ON THE DISTRIBUTION OF THE DIRECTION AND COLLINEARITY FACTORS IN DISCRIMINANT ANALYSIS

BY

R. P. GUPTA AND R. D. GUPTA

1. Introduction. If the samples of sizes $n_1, n_2, \ldots, n_{q+1}$ are available from (q+1) normal populations with different mean vectors $\mu_{\alpha}, \alpha=1, 2, \ldots, q+1$ and the same covariance matrix Σ and if $x'=(x_1, x_2, \ldots, x_p)$ denotes the vector of p variates on which the measurements are made, then we obtain the following multivariate analysis of variance table.

Source	degrees of freedom (d.f.)	$p \times p$ matrices of sums of squares and sums of products (S.S. and S.P.)
Between groups	9	B_x
Within groups	<i>n-q</i>	
Total	$n_1+n_2+\cdots+n_{q+1}-1=n$	$B_x + W_x$

We are interested in testing whether t hypothetical discriminant functions Γx , $\Gamma t \times p$ and of rank $t \leq p$, are adequate for discrimination among q+1 groups. The hypothesis of goodness of fit of Γx consists of two aspects, (i) collinearity part, i.e., whether t functions Γx are adequate at all, and (ii) direction part, i.e., whether the vectors of Γ have preassigned components. For this purpose Bartlett [1], and Williams [4], propose the following criteria. They factorize Wilk's Λ criterion,

(1.1)
$$\Lambda = |W_x|/|B_x + W_x| \text{ as}$$
$$\Lambda = \Lambda_1 \Lambda_2 \Lambda_3$$

where

(1.2)
$$\begin{cases} \Lambda_1 = |\Gamma W_x \Gamma'| / |\Gamma (B_x + W_x) \Gamma', \\ \Lambda_2 = |B_x + W_x - B_x \Gamma' (\Gamma B_x \Gamma')^{-1} \Gamma B_x | / |B_x + W_x| \Lambda_1, \\ \Lambda_3 = \Lambda / \Lambda_1 \Lambda_2. \end{cases}$$

The above authors also give an alternative factorization of Λ as

(1.3)
$$\Lambda = \Lambda_1 \Lambda_4 \Lambda_5$$

where

(1.4)
$$\begin{cases} \Lambda_4 = |W_x + B_x \Gamma'(\Gamma B_x \Gamma')^{-1} \Gamma B_x| / |B_x + W_x|, \\ \Lambda_5 = \Lambda / \Lambda_1 \Lambda_4. \end{cases}$$

277

Radcliffe [3] expressed Λ_1 , Λ_2 , Λ_3 , Λ_4 , and Λ_5 as functions of the elements of a triangular matrix T and then obtained their distributions. Radcliffe's method is very complicated and lengthy. Here we give a shorter and neater proof, which avoids all the transformations used by Radcliffe.

2. Representation of Λ_2 , Λ_3 , Λ_4 , Λ_5 . We make a linear transformation

$$(2.1) z = Lx,$$

where L is $p \times p$ non-singular matrix such that $L\Sigma L' = I_p$. Under this transformation our discriminant functions are $\Gamma^* z$, where $\Gamma^* = \Gamma L^{-1}$. The "between" and "within" groups matrices for z are

$$(2.2) B = LB_xL', W = LW_xL'.$$

Now we express Γ^* as

(2.3)
$$\Gamma^* = P[\theta:0]Q$$

where P is a $t \times t$ orthogonal matrix, Q is a $p \times p$ orthogonal matrix, and θ^2 is the $t \times t$ diagonal matrix of the non-zero roots of $\Gamma^*\Gamma^{*'}$ or $\Gamma^{*'}\Gamma^*$. We further note that the densities of C=QBQ', D=QWQ' are identical to the densities of B, W respectively. Under the transformation (2.1) we have

(2.4)
$$\Lambda_1 = \frac{|\Gamma^* W \Gamma^{*'}|}{|\Gamma^* (B+W) \Gamma^{*'}|} = \frac{|D_1|}{|C_1 + D_1|},$$

where

(2.5)
$$C = \begin{bmatrix} C_1 & C_2 \\ C'_2 & C_3 \end{bmatrix} t \qquad D = \begin{bmatrix} D_1 & D_2 \\ D'_2 & D_3 \end{bmatrix} t \\ t & p-t \qquad t \qquad p-t.$$

However, note that $|D_1|/|C_1+D_1|$ has the same distribution as that of $|W_1|/|B_1+W_1|$, where B and W are partitioned correspondingly to C and D. Thus there is no loss of generality in assuming $\Gamma^* = (I, 0)$, where I is a $t \times t$ identity matrix.

We define

(2.6)
$$\begin{cases} B_3^* = B_3 - B_2 B_1^{-1} B_2', & W_3^* = W_3 - W_2 W_1^{-1} W_2', \\ S = B_2 B_1^{-1} B_2' + W_2 W_1^{-1} W_2' - (B_2 + W_2) (B_1 + W_1)^{-1} (B_2 + W_2)'. \end{cases}$$

Using (2.2), $\Gamma^* = (I, 0)$, and (2.6) we immediately obtain

(2.7) $\Lambda_2 = |B_3^* + W_3^*| / |B_3^* + W_3^* + S|,$

(2.8)
$$\Lambda_3 = |W_3^*| / |B_3^* + W_3^*|$$

(2.9)
$$\Lambda_4 = |W_3^* + S| / |B_3^* + W_3^* + S|,$$

and

(2.10) $\Lambda_5 = |W_3^*| / |W_3^* + S|.$

3. Distributions of Λ_2 , Λ_3 , Λ_4 , Λ_5 . If the given hypothesis of goodness of fit is true, *B* has a non-central Wishart distribution of rank *t*, with *q* d.f. and *W* has an independent (central) Wishart distribution with (n-q) d.f. The density of *B* and *W* is

(3.1)
$$g(B, W) = K |B|^{(q-p-1)/2} |W|^{(n-p-q-1)/2} \exp\{-\frac{1}{2} \operatorname{tr}(B+W)\}\phi(B_1),$$

where $\phi(B_1)$ is the contribution to the density of *B* due to non-centrality of *B*. Here and elsewhere *K* (as a general symbol) denotes the normalizing constants of the densities. From (3.1), the joint density of B_1 , B_2 , B_3^* , W_1 , W_2 , W_3^* is seen to be

$$g(B_1, B_2, B_3^*, W_1, W_2, W_3^*) = K \exp\{-\frac{1}{2} \operatorname{tr}(B_1 + W_1 + B_3^* + W_3^* + B_2 B_1^{-1} B_2' + W_2 W_1^{-1} W_2')\}$$

(3.2)
$$\times |B_1|^{(q-p-1)/2} |W_1|^{1/2(n-q-p-1)} |B_3^*|^{1/2(q-p-1)} |W_3^*|^{1/2(n-q-p-1)} \phi(B_1).$$

Now in (3.1) we set $W_2 = G_2 - B_2$, G_2 is $p - t \times t$, and then we have

$$g(B_1, B_2, B_3^*, W_1, G_2, W_3^*) = K \exp\{-\frac{1}{2} \operatorname{tr}[B_2(B_1^{-1} + W_1^{-1})B_2' + G_2W_1^{-1}G_2' - G_2W_1^{-1}B_2' - B_2W_1^{-1}G_2' + B_1 + W_1 + B_3^* + W_3^*]\}$$

(3.3)
$$\times |B_1|^{1/2(q-p-1)} |B_3^*|^{1/2(q-p-1)} |W_1|^{1/2(n-q-p-1)} |W_3^*|^{1/2(n-q-p-1)} \Phi(B_1).$$

By using the fact that $(B_1 + W_1)^{-1} = W_1^{-1} - W_1^{-1} (B_1^{-1} + W_1^{-1})^{-1} W_1^{-1}$, we have

$$g(B_{1}, B_{2}, B_{3}^{*}, W_{1}, G_{2}, W_{3}^{*})$$

$$= K \exp\{-\frac{1}{2} \operatorname{tr}[B_{1} + W_{1} + B_{3}^{*} + W_{3}^{*} + (B_{2} - G_{2}W_{1}^{-1}(B_{1}^{-1} + W_{1}^{-1})^{-1})(B_{1}^{-1} + W_{1}^{-1})(B_{2} - GW_{1}^{-1}(B_{1}^{-1} + W_{1}^{-1})^{-1})']\}$$

$$\times \exp\{-\frac{1}{2} \operatorname{tr} G_{2}(B_{1} + W_{1})^{-1}G_{2}'\} |B_{1}|^{1/2(q-p-1)} |B_{3}^{*}|^{1/2(q-p-1)}$$

$$(3.4) \qquad \times |W_{1}|^{1/2(n-q-p-1)} |W_{3}^{*}|^{1/2(n-q-p-1)} \phi(B_{1}).$$

Further setting

(3.5)
$$B_2 = T_2(B_1^{-1} + W_1^{-1})^{-1/2} + G_2 W_1^{-1}(B_1^{-1} + W_1^{-1})^{-1},$$

we find the joint density of B_1 , T_2 , B_3^* , W_1 , G_2 , W_3^* is

$$g(B_1, T_2, B_3^*, W_1, G_2, W_3^*)$$

$$= K \exp\{-\frac{1}{2} \operatorname{tr}(B_1 + W_1 + B_3^* + W_3^* + T_2 T_2')\}\exp\{-\frac{1}{2} \operatorname{tr} G_2(B_1 + W_1)^{-1}G_2'\}$$

$$\times |B_1|^{1/2(q-p-1)} |B_3^*|^{1/2(q-p-1)} |W_1|^{1/2(n-q-p-1)} |W_3^*|^{1/2(n-q-p-1)}$$

$$(3.6) \qquad \times |B_1^{-1} + W_1^{-1}|^{(t-p)/2} \phi(B_1).$$

By integrating over G_2 , we find the joint density of B_1 , T_2 , B_3^* , W_1 and W_3^* to be $g(B_1, T_2, B_3^*, W_1, W_3^*)$ $= K \exp\{-\frac{1}{2} \operatorname{tr}(B_1 + 1) - \frac{1}{2} \operatorname{tr}(B_3^* + W_3^* + T_2 T_2')\} |B_1|^{1/2(q-p-1)} |B_3^*|^{1/2(q-p-1)}$ $\times |W_1|^{(n-q-p-1)/2} |W_3^*|^{(n-q-p-1)/2} \phi(B_1) |B_1 + W_1|^{(p-t)/2} |B_1^{-1} + W_1^{-1}|^{(t-p)/2}$ $= K \exp\{-\frac{1}{2} \operatorname{tr}(B_1 + W_1) - \frac{1}{2} \operatorname{tr}(B_3^* + W_3^* + T_2 T_2')\} |B_1|^{1/2(q-t-1)} |B_3^*|^{1/2(q-p-1)}$ $(3.7) \times |W_1|^{(n-q-t-1)/2} |W_3^*|^{(n-q-p-1)/2} \phi(B_1).$

From (3.7) it can be easily seen that B_1 and W_1 are independent of B_3^* , W_3^* , and T_2 . We notice that $S = T_2 T'_2$, i.e., S has a central Wishart distribution with t d.f. If t < (p-t), then the density of S is pseudo Wishart with t d.f. Now we recall the following important result connected with Wishart matrices. If an $r \times r$ matrix A has a central Wishart distribution with f d.f. and if u_a , $\alpha = 1, 2, \ldots, t$ are independent r component normal column vectors with $E(u_{\alpha})=0$, $E(u_{\alpha}u'_{\alpha})=\Sigma$, where Σ is also the covariance matrix of the density of A. Then

(3.8)
$$\Delta = |A| / \left| A + \sum_{\alpha=1}^{t} u_{\alpha} u_{\alpha}' \right|,$$

is independently distributed of $(A + \sum_{\alpha=1}^{t} u_{\alpha}u'_{\alpha})$. The density of Δ is denoted by [Bartlett], 1 $\Lambda(f+t, r, t)$. Further, by writing

(3.9)
$$\Lambda = \Lambda_1 \Lambda_2 \Lambda_3 = \frac{|W_1|}{|B_1 + W_1|} \cdot \frac{|B_3^* + W_3^*|}{|B_3^* + W_3^* + T_2 T_2'|} \cdot \frac{|W_3^*|}{|B_3^* + W_3^*|}$$

and using (3.7) we note that Λ_1 is independent of Λ_2 and Λ_3 . Again Λ_3 , by quoted property of Wishart matrices, is independent of $B_3^* + W_3^*$ and T_2 , i.e. of Λ_2 . It follows that Λ_1 , Λ_2 , Λ_3 are mutually independent.

Similarly, by writing

(3.10)
$$\Lambda = \Lambda_1 \Lambda_4 \Lambda_5 = \frac{|W_1|}{|B_1 + W_1|} \cdot \frac{|W_3^* + T_2 T_2'|}{|B_3^* + W_3^* + T_2 T_2'|} \cdot \frac{|W_3^*|}{|W_3^* + T_2 T_2'|}$$

and using (3.7) we note Λ_1 is independent of Λ_4 and Λ_5 . However Λ_5 is independent of B_3^* and $W_3^* + T_2T_2'$, by the quoted property of Wishart matrices, and hence Λ_5 is independent of Λ_4 . Thus Λ_1 , Λ_4 , Λ_5 are mutually independent.

From (3.7) it is easily observed that the densities of Λ_2 , Λ_3 , Λ_4 , Λ_5 are respectively those of $\Lambda(n-t, p-t, t)$, $\Lambda(n-2t, p-t, q-t)$, $\Lambda(n-t, p-t, q-t)$, $\Lambda(n-t, p-t, q-t)$, $\Lambda(n-q, p-t, t)$.

REFERENCES

1. M. S. Bartlett, The goodness of fit of a single hypothetical discriminant function in the case of several groups. Ann. Eugen. 16 (1951) 199-214.

2. R. P. Gupta and D. G. Kabe, Distribution of certain factors in discriminant analysis. Ann. Inst. Statist. Math. 23 (1971) 97-103.

3. J. Radcliffe, The distribution of certain factors occurring in discriminant analysis. Proc. Camb. Phil. Soc. 64 (1968) 731-740.

4. Williams, E. J. Some exact tests in multivariate analysis. Biometrika. 39 (1952) 17-31.

DALHOUSIE UNIVERSITY, HALIFAX, N. S., CANADA