$ and b = r's'(d/k). Thus we have $s' \pm r' = ka$, $k \neq 0$, and r's'|b, in agreement with the lemma.

LEMMA 3. a/b is expressible as $a/b = (\pm 1/r_1) + \ldots + (\pm 1/r_m)$ if there exist d_1, \ldots, d_m , divisors of b, such that

$$(\pm d_1) + \ldots + (\pm d_m) = ka, \qquad k \neq 0.$$

Proof. From the hypotheses $a/b = (\pm 1/k(b/d_1)) + \ldots + (\pm 1/k(b/d_m))$.

THEOREM 3. If $S = \{1, -1\}$ then $a/b \in A_2(S)$ for a fixed a > 0 and all b sufficiently large if and only if a = 1, 2, 3, 4, or 6.

Proof. If $a \neq 1, 2, 3, 4$, or 6, there exists an r such that (r, a) = 1 and $r \not\equiv \pm 1 \pmod{a}$. By Dirichlet's theorem there exist infinitely many k such that p = ak + r is a prime. Then for a/p the only divisors of the denominator are ± 1 and $\pm p$. Since $r \not\equiv \pm 1 \pmod{a}$, no combination of these divisors has a sum which is a non-zero multiple of a. By Lemma 2 it follows that $a/p \notin A_2(S)$.

Conversely, if a = 1, then $1/b \in A_1(S)$; hence $1/b \in A_2(S)$ trivially. If a = 2, 3, 4, or 6, we may assume a/b to be reduced; hence we may express b = ak + r, with $r = \pm 1$. Both $d_1 = b$ and $d_2 = r$ divide b and $d_1 - d_2 = b - r = ka$, with $k \neq 0$ if b > 1. Since $d_1 \neq d_2$, it follows from Lemma 2 that $a/b \in A_2(S)$ whenever (a, b) = 1 and b > 1.

THEOREM 4. If $S = \{1, -1\}$, then $a/b \in A_3(S)$ for a fixed a > 0 and all b sufficiently large if a < 36.

Proof. Using a different method, Sierpinski (2) was able to show Theorem 4 for $a \leq 20$. However, the result is easily obtained for a < 30 by the use of Lemma 2. We illustrate the method for a = 22.

We suppose that we have completed the proof of Theorem 4 for 0 < a < 22. Hence we may assume that (22, b) = 1 and we write $b = 22q \pm r, r = 1, 3, 5, 7$, or 9. We note that $22/b = 1/q \mp r/qb$. We complete the proof by showing that r/qb is in $A_2(S)$ if q > 1, hence if b > 31.

The hypothesis q > 1 implies that 1, q, b, qb are distinct divisors of qb. If r < 8, we may consider the possibilities of $q \pmod{r}$ and show that the sum or difference of some two of these divisors is a non-zero multiple of r. Hence

1002

Lemma 2 applies to show that r/qb is in $A_2(S)$. (When r < 8, this argument using combinations of 1, q, $b \equiv aq$, $bq \equiv aq^2 \pmod{r}$ is applicable for all a).

If r = 9, we consider the possibilities of $q \pmod{9}$. If $q \equiv 0, 3, \text{ or } 6 \pmod{9}$, then $qb \equiv 0 \pmod{9}$; hence 9/qb reduces to a unit fraction that is in $A_2(S)$ trivially. If $q \equiv 1 \pmod{9}$, then 9|q - 1. If $q \equiv 2 \pmod{9}$, then 9|b + 1. If $q \equiv 4$ or 5 (mod.9), then 9|qb - 1. If $q \equiv 7 \pmod{9}$, then 9|b - 1. If $q \equiv 8 \pmod{9}$, then 9|q + 1. Hence Lemma 2 applies to show that 9/qb is in $A_2(S)$. This completes the proof for a = 22.

For some of the cases in Theorem 4 there are new difficulties, but these may be circumvented by using q + 1 or q - 1, in place of q, in the first step of obtaining a representation.

Notice the difference between this case $S = \{1, -1\}$ and the case of Egyptian fractions $S = \{1\}$. For Egyptian fractions it is known that $a/b \in A_a(S)$ for b sufficiently large; but this is known to be a best possible result only for a = 2 and a = 3. It seems almost certain that $a/b \in A_a(S)$ for some t < a if a > 3. For a discussion of the Erdös conjecture $4/b \in A_a(S)$ and the Sierpinski conjecture $5/b \in A_a(S)$ see (4).

In contrast, for the case $S = \{1, -1\}$, Theorem 4 shows that the first unresolved situation appears at a considerably later stage, namely, a = 36.

References

- 1. R. L. Graham, On finite sums of unit fractions, Proc. London Math. Soc., 14 (1964), 193-207.
- W. Sierpinski, Sur les décompositions de nombres rationnels en fractions primaires, Mathesis, 65 (1956), 16-32.
- 3. H. J. S. Smith, On the integration of discontinuous functions (1875), Collected Mathematical Papers, Vol. II (New York, 1965), 91–93.
- 4. B. M. Stewart, Theory of numbers, 2nd ed. (New York, 1964), 198-207.
- P. J. van Albada and J. H. van Lint, Reciprocal bases for the integers, Amer. Math. Monthly, 70 (1963), 170–174.

Michigan State University