ON THE DISTRIBUTION OF THE DIRECTION
 AND COLLINEARITY FACTORS
 IN DISCRIMINANT ANALYSIS

BY
R. P. GUPTA AND R. D. GUPTA

1. Introduction. If the samples of sizes $n_{1}, n_{2}, \ldots, n_{q+1}$ are available from ($q+1$) normal populations with different mean vectors $\mu_{\alpha}, \alpha=1,2, \ldots, q+1$ and the same covariance matrix Σ and if $x^{\prime}=\left(x_{1}, x_{2}, \ldots, x_{p}\right)$ denotes the vector of p variates on which the measurements are made, then we obtain the following multivariate analysis of variance table.

		$p \times p$ matrices of sums of squares and sums of products (S.S. and S.P.)
Between groups Within groups	degrees of freedom (d.f.)	B_{x} Total
$n-q$	W_{x}	
$n_{1}+n_{2}+\cdots+n_{q+1}-1=n$	$B_{x}+W_{x}$	

We are interested in testing whether t hypothetical discriminant functions Γx, $\Gamma t \times p$ and of rank $t \leq p$, are adequate for discrimination among $q+1$ groups. The hypothesis of goodness of fit of Γx consists of two aspects, (i) collinearity part, i.e., whether t functions Γx are adequate at all, and (ii) direction part, i.e., whether the vectors of Γ have preassigned components. For this purpose Bartlett [1], and Williams [4], propose the following criteria. They factorize Wilk's Λ criterion,

$$
\begin{align*}
& \Lambda=\left|W_{x}\right|| | B_{x}+W_{x} \mid \text { as } \\
& \Lambda=\Lambda_{1} \Lambda_{2} \Lambda_{3} \tag{1.1}
\end{align*}
$$

where

$$
\left\{\begin{array}{l}
\Lambda_{1}=\left|\Gamma W_{x} \Gamma^{\prime}\right| / \mid \Gamma\left(B_{x}+W_{x}\right) \Gamma^{\prime} \tag{1.2}\\
\Lambda_{2}=\left|B_{x}+W_{x}-B_{x} \Gamma^{\prime}\left(\Gamma B_{x} \Gamma^{\prime}\right)^{-1} \Gamma B_{x}\right| /\left|B_{x}+W_{x}\right| \Lambda_{1} \\
\Lambda_{3}=\Lambda / \Lambda_{1} \Lambda_{2}
\end{array}\right.
$$

The above authors also give an alternative factorization of Λ as

$$
\begin{equation*}
\Lambda=\Lambda_{1} \Lambda_{4} \Lambda_{5} \tag{1.3}
\end{equation*}
$$

where

$$
\left\{\begin{array}{l}
\Lambda_{4}=\left|W_{x}+B_{x} \Gamma^{\prime}\left(\Gamma B_{x} \Gamma^{\prime}\right)^{-1} \Gamma B_{x}\right| /\left|B_{x}+W_{x}\right| \tag{1.4}\\
\Lambda_{5}=\Lambda / \Lambda_{1} \Lambda_{4}
\end{array}\right.
$$

Radcliffe [3] expressed $\Lambda_{1}, \Lambda_{2}, \Lambda_{3}, \Lambda_{4}$, and Λ_{5} as functions of the elements of a triangular matrix T and then obtained their distributions. Radcliffe's method is very complicated and lengthy. Here we give a shorter and neater proof, which avoids all the transformations used by Radcliffe.
2. Representation of $\Lambda_{2}, \Lambda_{3}, \Lambda_{4}, \Lambda_{5}$. We make a linear transformation

$$
\begin{equation*}
z=L x \tag{2.1}
\end{equation*}
$$

where L is $p \times p$ non-singular matrix such that $L \Sigma L^{\prime}=I_{p}$. Under this transformation our discriminant functions are $\Gamma^{*} z$, where $\Gamma^{*}=\Gamma L^{-1}$. The "between" and "within" groups matrices for z are

$$
\begin{equation*}
B=L B_{x} L^{\prime}, \quad W=L W_{x} L^{\prime} \tag{2.2}
\end{equation*}
$$

Now we express Γ^{*} as

$$
\begin{equation*}
\Gamma^{*}=P[\theta: 0] Q \tag{2.3}
\end{equation*}
$$

where P is a $t \times t$ orthogonal matrix, Q is a $p \times p$ orthogonal matrix, and θ^{2} is the $t \times t$ diagonal matrix of the non-zero roots of $\Gamma^{*} \Gamma^{* \prime}$ or $\Gamma^{*^{\prime}} \Gamma^{*}$. We further note that the densities of $C=Q B Q^{\prime}, D=Q W Q^{\prime}$ are identical to the densities of B, W respectively. Under the transformation (2.1) we have

$$
\begin{equation*}
\Lambda_{1}=\frac{\left|\Gamma^{*} W \Gamma^{* \prime}\right|}{\left|\Gamma^{*}(B+W) \Gamma^{* \prime}\right|}=\frac{\left|D_{1}\right|}{\left|C_{1}+D_{1}\right|} \tag{2.4}
\end{equation*}
$$

where

$$
\left.\begin{array}{rl}
C= & {\left[\begin{array}{cc}
C_{1} & C_{2} \\
C_{2}^{\prime} & C_{3}
\end{array}\right]^{t}, \quad D=t,} \tag{2.5}\\
t & p-t
\end{array} \begin{array}{cc}
D_{1} & D_{2} \\
D_{2}^{\prime} & D_{3}
\end{array}\right]^{t} p-t^{*} .
$$

However, note that $\left|D_{1}\right| /\left|C_{1}+D_{1}\right|$ has the same distribution as that of $\left|W_{1}\right| \mid$ $\left|B_{1}+W_{1}\right|$, where B and W are partitioned correspondingly to C and D. Thus there is no loss of generality in assuming $\Gamma^{*}=(I, 0)$, where I is a $t \times t$ identity matrix.

We define

$$
\left\{\begin{align*}
B_{3}^{*} & =B_{3}-B_{2} B_{1}^{-1} B_{2}^{\prime}, \quad W_{3}^{*}=W_{3}-W_{2} W_{1}^{-1} W_{2}^{\prime} \tag{2.6}\\
S & =B_{2} B_{1}^{-1} B_{2}^{\prime}+W_{2} W_{1}^{-1} W_{2}^{\prime}-\left(B_{2}+W_{2}\right)\left(B_{1}+W_{1}\right)^{-1}\left(B_{2}+W_{2}\right)^{\prime}
\end{align*}\right.
$$

Using (2.2), $\Gamma^{*}=(I, 0)$, and (2.6) we immediately obtain

$$
\begin{align*}
& \Lambda_{2}=\left|B_{3}^{*}+W_{3}^{*}\right| /\left|B_{3}^{*}+W_{3}^{*}+S\right| \tag{2.7}\\
& \Lambda_{3}=\left|W_{3}^{*}\right| /\left|B_{3}^{*}+W_{3}^{*}\right| \tag{2.8}\\
& \Lambda_{4}=\left|W_{3}^{*}+S\right| /\left|B_{3}^{*}+W_{3}^{*}+S\right| \tag{2.9}
\end{align*}
$$

and

$$
\begin{equation*}
\Lambda_{5}=\left|W_{3}^{*}\right| /\left|W_{3}^{*}+S\right| \tag{2.10}
\end{equation*}
$$

3. Distributions of $\Lambda_{2}, \Lambda_{3}, \Lambda_{4}, \Lambda_{5}$. If the given hypothesis of goodness of fit is true, B has a non-central Wishart distribution of rank t, with q d.f. and W has an independent (central) Wishart distribution with $(n-q)$ d.f. The density of B and W is

$$
\begin{equation*}
g(B, W)=K|B|^{(q-p-1) / 2}|W|^{(n-p-q-1) / 2} \exp \left\{-\frac{1}{2} \operatorname{tr}(B+W)\right\} \phi\left(B_{1}\right), \tag{3.1}
\end{equation*}
$$

where $\phi\left(B_{1}\right)$ is the contribution to the density of B due to non-centrality of B. Here and elsewhere K (as a general symbol) denotes the normalizing constants of the densities. From (3.1), the joint density of $B_{1}, B_{2}, B_{3}^{*}, W_{1}, W_{2}, W_{3}^{*}$ is seen to be $g\left(B_{1}, B_{2}, B_{3}^{*}, W_{1}, W_{2}, W_{3}^{*}\right)$

$$
\begin{align*}
= & K \exp \left\{-\frac{1}{2} \operatorname{tr}\left(B_{1}+W_{1}+B_{3}^{*}+W_{3}^{*}+B_{2} B_{1}^{-1} B_{2}^{\prime}+W_{2} W_{1}^{-1} W_{2}^{\prime}\right)\right\} \\
& \times\left|B_{1}\right|^{(\alpha-p-1) / 2}\left|W_{1}\right|^{1 / 2(n-q-p-1)}\left|B_{3}^{*}\right|^{1 / 2(q-p-1)}\left|W_{3}^{*}\right|^{1 / 2(n-q-p-1)} \phi\left(B_{1}\right) . \tag{3.2}
\end{align*}
$$

Now in (3.1) we set $W_{2}=G_{2}-B_{2}, G_{2}$ is $p-t \times t$, and then we have

$$
\begin{align*}
& g\left(B_{1}, B_{2}, B_{3}^{*}, W_{1}, G_{2}, W_{3}^{*}\right) \\
&= K \exp \left\{-\frac{1}{2} \operatorname{tr}\left[B_{2}\left(B_{1}^{-1}+W_{1}^{-1}\right) B_{2}^{\prime}\right.\right. \\
&\left.\left.+G_{2} W_{1}^{-1} G_{2}^{\prime}-G_{2} W_{1}^{-1} B_{2}^{\prime}-B_{2} W_{1}^{-1} G_{2}^{\prime}+B_{1}+W_{1}+B_{3}^{*}+W_{3}^{*}\right]\right\} \\
&(3.3) \quad \times\left|B_{1}\right|^{1 / 2(\alpha-p-1)}\left|B_{3}^{*}\right|^{1 / 2(a-p-1)}\left|W_{1}\right|^{1 / 2(n-q-p-1)}\left|W_{3}^{*}\right|^{1 / 2(n-q-p-1)} \Phi\left(B_{1}\right) . \tag{3.3}
\end{align*}
$$

By using the fact that $\left(B_{1}+W_{1}\right)^{-1}=W_{1}^{-1}-W_{1}^{-1}\left(B_{1}^{-1}+W_{1}^{-1}\right)^{-1} W_{1}^{-1}$, we have
$g\left(B_{1}, B_{2}, B_{3}^{*}, W_{1}, G_{2}, W_{3}^{*}\right)$

$$
\begin{align*}
= & K \exp \left\{-\frac{1}{2} \operatorname{tr}\left[B_{1}+W_{1}+B_{3}^{*}+W_{3}^{*}\right.\right. \\
& \left.\left.+\left(B_{2}-G_{2} W_{1}^{-1}\left(B_{1}^{-1}+W_{1}^{-1}\right)^{-1}\right)\left(B_{1}^{-1}+W_{1}^{-1}\right)\left(B_{2}-G W_{1}^{-1}\left(B_{1}^{-1}+W_{1}^{-1}\right)^{-1}\right)^{\prime}\right]\right\} \\
& \times \exp \left\{-\frac{1}{2} \operatorname{tr} G_{2}\left(B_{1}+W_{1}\right)^{-1} G_{2}^{\prime}\right\}\left|B_{1}\right|^{1 / 2(q-p-1)}\left|B_{3}^{*}\right|^{1 / 2(q-p-1)} \\
& \times\left|W_{1}\right|^{1 / 2(n-q-p-1)}\left|W_{3}^{*}\right|^{1 / 2(n-q-p-1)} \phi\left(B_{1}\right) . \tag{3.4}
\end{align*}
$$

$$
\begin{equation*}
B_{2}=T_{2}\left(B_{1}^{-1}+W_{1}^{-1}\right)^{-1 / 2}+G_{2} W_{1}^{-1}\left(B_{1}^{-1}+W_{1}^{-1}\right)^{-1} \tag{3.5}
\end{equation*}
$$

we find the joint density of $B_{1}, T_{2}, B_{3}^{*}, W_{1}, G_{2}, W_{3}^{*}$ is
$g\left(B_{1}, T_{2}, B_{3}^{*}, W_{1}, G_{2}, W_{3}^{*}\right)$

$$
\begin{align*}
= & K \exp \left\{-\frac{1}{2} \operatorname{tr}\left(B_{1}+W_{1}+B_{3}^{*}+W_{3}^{*}+T_{2} T_{2}^{\prime}\right)\right\} \exp \left\{-\frac{1}{2} \operatorname{tr} G_{2}\left(B_{1}+W_{1}\right)^{-1} G_{2}^{\prime}\right\} \\
& \times\left|B_{1}\right|^{1 / 2(a-p-1)}\left|B_{3}^{*}\right|^{1 / 2(q-p-1)}\left|W_{1}\right|^{1 / 2(n-q-p-1)}\left|W_{3}^{*}\right|^{1 / 2(n-q-p-1)} \\
& \times\left|B_{1}^{-1}+W_{1}^{-1}\right|^{(t-p) / 2} \phi\left(B_{1}\right) . \tag{3.6}
\end{align*}
$$

By integrating over G_{2}, we find the joint density of $B_{1}, T_{2}, B_{3}^{*}, W_{1}$ and W_{3}^{*} to be

$$
\begin{aligned}
& g\left(B_{1}, T_{2}, B_{3}^{*}, W_{1}, W_{3}^{*}\right) \\
&= K \exp \left\{-\frac{1}{2} \operatorname{tr}\left(B_{1} \uparrow{ }_{1}\right)-\frac{1}{2} \operatorname{tr}\left(B_{3}^{*}+W_{3}^{*}+T_{2} T_{2}^{\prime}\right)\right\}\left|B_{1}\right|^{1 / 2(\alpha-p-1)}\left|B_{3}^{*}\right|^{1 / 2(\alpha-p-1)} \\
& \times\left|W_{1}\right|^{(n-q-p-1) / 2}\left|W_{3}^{*}\right|^{(n-q-p-1) / 2} \phi\left(B_{1}\right)\left|B_{1}+W_{1}\right|^{(p-t) / 2}\left|B_{1}^{-1}+W_{1}^{-1}\right|^{(t-p) / 2} \\
&= K \exp \left\{-\frac{1}{2} \operatorname{tr}\left(B_{1}+W_{1}\right)-\frac{1}{2} \operatorname{tr}\left(B_{3}^{*}+W_{3}^{*}+T_{2}^{\prime} T_{2}^{\prime}\right)\right\}\left|B_{1}\right|^{1 / 2(\alpha-t-1)}\left|B_{3}^{*}\right|^{1 / 2(a-p-1)} \\
&(3.7) \times\left|W_{1}\right|^{(n-q-t-1) / 2}\left|W_{3}^{*}\right|^{(n-q-p-1) / 2} \phi\left(B_{1}\right) .
\end{aligned}
$$

From (3.7) it can be easily seen that B_{1} and W_{1} are independent of B_{3}^{*}, W_{3}^{*}, and T_{2}. We notice that $S=T_{2} T_{2}^{\prime}$, i.e., S has a central Wishart distribution with t d.f. If $t<(p-t)$, then the density of S is pseudo Wishart with t d.f. Now we recall the following important result connected with Wishart matrices. If an $r \times r$ matrix A has a central Wishart distribution with f d.f. and if $u_{\alpha}, \alpha=1,2, \ldots, t$ are independent r component normal column vectors with $E\left(u_{\alpha}\right)=0, E\left(u_{\alpha} u_{\alpha}^{\prime}\right)=\Sigma$, where Σ is also the covariance matrix of the density of A. Then

$$
\begin{equation*}
\Delta=|A| /\left|A+\sum_{\alpha=1}^{t} u_{\alpha} u_{\alpha}^{\prime}\right|, \tag{3.8}
\end{equation*}
$$

is independently distributed of $\left(A+\sum_{\alpha=1}^{t} u_{\alpha} u_{\alpha}^{\prime}\right)$. The density of Δ is denoted by [Bartlett], $1 \Lambda(f+t, r, t)$. Further, by writing

$$
\begin{equation*}
\Lambda=\Lambda_{1} \Lambda_{2} \Lambda_{3}=\frac{\left|W_{1}\right|}{\left|B_{1}+W_{1}\right|} \cdot \frac{\left|B_{3}^{*}+W_{3}^{*}\right|}{\left|B_{3}^{*}+W_{3}^{*}+T_{2} T_{2}^{\prime}\right|} \cdot \frac{\left|W_{3}^{*}\right|}{\left|B_{3}^{*}+W_{3}^{*}\right|} \tag{3.9}
\end{equation*}
$$

and using (3.7) we note that Λ_{1} is independent of Λ_{2} and Λ_{3}. Again Λ_{3}, by quoted property of Wishart matrices, is independent of $B_{3}^{*}+W_{3}^{*}$ and T_{2}, i.e. of Λ_{2}. It follows that $\Lambda_{1}, \Lambda_{2}, \Lambda_{3}$ are mutually independent.

Similarly, by writing

$$
\begin{equation*}
\Lambda=\Lambda_{1} \Lambda_{4} \Lambda_{5}=\frac{\left|W_{1}\right|}{\left|B_{1}+W_{1}\right|} \cdot \frac{\left|W_{3}^{*}+T_{2} T_{2}^{\prime}\right|}{B_{3}^{*}+W_{3}^{*}+T_{2} T_{2}^{\prime} \mid} \cdot \frac{\left|W_{3}^{*}\right|}{\left|W_{3}^{*}+T_{2} T_{2}^{\prime}\right|}, \tag{3.10}
\end{equation*}
$$

and using (3.7) we note Λ_{1} is independent of Λ_{4} and Λ_{5}. However Λ_{5} is independent of B_{3}^{*} and $W_{3}^{*}+T_{2} T_{2}^{\prime}$, by the quoted property of Wishart matrices, and hence Λ_{5} is independent of Λ_{4}. Thus $\Lambda_{1}, \Lambda_{4}, \Lambda_{5}$ are mutually independent.

From (3.7) it is easily observed that the densities of $\Lambda_{2}, \Lambda_{3}, \Lambda_{4}, \Lambda_{5}$ are respectively those of $\Lambda(n-t, p-t, t), \Lambda(n-2 t, p-t, q-t), \Lambda(n-t, p-t, q-t)$, $\Lambda(n-q, p-t, t)$.

References

1. M. S. Bartlett, The goodness of fit of a single hypothetical discriminant function in the case of several groups. Ann. Eugen. 16 (1951) 199-214.
2. R. P. Gupta and D. G. Kabe, Distribution of certain factors in discriminant analysis. Ann. Inst. Statist. Math. 23 (1971) 97-103.
3. J. Radcliffe, The distribution of certain factors occurring in discriminant analysis. Proc. Camb. Phil. Soc. 64 (1968) 731-740.
4. Williams, E. J. Some exact tests in multivariate analysis. Biometrika. 39 (1952) 17-31.

Dalhousie University,
Halifax, N. S., Canada

