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1 Introduction

The fact that time is directional appears immediately apparent to us: we

experience the effects of this directionality in our own ageing; the fact that we

have memories of the past but not of the future; and the way we understand and

manipulate causes and effects around us. Philosophers have long tried to

understand how to best capture this experiential directionality (e.g., for an

anthology of seminal writings, Le Poidevin & MacBeath, 1993), with much

of the debate focusing on the question of how to establish a correct ordering of

events into past, present, and future.

Furthermore, physicists and philosophers have long tried to find other direc-

tional quantities in nature that could be used to ‘ground’ our experience of the

directionality of time. The notion of ‘ground’ is philosophically contested (e.g.,

for review, Correia & Schnieder, 2012); in the first instance, it is often unpacked

as an ‘in virtue of’-relation. Grounding the Arrow of Time in a physical quantity

would therefore imply that our experience of time’s directionality is in virtue of

this quantity and its properties. In this Element, we will further unpack this to

mean that the grounding quantity can be used to define and/or explain the

grounded one (e.g., roughly following the unpacking of ‘grounding’ given by

Sklar, 1993, pp. 388–96; see also Section 5). In the case of the Arrow of Time,

grounding it in a physical quantity means that, ideally, laws pertaining to the

quantity can be used to define the directionality of time aswe experience it as well

as explain why it is experienced this way. Different physical quantities have been

put forward as candidates for such groundings (for a comprehensive list, see

Roberts, 2022, p. 116): for example, asymmetries in elementary particle decay;

the directionality of electromagnetic waves; or the directionality of cosmic

expansion. However, one of the oldest and most prominent attempts is one that

grounds the Arrow of Time in the thermodynamic or statistical mechanical notion

of entropy. Entropy has different formal definitions (Section 3) but has often been

positioned as a measure of disorder; therefore, grounding the Arrow of Time in

entropy could also establish a connection between time and disorder.

This Element will analyse the grounding of the Arrow of Time in entropy.

Thereby, I do not wish to argue that this grounding is superior to any of the

alternative proposals mentioned. Rather, the Element aims at:

Aim 1: Reconstructing, analysing, and comparing different derivational routes

to a grounding of the Arrow of Time in entropy.

Aim 2: Evaluating the link between entropy and visible disorder, and the

related claim of an alignment of the Arrow of Time with a development from

order to visible disorder.
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In particular, this Element will analyse the roots of the entropy-grounding of

the Arrow of Time in the concepts of randomness, entropy, and the second law

of thermodynamics. Since there are different co-existing definitions for each

of those root-concepts, different versions of this grounding have different

roots of different combinations of those concepts. Alternatively, each such

root can be viewed as a derivational route to a grounding of the Arrow of

Time. This is a novel, uniquely comprehensive approach to analysing the

conceptional dependencies of the entropy-groundings of the Arrow of Time

and it has several advantages:

(i) it will allow me to pinpoint the differences between different entropy-

groundings of the Arrow of Time by tracing them to differences in their

conceptual roots;

(ii) it will allow me to identify epistemic disadvantages and advantages for

each derivational route to different entropy-groundings.

(iii) it will allow me to position the derivation of different entropy-groundings

of the Arrow of Time in the context of the most prominent controversies in

thermodynamics and statistical physics and to show how those controver-

sies have influenced different derivational routes;

(iv) it will allow me to evaluate the relationship between entropy and disorder

at the relevant derivational stage and thereby evaluate the posited align-

ment of the Arrow of Time with disorder.

Advantages (i)–(iv) render this analysis of different entropy-groundings of

the Arrow of Time as dependent concepts a perfect framework for the

intended aim of this Element series, namely, to provide a unique commen-

tary and introduction to the chosen topic, which will be accessible to

postgraduate and higher-level undergraduate students in philosophy of

physics. As a matter of fact, this Element is loosely based on a series of

six lectures I have contributed to the University of Bristol’s Advanced

Philosophy of Physics course, which is a credited course for fourth-year

undergraduates and MA students but is frequently audited by doctoral

students and postdocs as well. However, the Element is not purely

a didactic text: I will also demonstrate that the comparative analysis of

the different derivational routes to entropy-groundings of the Arrow of

Time leads to unique insights and allows one to come to a comparative

judgement about the different versions of the groundings that each route

makes available (Aim 1, Section 1.1). Furthermore, I will provide a novel

evaluation of the claim that statistical entropy is a measure for visible

disorder.
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ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
21

73
47

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781009217347


1.1 Entropy-Groundings of The Arrow of Time as Dependent
Concepts

The first aim of the Element (Aim 1) is to reconstruct, analyse, and compare

different derivational routes to entropy-grounding of the Arrow of Time. Aim 1

is based on the premise that entropy-groundings of the Arrow of Time are

dependent concepts with root-concepts in the notions of randomness, entropy,

and the second law of thermodynamics. This implies the assumption that

different derivational routes to different entropy-grounds can be broken down

into the subsequent derivation of different versions of the root-concepts. It is

impossible, of course, to consider every notion of randomness or entropy ever

proposed. However, for each root-concept, I have identified the ones that are of

particular conceptual or historical importance. In particular, I will discuss three

approaches to defining randomness (Section 2): Process Randomness

(Section 2.1); Phenomenological Randomness (Section 2.2); and Inclusive

Randomness (Section 2.3). I will then delineate three definitions of entropy

(Section 3): Thermodynamic Entropy (Section 3.1), statistical Boltzmann

Entropy (Section 3.2.1), and statistical Gibbs Entropy (Section 3.2.2). The

three definitions of entropy can be used to derive two definitions of

the second law of thermodynamics (Section 4): the empirical second law

(Section 4.1) and the statistical second law (Section 4.2). Finally, I will show

that the two different second laws can be used to define three different ground-

ings for the direction of time: as foreshadowed earlier, the Empirical Arrow of

Time (Section 5.1), the Universal Statistical Arrow of Time (Section 5.2), and

Figure 1 Root-concepts of and derivational routes to entropy-groundings of the

Arrow of Time.

3From Randomness and Entropy to the Arrow of Time
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the Local Statistical Arrow of Time (Section 5.3). The different root-concepts

and their links to concepts along different derivational routes are illustrated in

Figure 1. In Section 6, I will present an updated version of this figure, which will

include the assumptions we will have identified as crucial for each derivation

route in the preceding section.

Using the definition of grounding as sketched out earlier, each entropy-

grounding of the Arrow of Time will be shown to fulfil either the definition

and/or the explanatory component of a grounding for the direction of time as

we experience it. In particular, I will argue that the Empirical Arrow of Time

fulfils the definitional component of a grounding for the direction of time

(Section 5.1). In contrast, the Universal Statistical Arrow of Time will be

shown to have high potential to fulfil both the definitional and explanatory

component of such a grounding (Section 5.2), while the Local Arrow of Time

has the potential to fulfil the explanatory component (Section 5.3). It will also

be demonstrated that the Universal Arrow of Time and the Local Arrow of

Time are contingent on several assumptions. The veracity of those assump-

tions is currently still debated among philosophers and physicists, and an

unequivocal judgement of this veracity would require the resolution of long-

standing debates in cosmology, neuroscience, and biology. Having gained

a nuanced view of the ‘state of play’ for entropy-groundings of the Arrow of

Time, in Section 6, I will sketch out three large-scale conclusions for future

research.

1.2 Entropy, Disorder, and the Arrow of Time

A conceptual interpretation of statistical entropy as a measure for visible

disorder was established very early on in the history of statistical mechanics

(see Haglund, 2017, p. 206 for a summary of its use by Clausius and

Boltzmann). It has persisted throughout and has frequently been used to

introduce the concept of entropy in physics and philosophy textbooks (e.g.,

as listed in Haglund, 2017; Rickles, 2016). Viewing entropy as a measure for

visible disorder can then also be used to view groundings of the Arrow of

Time in entropy as a means of associating time with disorder: if the Arrow of

Time points in the direction of increasing entropy, then it also points in the

direction of increasing disorder. This association is often used to illustrate the

kind of processes we see as indicative of entropy-increasing: for example, by

showing the common illustration of a wine glass first being intact and

symmetrical and then shattering to become a pile of disordered shards. It is

assumed that it is immediately obvious that the visibly disordered state has

a higher entropy.

4 Philosophy of Physics
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The interpretation of entropy as a measure of visible disorder has two main

consequences:

(i) It allows for conceptual arguments asserting that the development of the

world (roughly) has to proceed from order to disorder, and that, therefore,

evolution and other biological processes can be analysed in terms of order

and disorder.

(ii) It establishes a natural connection between entropy and the mathematical

concept intended to capture visible disorder, namely randomness.

Consequence (i) is not the primary focus of this Element, but it should be noted

that a tendency to explain process in terms of increasing order and (visible)

disorder is one of the major ‘export products’ of statistical mechanics into other

academic areas. In particular, there exist several projects that aim to explain

biological or societal process as a natural progression from order to disorder

(e.g., Gregersen, 2003; Hershey, 2009; Aoki, 2012). For example, in

a representative example, Hershey (2009, p. 9) states:

In simple terms, entropy is a measure of order and disorder, in our human
bodies, in so-called inanimate organizations such as corporations, and even
the universe. If left alone, these aging systems go spontaneously from low
entropy and order, to high entropy and disorder. From life to death, where
death is maximum disorder or maximum entropy.

The prevalence of such analyses demonstrates that the interpretation of entropy

as a measure of visible disorder is still relevant and of epistemic importance.

Accordingly, it provides justification for Aim 2, that is, for a reassessment of the

validity of this interpretation. Consequence (ii) has been used in debates on

entropy and entropy development in various ways. On the one hand, we will see

in this Element that the toy system devised to illustrate the validity of the second

law (positing increased entropy development) often deliberately implements

a form of process randomness (Section 2.1), which is likely to produce visibly

disordered, high-entropy phenomenologies (Section 4.2). On the other hand, the

fact that there are natural phenomena which do not seem to match onto any

notion of phenomenological randomness (Section 2.2), but still have higher

entropy, has been used to argue that the interpretation of entropy as a measure of

visible disorder is wrong (Burgers, 1970; Denbigh, 1999; Frenkel, 1999). In

particular, there are materials in which the crystalline form has a higher entropy

than the (more visibly disordered) liquid one (Frenkel, 1999, pp. 27–8; Gobbo

et al., 2020). In Section 3.3, I will argue that it is correct that entropy cannot be

viewed as a measure of visible disorder as conceptualised by randomness.

5From Randomness and Entropy to the Arrow of Time
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However, statistical entropy can still be interpreted as a measure of abstract

disorder, that is, high entropy indicates random distribution over a scenario-

dependent phase space and partition. As such, I will maintain that viewing

entropy as a measure of disorder is still a useful interpretation but that the

relevant notion of order needs to be a more abstract one and cannot be reduced

to visible disorder.

2 Three Ways to Define Randomness and Disorder

Consider the following two sequences:

(S1) 001110001000110101100111001101010101010110111001

(S2) 010010000110010101101100011011000110111100100001

Are these random sequences? I think it is fair to say that, at first glance, both

sequences look ‘visibly disordered’, that is, they do not seem to possess easily

recognisable patterns. This seems to be particularly apparent in comparison to

a clearly patterned sequence:

(S3) 010101010101010101010101010101010101010101010101

However, the two visibly disordered sequences have been generated in very

different ways. Sequence (S1) has been generated by performing 48 coin-tosses

and recording the results as 0 for ‘heads’ and 1 for ‘tails’.1 Sequence (S2) has

been generated by writing out the phrase ‘Hello!’, translating it into ASCII

characters and then converting the ASCII decimals into binary numbers.2

In this section, we will discuss how the notion of ‘visibly disordered’ relates

to different formal definitions of randomness. I have chosen the term ‘visibly

disordered’ to describe the lack of visibly apparent patterns as exemplified by

sequences (S1) and (S2), as this is the term most often used in an associated

debate on whether high entropy states are associated with visually disordered

phenomenologies (Section 3) and whether an increase in entropy always leads

to an increase in visual disorder (Section 4). As described in Section 1.2, the

notion that an increase in entropy leads to an increase in visible disorder and

that, therefore, an entropy-grounded Arrow of Time points in the direction of

increasing disorder has been prominent in conceptual debates about the Arrow

of Time and in the linking of such debates to other scientific debates, for

1 Sequence (S2) was created by tossing a twenty pence coin, thrown manually and landing on a pad
of paper.

2 The word ‘Hello’ translates into ASCII code in the following way: H = 72, e = 97, l = 108, o = 111,
! = 33. These numbers in binary notation read: 72(H) = 01001000, 101(e) = 01100101, 108(l) =
01101100, 111(o) = 01101111, 33(!) = 00100001. Therefore, writing out the phrase ‘Hello!’ in its
binary notation, without spaces, results in sequence (S1).

6 Philosophy of Physics
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example, on evolution. However, as will be demonstrated in Section 3.4.2, there

is no straightforward link between formalised entropy notions and visible

disorder as captured by different definitions of randomness. Furthermore, as

we will discuss in this section, different definitions of randomness capture

different aspects of visible disorder but – so far – none is able to fulfil all the

desiderata one might pose for such a formalisation.

When considering sequences (S1) to (S3) and the question of which ones of

those we want to call random, the first question we face is whether it matters that

the sequences are generated in different ways, that is, is randomness

a phenomenological property that can be diagnosed from the sequence alone

or a dynamical property that depends on the characteristics of the generating

process? We will therefore distinguish three principal ways of defining random-

ness: process randomness (Section 2.1), phenomenological randomness

(Section 2.2), and inclusive randomness (Section 2.3), where both process and

phenomenological criteria are included. Within each of those three approaches

we face the question of which specific criteria – process and/or phenomeno-

logical criteria – we require for a sequence to be called random. As we will see

in what follows, different randomness definitions will answer each of those

questions differently.

Before discussing different randomness definitions, we should establish

a clear criterion against which to judge those definitions. In this, I follow

Eagle’s (2005) approach. However, as we are particularly interested in using

randomness as a way to formalise a notion of disorder, which will then be useful

in deciding whether visible disorder is correlated with entropy (Section 3.4),

I will focus on one criterion in particular, namely, how well different random-

ness definitions distinguish between the visibly disordered and visibly ordered

sample sequences (S1)–(S3).

With respect to whether each sequence (S1) to (S3) should count as visibly

disordered, it is reasonable to assume that we have strong intuitions about (S1)

and (S3). It seems clear that sequence (S1), generated by the coin toss, should be

defined as random by any good randomness definition. Conversely, it also

seems clear that sequence (S3), the obviously patterned sequence, is not random

and should be excluded by any good randomness definition. Sequence (S2)

looks visibly disordered at first glance but a deeper analysis even of its phe-

nomenology would quickly reveal a pattern, for example, even if the underlying

‘code’ is not fully deciphered, the fact that the subsequence 01101100 is

repeated twice would quickly become apparent. Therefore, given that there is

a representation in which (S2) is not random at all, we would like a good

randomness definition to exclude (S2) and similar sequences with hidden

7From Randomness and Entropy to the Arrow of Time
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patterns.3 This leads us to the first desideratum for a good randomness

definition:

R-Desideratum: Good definitions of randomness must include (S1) and

exclude (S2) and (S3).

In the following, I will discuss the principal approaches to defining randomness

and how they fulfil the R-Desideratum. For each approach, we will outline the

most prominent actual definitions: in particular, Independent Probability

Randomness (in Section 2.1), Stable Frequency Randomness (Section 2.2.1),

Maximum Complexity Randomness (Section 2.2.2), and Unpredictability

Randomness (in Section 2.3).

2.1 Process Randomness

Given the importance of the coin toss as a paradigm of generating random

sequences, it might appear straightforward to define randomness as simply

capturing the specific dynamics we ascribe to this generating process. The

crucial feature that renders a sequence random would therefore not be its

phenomenology but the process that created it, hence the term process random-

ness for this category of approaches. The crucial dynamical feature of a coin

toss is the fact that each toss is independent of all previous ones and that the

probability of obtaining heads or tails will always be 0.5, independent of what

results have been obtained in previous tosses. Such a generating process is more

generally described as a Bernoulli scheme. Therefore, a randomness definition

based on the coin toss as a paradigm of randomness generation could be

formalised in the following way:

Independent Probability Randomness: A sequence S is random if it has been

generated by a process that can be mapped onto a Bernoulli scheme with

approximately equal probabilities.

Auxiliary Bernoulli Scheme Definition: A Bernoulli scheme is a series of

independent trials, where for each trial a set of outcomes O1, O2, . . . ON

can occur with probabilities p1, p2, . . . pN and for which Σpi ¼ 1.

3 Eagle (2005) discusses an additional way of generating a visibly disordered sequence: through
a chaotic function. The question of whether sequences generated from deterministic, chaotic
functions should be viewed as random has been important to philosophers and mathematicians
(e.g., Zuchowski, 2012, 2017). However, for establishing a link between entropy and visible
disorder, this question is not of particular importance. In particular, Werndl (2009a, 2009b, 2011)
has shown that sequences created from chaotic functions are phenomenologically indistinguish-
able from sequences generated from a coin toss, for example, sequence (S1). Therefore, the
majority of the discussion in this Element would simply transfer to a sequence generated from
a chaotic function.

8 Philosophy of Physics
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The feature that distinguishes a Bernoulli scheme from other probabilistic

processes is that each trial is independent of previous ones, for example, in

a sequence of coin tosses, the probability of throwing heads (H) or tails (T) is

always pH = pT = 0.5, independent of how many tails or heads have been

thrown before. As Kalman (1994, p. 143) notes, this independence of out-

comes for each trial is what we look for when designing paradigmatic

randomness generating processes (coin tosses, lottery machines, dice, etc).

The condition that the probabilities have to be equal has been added to

exclude scenarios that intuitively would clearly be seen as not random, for

example, a very biased coin toss in which heads occurs with pT = 0.99 and

heads with pH = 0.01.

Independent Probability Randomness initially performswell against our desid-

erata for good randomness definitions. With respect to our R-Desideratum,

Independent Probability Randomness includes sequence (S1), which – as

described earlier – is generated by a process that maps onto a Bernoulli scheme.

It also clearly excludes sequences (S2) and (S3), which are not generated by such

processes. Independent Probability Randomness therefore performs well against

this desideratum and captures our pre-theoretical intuitions about the sample

sequences.

Nevertheless, philosophers and mathematicians tend to treat Independent

Probability Randomness as either a foil against which to position their own

definitions (e.g., Kalman, 1994; Landsman, 2020) or as an outdated definition

(e.g., Eagle, 2005). There are two reasons for why Independent Probability

Randomness is generally rejected as a suitable definition for randomness: firstly,

it excludes sequences generated by deterministic functions (see footnote 3);

secondly, there is no guarantee that sequences generated by a Bernoulli scheme

actually have visibly disordered phenomenologies. It is the second issue that is

particularly important to our discussion about entropy and disorder.

The fact that there is no guarantee that sequences generated by a Bernoulli

scheme are similar to (S1) and dissimilar to (S3) can easily be demonstrated by

the example of a coin toss sequence: the probability of a sequence of coin tosses

producing a sequence of 48 alternating heads and tails, that is, of a coin toss

sequence producing (S3), is very small, but not zero.4 Furthermore, if we

performed a much longer series of coin tosses, say millions or billions of tosses,

we would actually expect a sequence of 48 alternating tosses to eventually occur

naturally with a very high likelihood. Knowing that a sequence has been

generated by a Bernoulli scheme is therefore no guarantee that the sequence

4 The probability of any particular sequences of length N resulting from an unbiased coin toss
formalised as a two-outcome Bernoulli scheme is P(N) = 2–N. Therefore: P(48) = 4 × 10–15.
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will fulfil any pre-theoretical or formal notions of phenomenological random-

ness. Accordingly, Landsman (2020, p. 89) states: ‘In other words, their prob-

abilities say little or nothing about the randomness of individual outcomes.

Imposing statistical properties helps but is not enough to guarantee randomness

[in the sense of visible disorder].’

Given the fact that, for a finite number of iterations, patterned outcomes of

a Bernoulli scheme are much less likely than visibly disordered ones, Independent

ProbabilityRandomness cannot guarantee that processes that fall under its remitwill

generate visibly disordered phenomenologies but it can serve as a heuristic to

identify processes that are likely to do so.Aswewill see in Section 4.3, this heuristic

function is the one that process randomness, and Independent Probability

Randomness, in particular, have assumed in the debate on entropy increases in

systems of particles, that is, it has been argued that if the dynamics of a particular

system fulfil the Independent Probability Randomness definition, then the system

will display highly disordered behaviour and tend towards high entropy states.

2.2 Phenomenological Randomness

A straightforward way of avoiding the possible disconnect between randomness

and visible disorder faced by process randomness (Section 2.1) is to define

randomness phenomenologically, that is, through criteria that do not refer to the

generating process but only to the sequence of outcomes. The general strategy of

such phenomenological definitions is to provide a formalisation of the lack of

patterns that characterises sequences like (S1). However, a lack of pattern can be

captured in different ways. The two most prominent phenomenological random-

ness definitions are Stable Frequency Randomness (Section 2.2.1), which formal-

ises visible disorder as the inability to identify differences in the frequencies of

outcomes throughout a sequence, and Maximum Complexity Randomness

(Section 2.2.2), which formalises visible disorder as the inability to use patterns

to compress the description of a sequence. As we will see in the following

discussion, each of those definitions suffers from some conceptual problems that

makes their direct application to the kind of scenarioswe encounter in the debate on

entropy impossible. Nevertheless, both have been used to approximately describe

the visible disorder that traditionally is associated with high entropy.

2.2.1 Stable Frequency Randomness

An influential early class of randomness definitions (e.g., van Mises, 1957)

relied on the assumption that an absence of patterns can be captured by requiring

that no such patterns can be statistically identified, that is, that there is no

possibility of breaking the sequence down into frequently or less frequently

10 Philosophy of Physics
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occurring outcomes or patterns of outcomes. This can be captured statistically

by requiring that any given outcome and pattern of outcomes has the same

(stable) probability of occurring as any other one. I will adapt Eagle’s (2005,

p. 756) formalisation of this definition:

Stable Frequency Randomness:

An infinite sequence S of outcomes of typeO1 . . .On is sf-random if and only if (i)

every outcome of typeOi has a well-defined relative frequency fi
S in S; and (ii)for

every infinite subsequence S* chosen by an admissible place selection, the relative

frequency remains the same as in the larger sequence fi
S*= fi

S.

There is an immediate formal lacuna in this definition: it begs the question of

what would count as an admissible place selection, that is, which procedures

can be used to select the subsequence S*, without deliberately enforcing

a particular result. For example, a procedure that follows the rule ‘an outcome

On of S is a member of S* if and only if ‘On = 1’ will always result in

a sequence of all 1s, independent of the set-up of S. This procedure would

therefore not be admissible. A number of different place selection mechan-

isms have been proposed (e.g., for review, Coffa, 1972). Among those, the

most prevalent stipulations are the requirement that place selection must be

governed by a recursive function (Church, 1940) or recursive statistical

sampling (Martin-Loef, 1966).

Setting aside disputes about the correct place selection mechanism, which

have no bearing on the main topic of the Element, how does Stable Frequency

Randomness fare when measured against our R-Desideratum for a good ran-

domness definition? Unfortunately, it is immediately apparent that this defin-

ition would not be applicable to any of our examples (S1)–(S3), since all three of

those sequences are finite, while – in order to obtain mathematically well-

defined frequencies in the definition – Stable Frequency Randomness only

applies to infinite sequences. Furthermore, the generation mechanism for two

of the sample sequences, (S1) and (S2), that is, coin toss and string to binary

translation, are unable to generate infinite sequences under any reasonably

realistic conditions, for example, under the stipulation of being given finite

time to complete the task. Stable Frequency Randomness therefore does not

strictly fulfil our R-Desideratum.

Despite the fact that Stable Frequency Randomness is strictly not applicable

to our four test sequences, it will be didactically worthwhile to apply it heuris-

tically and thereby provide the reader with an insight into how the definition is

meant to formalise visible disorder as a lack of patterns. Table 1 summarises the

relative frequencies of each of the outcomes O1 = 1 and O2 = 0 for each

11From Randomness and Entropy to the Arrow of Time
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sequence. The task will now be to check whether it is possible to recursively

pick a subsequence which has different frequencies of those outcomes.

This is easily done for the patterned sequence (S3): let’s define the subse-

quence as S3*: S3*n = S32 n, namely, the nth element of S3* is the 2nth element

of S3, or, in other words, by taking every second element of S3. This results in

the subsequence:

(S3*) 1111111111111111111111

The relative frequencies of (S3*) are: f1
S3* = 1, f2

S3* = 0, namely, different from

the ones of the parent sequence (S3). Accordingly, in line with our pre-

theoretical intuitions, the patterned sequence (S3) is not Stable Frequency

Random. As a matter of fact, in this case, we can easily see that this would be

true even if both the sequence and the subsequence would be extended infin-

itely, so that the definition would be formally applicable to the sequence.

What about the hidden-pattern sequence (S2)? Let’s assume we have the

ability to exhaustively scan the sequence for recurring subsequences; something

a computer could easily do, even if it would be exhausting and time-consuming

for a human. Such a scan would show that there is one subsequence, S2max,

which can unequivocally be identified as occurring most frequently in S2,

namely the one that corresponds to the binary translation of ‘l’ in ‘Hello!’:

(S2max) 01101100

We can now define a second subsequence S2* recursively by stipulating

that S�n ¼ 1 if Sn is part of S2max and S�n ¼ 0 otherwise. This leads to:

(S2*) 000000000000000011111111111111110000000000000000,

with relative frequencies f1
S2� ¼ 1=3; f2

S2� ¼ 2=3, which are different from the

ones of the parent sequence (Table 1). Accordingly, (S2) is not Stable Frequency

Random. It is noteworthy that the preceding analysis is entirely phenomeno-

logical: identifying the most frequently occurring subsequence does not require

us to know that it corresponds to the binary translation of the symbol ‘l’. The

detection of the hidden pattern is therefore dependent on the fact that the English

Table 1 Relative frequencies fi
S for the two

possible outcomes of each of the three sample
sequences (S1)–(S3).

(S1) (S2) (S3)

O1 = 1 0.5 0.5 0.5
O2 = 0 0.5 0.5 0.5
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language has certain regularities, namely, that certain letters and combination of

letters occur with a higher frequency than others. We would also expect those

regularities to continue to exist in any string of proper English words; thus we

can be confident that, even in the infinite limit to which Stable Frequency

Randomness is actually applicable, we would obtain the same result.

However, there are examples of hidden pattern sequences which do not have

those regularities and would therefore be judged to be Stable Frequency

Random. Landsman (2020, p. 89) discusses the example of Champernowne’s

number, which is formed by appending all natural numbers to each other:

(S-C) 012345678910111213 . . .

It can be shown that this sequence is Stable Frequency Random, even though it

clearly has a hidden pattern. Stable Frequency Randomness therefore seems to

concur with our intuitions about what is a patterned sequence in cases where the

regularities can be detected through a frequency analysis, but not in cases where

patterns do not lead to particular differences in the frequency of outcomes.

The heuristic application of the Stable Frequency Randomness definition has

thus been successful in excluding the patterned sequences (S2) and (S3). Would it

be successful in including sequence (S1), generated by the paradigm-random

process of a coin toss? This question highlights an immediate problem with

Stable Frequency Randomness: a successful application of the definition requires

us to prove a negative, namely that there exists no properly selected subsequence

with different relative frequencies than the parent sequence. In contrast to the two

patterned sequences, (S2) and (S3), sequence (S1) does not provide us with an

‘obvious’ mechanism for selecting subsequences with different relative frequen-

cies to the parent sequences, and we have no reason to assume that even an

exhaustive, automated parsing would lead to the identification of maximally or

minimally occurring subsequences. However, while it is possible to do such an

exhaustive parsing for a finite subsequence, the case to which Stable Frequency

Randomness is actually applicable, that of infinite sequences, would not allow such

a parsing to ever reach a conclusion. The heuristic application of Stable Frequency

Randomness to our test sequences therefore illustrates that this definition of

randomness appears to work best as a methodology for identifying and excluding

patterned sequences, rather than as one to formally identify visible disorder.

2.2.2 Maximum Complexity Randomness

The second class of prominent phenomenological randomness definitions is

based on the idea that such definitions should capture the lack of patterns we

pre-theoretically ascribe to the concept more directly, and without having to
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solve the thorny issue of admissible place selection. Furthermore, these defin-

itions also tie in with two mathematical concepts that became popular in the

1960s, namely computability and compressibility. With respect to sequences,

computability means that there exists an algorithm to reproduce a given

sequence, that is, there exists a programme that can be run on a computer.

Compressibility is defined as the existence of an algorithm that is shorter

(according to some measure, see the following discussion) than the sequence

itself.

This class of definitions then specifies that randomness is equivalent to incom-

pressibility (e.g., Kolmogorov&Uspenskii, 1988), that is, that it is not possible to

use patterns in the sequence to device an algorithm that reproduces it and is

shorter than the sequence itself. Rather than using the term incompressible, such

definitions usually refer to complexity, which is a notion that more easily admits

degrees. A sequence is more complex the less it can be compressed, that is, the

closer the shortest possible algorithm is in length to the sequence itself. A formal

definition can be given as (adapted from Eagle, 2005, p. 759):

Maximum Complexity Randomness: A sequence S is random if its

complexity is equal or greater than its length, namely, C Sð Þ ≥ l Sð Þ.
Auxiliary Complexity Definition: The complexity C(S) of a sequence is the

length of the shortest programme P of some Turing machine Twhich produces

Figure 2 The 10-Turing Machine that reproduces sequence (S3) in comparison

to a 1-Turing machine that prints a sequence of 1s.
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S as an output, when given as input the length of S. (C(S) is set to l(S) if there

exists no such programme P.)

The definition needs to be grounded in a particular class of Turing machines.

Turing machines are conceptually minimal computers consisting of a tape,

which is divided into sections into which a single symbol (usually 0 or 1) can

be printed; a moving head that can read, erase, and print symbols on the tape;

and a set of instructions specifying conditional sequences of theMOVE, READ,

ERASE, and PRINT operations. Despite the minimal set-up, Turing machines

can implement virtually any conceivable mathematical algorithm (for more on

the mathematics and capabilities of Turing machines, see e.g. Turing, 1936;

Copeland & Proudfoot, 2005).

In the Auxiliary Complexity Definition, it is usually assumed that one would

stipulate that the Turing machine T on which the algorithms will be implemented

is a universal, minimal Turing machine, namely, a Turing machine that can

emulate all other Turing machines and uses the most minimal set of symbols

and operations to do so. However, there are different ways of constructing

minimal Turing machines and no one machine has been designated as ‘the

minimal, universal Turing machine’ yet (for review, see e.g. Margenstern, 2000).

Given those technical preconditions, how does Maximum Complexity

Randomness perform against our R-Desideratum for a good randomness defin-

ition? It is notable that – in contrast to Stable Frequency Randomness –

Maximum Complexity Randomness is actually applicable to our four finite

sample sequences. However, any mathematically accurate application of the

definition would require the construction of several complicated Turing

machines, a task that would leave little scope in the Element to discuss anything

else. In the following, I will therefore just sketch out conceptually how

Maximum Complexity Randomness could be applied to (S1)–(S3) and will

indicate what the likely outcome of such an application would be.

It is relatively easy to determine (Figure 2), that the patterned sequence (S3)

can be reproduced by a Turing machine with instructions that look roughly like

this:

(T1) STATE A: PRINT 1, MOVE RIGHT, GO TO B;

STATE B: PRINT 0, MOVE RIGHT, GO TO A

There are various different ways of translating Turing machine instructions into

binary sequences (e.g., DeMol, 2021). If we use my old trick of translating into

ASCII code first and then translating the corresponding numbers into binary

code, we need eight binary digits per symbol (including punctuation), resulting

in a string of 376 binary digits. That is, of course, considerably longer than
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sequence (S3) itself. Even when we factor in a cleverer way of translating

instructions to binary, it is unlikely that the resulting length of the programme

will be much shorter than 48 symbols, that is, the length of (S3). Strictly

speaking, (S3) could therefore be judged Maximum Complexity Random,

which does not capture our pre-theoretical intuitions and does not fulfil the

R-Desideratum. However, it is noteworthy that the set of instructions (T1) can

be used to produce a string of any length with the same pattern. If we therefore

extended (S3) to a length of, say, 400 symbols, the resulting sequence would not

be Maximum Complexity Random, as the programme to reproduce it would

still only require 376 (or thereabout) digits. This highlights a problem with

Maximum Complexity Randomness: while the definition is formally applicable

to finite sequences, it only works well as a measure of compressibility for

relatively long sequences. This is due to the fact that while an algorithm

might use regularities to achieve a degree of compression, any programme

will have some length. Short sequences and single events will therefore almost

by default be found to be Maximum Complexity Random.

What about the coin toss sequence (S1)? There is no obvious pattern in

sequence we can use to specify instructions similar to (T1) and we have as yet

not discovered an algorithm that allows us to reproduce (simulate) the physics

of a given coin toss. Accordingly, the only way of reproducing this sequence on

a Turing machine would be to ask it to write out the sequence directly, symbol

for symbol:

(T2a) STATE A: PRINT 0, MOVE RIGHT, PRINT 1, MOVE RIGHT, PRINT

0, MOVE RIGHT, PRINT 0 . . . MOVE RIGHT, PRINT 0, MOVE

RIGHT, PRINT 1;

There is an obvious way of making this programme a bit more efficient: it is

possible to write a Turing machine programme that copies a given sequence

from an input section of the tape and then prints it on a different output section

of the tape (e.g., deMol, 2021). This would allow us to pull out all the different

PRINT and MOVE RIGHT instructions and set them as one block of code,

which is independent of the length of the specified sequence, namely, as

a separate COPY instruction, which only needs to be specified once.

(T2b) INPUT: 010010000110010101101100011011000110111100100001

STATE 1: COPY INPUT;

The advantage of this minimal formalisation is that we can immediately see that

the length of the programme T2 will always be the lengths of the sequence plus

whatever symbols are required to specify the COPY instructions in (T2b).

Accordingly, the coin toss sequence (S1) is Maximum Complexity Random.
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With some caveats concerning the lengths of the sequences, Maximum

Complexity Randomness performed well on the two most paradigmatic sample

sequences. However, it is considerably more difficult to determine, even con-

ceptually, what would be the likely form of shortest algorithm to reproduce

sequence (S2). With respect to sequence (S2), the hidden pattern is one that

depends on recognising the word ‘Hello’ as a proper English phrase. The

algorithm would thus have to enable the computer to do this, for example, by

providing it with a numbered dictionary of English words. It would then have to

have a block of code to perform the translation into binary numbers, for

example, by additionally being given an ASCII translation table as input.

Conceptually the problem would look something like this:

(T3) INPUT: NUMBER(S) OF WORD(S) TO TRANSLATE.

SUBPROGRAMME 1: DICTIONARY, WITH RETRIEVAL CODE.

SUBPROGRAMME 2: TRANSLATION ALGORITHM, WITH ASCII

TABLE.

SUBPROGRAMME 3: PRINT TRANSLATED STRING.

As in the case of the simply patterned sequence (S3), for a short sequence, this

programme will surely be longer than the length of the sequence itself.

However, the three subprogrammes in (T3) are again constant in length, such

that the length of the programme will remain constant even if we ask it, say, to

translate a long string of English words one after the other. As long as the

dictionary labelling is done in a way that the label is usually shorter than the

word itself, the programme to translate a long sequence of words would

eventually be shorter than the sequence itself, therefore rendering it not

Maximum Complexity Random. Those conceptual considerations might be

enough to convince ourselves that Maximum Complexity Randomness does

fulfil the R-Desideratum, for example, that, for relatively long sequences at

least, it matches our intuitions that sequence (S1) is random while sequences

(S2) and (S4) are not. However, due to the multi-realisability on different Turing

machines and the fact that it is only applicable to relatively long sequences, its

potential for practical application is limited.

2.3 Inclusive Randomness Definitions

Following his review and rejection of both process randomness (Section 2.1) and

phenomenological randomness (Section 2.2), Eagle (2005, p. 755) presents

a randomness definition that has been devised specifically to meet his desiderata:

Unpredictability Randomness: An event E is random for a predictor P using

theory T if and only if E is maximally unpredictable.
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Auxiliary Unpredictability Definition: An eventE is maximally unpredictable

for P and T if and only if the posterior probability of E yielded by the prediction

functions that T makes available, conditional on current evidence, is equal to the

prior probability of E

Unpredictability Randomness is an inclusive randomness definition, as it allows

predictors P to be derived from any theory about the sequence under consider-

ation, including theories about the generating mechanism (as utilised in process

randomness, Section 2.1) or any patterns in the actual sequence (as utilised in

phenomenological randomness, Section 2.2). It therefore combines process and

phenomenological randomness. Eagle (2005) then demonstrates that

Unpredictability Randomness indeed fulfils his specific desiderata, namely,

that it is applicable to finite sequences and single events; that Unpredictability

Randomness can be tested for by statistical tests and sampling; that it allows

empirical confirmation and can serve as an explanation for observed behaviour;

and that it is compatible with determinism. This argument can be found in the

original paper and, I think, is generally successful; maybe unsurprisingly so,

given that Unpredictability Randomness was designed specifically to fulfil

those desiderata.

However, those advantages come at the epistemic cost of introducing

a subjective element into the randomness definition: Unpredictability

Randomness is defined relative to a predictor P and their ability to derive

predictor functions from a specific theory T. Eagle (2005, p. 779) further

specifies that ‘[i]t is essential to note that judgements of predictability will

typically be made by an epistemic or scientific community and not a particular

individual’. Within the confines of Eagle’s (2005) own project of devising

a randomness definition that best captures the use of the concept by scientists,

indexing randomness to different scientific communities might not be worri-

some. However, when considering randomness as a universally applicable

mathematical concept, worries remain about how unequivocally judgements

about the Unpredictability Randomness of a given sequence can be made.

This becomes apparent when we consider whether Unpredictability

Randomness fulfils our R-Desideratum, namely, whether it captures which of

the sample sequences we consider to be visibly disordered. For sequence (S1),

we have seen earlier that neither our best theories about the physics of the

generating coin tosses (Section 2.1) nor any frequency (Section 2.2.1) or

compressibility (Section 2.2.2) analyses of the sequence itself make available

any predictors that would raise our ability to predict the next coin toss with more

than 50/50 accuracy. Accordingly, (S1) is Unpredictability Random. At the

current time, there is no scientific disagreement about the fact that the best
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theories of the physics of coin tosses are not precise enough to lead to any

efficient predictors. However, it is not inconceivable that at some point in the

future better theories and better computational resources might become avail-

able. At such a time, we would have to revise our judgement about the

Unpredictability Randomness of sequence (S1).

For sequence (S3), a predictor P is easily available from any theory that

recognises the alternating pattern of 0s and 1s in the sequence. Accordingly,

(S3) is not Unpredictability Random. Similarly, the next element in sequence (S2)

will be easy to predict for anyonewho has ‘cracked the cipher’ and recognised the

underlying ‘Hello!’-phrase. It is reasonable to assume that most competent

English speakers will be able to do so. However, even someone who is not

competent in English could avail themselves of the kind of frequency analysis

we have conducted in Section 2.2.1 and raise their predictors above the level of

chance. Sequence (S2) is therefore not Unpredictability Random. This example

does illustrate, however, that under certain conditions, Unpredictability

Randomness could become a very subjective notion: imagine a language that

has no letter regularities, and which only has a very small community of compe-

tent speakers. A sequence encoding a phrase of this language would then be

Unpredictability Random to anyone but this very small community of competent

speakers. For the given sample sequences, however, Unpredictability

Randomness fulfils R-Desideratum 1 and matches our intuitions about their

visible disordered appearances.

3 Two Approaches to Entropy

There are two general approaches to entropy: Thermodynamic Entropy

(Section 3.1), which treats entropy as a macroscopic property of thermo-

dynamic systems, that is, systems characterised by macroscopic variables like

pressure p, volume V, and temperature T; and statistical entropy (Section 3.2),

which treats entropy as a macroscopic property of systems best characterised by

microscopic variables like particle position x and momentum p. The standard

sample system to illustrate the difference between those two approaches is to

consider a quantity of gas in a box (or another container): the Thermodynamic

Entropy can be computed from the macroscopic variables of the gas considered

as one substance, that is, the volume of the box, the gas’s temperature, and the

pressure the gas exerts on the container; in contrast, statistical entropies will be

computed from the properties of the individual particles in the gas, for example,

their positions, velocities, and directions.

This Element does not aim to present a chronological history of the develop-

ment of these two approaches to entropy and their associated specific
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definitions. Instead, I will highlight the major conceptual issues and debates as

they relate to Aim 1 (Section 1.1) and Aim 2 (Section 1.2) of the Element. As

such, I will only discuss the three most prominent definitions of entropy: the

standard formulation of Thermodynamic Entropy (Section 3.1), which is also

the historically earliest; the Boltzmann Entropy (Section 3.2.1), which is

a statistical entropy based directly on the microscopic properties of

a collection of particles; and the Gibbs Entropy, which is a statistical entropy

based on the performing statistics over a virtual ensemble of particle systems

(Section 3.2.2).

An influential debate about the merits of different statistical entropies centres

around the question of how well each of those entropies reduces the

Thermodynamic Entropy. Reduction is a contested philosophical notion, and

we will not have space to go into the different interpretations of this concept (for

review, see, e.g., van Riel & van Gulick, 2019). In a broad sense, reduction

means that a more fundamental notion (in this case, statistical entropy) can be

used to fully derive all properties of a less fundamental notion (in this case,

Thermodynamic Entropy). Such a derivation will usually involve the formula-

tion of bridging relations between properties used in the two properties. The

reduction of Thermodynamic Entropy to statistical entropy is part of a larger

project to reduce thermodynamic to statistical physics, that is, to recover all of

the laws and theorems formulated in terms of thermodynamic macroscopic

variables in a set of laws formulated in terms of microscopic particle properties

(with the help of appropriate bridging definitions). The question of how well

each of the two statistical entropies performs in the context of this project of

reduction directly pertains to derivations of entropy-groundings of the Arrow

of Time, which can also involve making assumptions about the reduction of

certain processes (Section 5.3). Accordingly, this aspect is directly relevant to

Aim 1, tracing out different derivational routes and their contingencies to

entropy-groundings of the Arrow of Time. As I will show in Section 3.3, neither

Boltzmann nor Gibbs Entropy straightforwardly reduces the Thermodynamic

Entropy. However, Boltzmann Entropy offers a more straightforward approach

to potential reductions, as it is formulated in terms of particle properties rather

than ensemble statistics.

The second aim (Aim 2) of this Element is to evaluate the link between

statistical entropy (and thereby entropy-groundings) and disorder (Section 1.2).

We have seen that visible disorder is formalised in different ways by different

randomness definitions (Section 2). Therefore, we are now in a position to

evaluate whether the two statistical entropy definitions map high entropy states

onto states with high visible disorder. In Section 3.4, I will show that this is only

the case for a very restricted class of non-interacting, elastic particle systems.
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I will present a counterexample of a relatively simple system of rod-like

particles in which the visibly ordered, crystalline state has a higher entropy

than the visibly disordered, liquid state. Therefore, it seems that the link

between entropy and visible disorder is not strong. However, I will argue that

one could maintain that there is a link between a physically motivated ordering

over appropriately defined phase spaces (and partitions) and entropy. The

interpretation of entropy as a measure of disorder therefore does not have to

be fully abandoned but needs to be supplemented by the recognition that what

counts as order and disorder is determined by the specific physical situation and

does not straightforwardly map onto notions of visible order and disorder.

3.1 Thermodynamic Entropy

The earliest conceptualisation of entropy took place in the context of nine-

teenth-century thermodynamics (e.g., Frigg &Werndl, 2011, p. 2). In this early

context, entropy was not conceived as a measure of disorder but as

a conservation variable that expresses constraints on the heat exchanges during

reversible and non-reversible thermodynamic processes. These early formalisa-

tions therefore made no reference to individual particles but are entirely based

on the standard macroscopic thermodynamical variables, namely, pressure p,

volume V, temperature T, and energy in the form of heat Q:

Thermodynamic Entropy: STD Bð Þ ¼ STD Að Þ þ
ðB

A

dQ
T ,

where A and B describe different (p, V, T)-states of the system, and STD is the

symbol we will use for Thermodynamic Entropy. An obvious conceptual

interpretation of the Thermodynamic Entropy is that the entropy STD provides

a measure of howmuch energy needs to be put into a system to take it from State

A to State B if the temperature T remains constant. The unit assigned to entropy

in this early, thermodynamical conceptualisation is therefore [J/K], namely,

[energy]/[temperature].

One important consequence of the definition of Thermodynamic Entropy is

that the absolute value of STD(B) is underdetermined, that is, we need to fix an

initial entropy value STD(A) to obtain more than an entropy difference between

the states A and B. This is usually done by fixing a zero-entropy state, that is,

setting STD Að Þ ¼ 0. Furthermore, the definition implies that for a closed system,

that is, without exchanges of heat Q, the Thermodynamic Entropy is a constant

of the system. Conversely, if two states A and B have the same entropy, no heat

can be added or subtracted from the system during a transition between those
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two states. As mentioned earlier, this initial conceptualisation therefore serves

as a formalisation on constraints on the possible (p, V, T)-values of

a thermodynamical system that can be reached with or without heat exchanges.

3.2 Statistical Entropies

The definition of statistical entropies is routed in the recognition that thermo-

dynamic systems can be described on two levels: as a macroscopic substance

(gas, liquid, solid) characterised by macroscopic variables like temperature T,

pressure p, and volume V, and as a collection of particles, each characterised by

microscopic variables like position x and momentum p. There is a large array of

microscopic variables that can be taken into account; beyond position and

momentum, particles can also have rotational momentum, spin, charges, and

other variables. This variability in what is physically relevant to characterise the

microstate of a system, namely, which micro-variables are taken into account,

will be important in Section 3.4, when we discuss the link between visible

disorder and statistical entropy.

The degrees of freedom of all micro-variables can be envisioned as an

abstract space, similar to the spatial one described by the traditional three-

dimension coordinate systems for the spatial location variable x. This space is

called phase space. In contrast to spatial space, phase space does not just have

axes on which the three spatial degrees of freedom can be specified but contains

a dimension for each micro-variable’s degree of freedom. For example, a phase

space formed by the position and momentum variables would be six-

dimensional and each particle’s microstate could be completely described by

the corresponding (x, y, z, px, py, pz)-phase space vector. The microstate of

a system of particles is therefore specified by the collection of their phase space

vectors.

Statistical entropies are formulated in particular phase spaces, usually – but

not always (Section 3.4) – the six-dimensional position-momentum space. It is

assumed that the particles in the collection under consideration are indistin-

guishable in all other aspects besides their phase space vectors. Therefore, it is

possible to define macrostates as determining the state of the collection particles

without reference to individual phase state vectors: for example, statements like

‘half of the particles are in each side of a box’; ‘all of the particles are in one side

of the box’; ‘all of the particles have momentums that fall within a given region

of phase space’. In this example, we can also notice that – unless we develop

a probability measure for the distribution of microstate vectors through phase

state and integrate over this (Section 3.2.2) – defining macrostates for a given

particle system involves coarse-graining: we have to divide phase space into
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partitions (halves, quarters, otherwise specified divisions) to define the macro-

states as done earlier. Those partitions are not a priori fixed and can be coarser

(e.g., division in half) or finer (e.g., division in quarters) for a given system.

What it means to choose a ‘good’ partition has been part of the debate on the

merits and properties of different entropies; I will return to this question both

when discussing the relation of different entropies to visible disorder

(Section 3.4) and – to a lesser degree – when discussing the relationship

between statistical entropies and Thermodynamic Entropy (Section 3.3).

The general idea behind statistical entropies therefore is to provide a measure

for howmicrostates relate to macrostates for a given collection of indistinguish-

able particles.

3.2.1 Boltzmann Entropy

As indicated by its name, the definition of Boltzmann Entropy originates in

Boltzmann (1872). Boltzmann Entropy SB is defined as a proportionality meas-

ure of the number W of microstates that correspond to a given macrostate:

SB ∝W : ð3:1Þ

This concept can best be demonstrated by considering a very simple system of

four identical, non-interacting particles in a box (Figure 3). Let’s assume that we

have labelled the particles consecutively from 1 to 4, and that we only consider

the positions of the particles in the box as the relative variable. Furthermore, we

partition the box into two halves, Half A and Half B. The phase space vector xi
of each particle then just contains one variable, namely the specification

whether it is in Half A or Half B. A full description of the microstate of the

system is then given by the specification of all four phase space vectors x1 . . . x4.

In contrast, a description of the macrostate of the system should make no

reference to individual phase space vectors and will consist of descriptions

like ‘four (all) particles are in Half A’ or ‘two particles are in Half A, two

particles are in Half B’, that is, by the specification of the two particle numbers

NA (particles in Half A) and NB (particles in Half B).

It is then easy to see that the macrostate (NA = 4, NB = 0) corresponds to just

one microstate, namely (x1 = Half A, x2 = Half A, x3 = Half A, x4 = Half A). In

contrast, the macrostate (NA = 2, NB = 2) corresponds to six microstates,

namely (x1 = Half A, x2 = Half A, x3 = Half B, x4 = Half B); (x1 = Half A,

x2 = Half B, x3 = Half A, x4 = Half B); . . . (x1 = Half B, x2 = Half B, x3 = Half

A, x4 = Half A). Accordingly, W(NA = 4, NB = 0) = 1 and W(NA = 2, NB = 2) =

6. The numbers of possible microstatesW for all macrostates of this toy system

are shown in Figure 3.
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For larger particle numbers and partitions, counting combinations becomes

impractical, but we can rely on results from combinatorics to calculate the

number of possible ways to distribute N particles into k sets of Nk particles,

respectively:

SB ∝
N !

N1!� N2!� . . . :� Nk!
: ð3:2Þ

Figure 3.2 illustrates the number of microstates for N = 100 particles in a box

with k = 2. Those examples illustrate that the number of possible microstates

W for each macrostate grow rapidly with the particle number. Accordingly, the

actual entropy function is based on the more manageable logarithm ofW, which

also normalises the lowest possible entropy state, corresponding to W = 1, to

zero. Therefore:

SB ∝ ln
N !

N1!� N2!� . . . :� Nk!

� �
: ð3:3Þ

Notably, this proportionality relationship preserves additivity, for example, com-

bining twomacrostates SB,1 and SB,2, without loss of accessible microstates, that is,

by opening a partition in box with two identical gasses on each side, will simply

lead to a combined entropy of SB,1+2 = SB,1 + SB,2. In order to make entropy

measure SB formally compatible with Thermodynamic Entropy (Section 3.1), it

needs to be prefaced by a constant with units [J/K]. The final formulation of this

statistical entropy is therefore:

Boltzmann Entropy: SB ¼ kB ln N !
N1!�N2!�...:�Nk !

� �
;

where kB = 1.38 × 10–23 J/K.

There already exist various comprehensive analysis of Boltzmann Entropy

(e.g., Albert, 2000, Ch. 3; Frigg & Werndl, 2011; Rickles, 2016, Ch. 6). Here,

I will only focus on the aspects of Boltzmann Entropy relevant for the two aims

Figure 3 Number of microstates Wand Boltzmann Entropy for an ensemble of

four particles in box portioned into two halves.
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of this Element (Section 1): in Section 3.3, I will discuss how Boltzmann

Entropy relates to Thermodynamic Entropy (Section 3.1); in Section 3.4,

I will discuss how well Boltzmann Entropy performs as a measure of visible

disorder.

3.2.2 Gibbs Entropy

The definition of Gibbs Entropy originates in Gibbs (1902/1960). In comparison

to Thermodynamic Entropy (Section 3.1) and Boltzmann Entropy

(Section 3.2.1), Gibbs Entropy has arguably the most sophisticated conceptual

set-up: rather than considering the statistics of different possible microstates of

a single system (Boltzmann Entropy, Section 3.2.1), it is based on the consider-

ation of each microstate as a separate system. In other words, the definition of

Gibbs entropy is based on the virtual preparation of an ensemble of systems

each instantiating a different microstate corresponding to one macrostate. The

term ‘preparation’ here implies that we assume that it is possible (for some

entity or just theoretically) to identify all possible microstates (i.e., specifica-

tions of phase space vectors) that are compatible with a given macrostate (e.g.,

the specification of a region of phase space into which all of those vectors will

fall) and that an ensemble of systems each instantiating one such microstate is

then hypothetically set up.

Without considering a partition, the micro-variable vectors xi assigned to

each particle can assume an infinite and uncountable number of values, there-

fore this virtual ensemble of systems is also infinite and uncountable. For each

macrostate with ensemble Σ, we can then define a density function ρΣ x; tð Þ,
which describes the density of systems within the ensemble whose microstates

lie in the infinitesimal volume around x, that is, ρΣ x; tð Þ dx is the number of

systems in the phase space volume x; xþ dxð Þ. The probability of finding

a system in a given finite volume X of phase space is then:

p X; tð Þ ¼
ð
X
ρΣ x; tð Þdx ð3:4Þ

The Gibbs Entropy itself is then defined as a conservation function of the

probability density ρΣ x; tð Þ:
Fine-Grained Gibbs Entropy: SG; f ¼ �kB

ð
X
ρΣðx; tÞln ρΣ x; tð Þdx

Notably, due to the fact that we defined the density function ρΣ x; tð Þ over all

possible values of x and therefore accepted that the resulting ensemble of

systems will be uncountable and infinite, no definition of a partition was

necessary.
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In order to be able to compare Gibbs and Boltzmann Entropy, we would need to

define a coarse-grained version of Gibbs Entropy. This might also be advantageous

on independent conceptual grounds, for example, to simplify the integration in

(3.4) or if we are interested in phase space volumes that have approximately

constant probability density ρΣ x; tð Þ through large areas of the allotted phase

space. To define a partition-based version of Gibbs Entropy by assuming that

density ρΣ x; tð Þ is constant within a given phase-space partition w. The corres-

ponding Coarse-Grained Gibbs Entropy is then defined as follows:

Coarse-Grained Gibbs Entropy: SG;c ¼ �kB

ð
X
ρw;Σðx; tÞ ln ρw;Σ x; tð Þdx

For our toy system of four particles in a box of two halves and the phase space

vector xi consisting only of location variables, Figure 5 shows the relevant

probability densities and entropies. It’s immediately evident that, in this case,

the values for the Coarse-Grained Gibbs Entropy SG,c scale like the Boltzmann

Entropy SB
5. It can also be shown formally that, in the case of equally accessible

microstates, that is, an ideal, fully elastic ensemble of particles, Coarse-Grained

Gibbs Entropy is formally equivalent to Boltzmann Entropy (Frigg & Werndl,

2011, p. 130). In Section 3.3, I will discuss how Gibbs Entropy relates to

Thermodynamic Entropy. In Section 3.4, I will discuss how both statistical

entropies perform as a measure for visible disorder.

3.3 Reduction of Thermodynamic Entropy

Within the history of physics, Thermodynamic Entropy (Section 3.1) did not

just historically precede statistical entropy definitions (Section 3.2) but also

provide the conceptual context for those definitions. In particular, the develop-

ment of statistical entropy definitions is part of a larger conceptual project of

reducing thermodynamics, formulated in terms of the macroscopic (p, V, T)-

variables, to statistics physics, formulated primarily in terms of the velocity and

position variables, that is, the phase space vector xi single particles (see above).

Callender (1999, p. 359) argues that the complete reduction of thermodynamics

to statistical physics is still the ‘holy grail’ of foundational research in those

areas and that, therefore, statistical entropy definitions that further this aim

should be preferred over those that do not. While I would not want to set the

reduction of Thermodynamic Entropy as the one and only criterion for an

acceptable statistical entropy definition, the importance of the thermodynamics-

to-statistical-physics reduction project for philosophers and physicists is

5 In order to achieve numerical equivalence, one would have to normalise the probability densities
for each ensemble accordingly. This is usually done by considering fractional densities over the
relevant phase space volumes, for example, to take into account the fact that in the macrostates
with one particle in one state and three in the other, only a fraction of the system is in each half.
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undeniable. Therefore, being able to achieve a reduction of Thermodynamic

Entropy is clearly an epistemic advantage for any statistical entropy definition.

Furthermore, some entropy-groundings of the Arrow of Time will require an

assumption that the constitutive processes of our experience of time are redu-

cible to statistical physics. The question of how well each of the statistical

entropies can or could potentially fulfil such an assumption is therefore of direct

importance to the derivation of entropy-groundings.

3.3.1 Reductive Potential of Boltzmann Entropy

As Callender (1999) stresses, Boltzmann Entropy is formulated in the terms of

statistical particle mechanics and therefore has the potential to straightforwardly

reduce Thermodynamic Entropy as long as all the terms in Thermodynamic

Entropy have also been given statistical interpretations, for example, as long as

temperature T is reduced to an expression of the average particle velocity and so

on. As such, Boltzmann Entropy straightforwardly slots into the larger project of

reducing thermodynamics to statistical mechanics and any difficulties in the

reduction are likely to relate to general problems in reformulating thermodynam-

ical variables in terms of statistical mechanical variables.

Figure 4 Number of microstatesW against the numbers of particles Half A, for

an ensemble of 100 particles and box partitioned into two halves.
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However, Lavis (2005) highlights that there is at least one fundamental

mismatch between Boltzmann Entropy and Thermodynamic Entropy. In par-

ticular, as described in Section 3.1, for a closed system, Thermodynamic

Entropy has a single, stable equilibrium value and without intervention from

outside, for example, through heat exchange with the environment, will remain

at this equilibrium value for all times. In contrast, Boltzmann Entropy has no

equilibrium value as such: high-entropy macrostates have overwhelmingly

more microstates that can realise them (e.g., Figure 4) and, if all microstates

are equally accessible by the system, are therefore overwhelmingly more likely

to instantiate. If the condition of equally accessible microstates is true (and this

is not unequivocally accepted for ‘real’ particle systems, as we will discuss in

Section 4.3), then it is likely that the system will not deviate from a high entropy

value once it is reached. However, this is only an approximation of the strict bi-

valued equilibrium notion of Thermodynamic Entropy, and a long development

of such a system with equally accessible microstates, one would expect small

(and eventually large) deviations from the most likely macrostate to occur.

Given that statistical and deterministic variables are fundamentally different

in nature, it seems to me that the approximation of the deterministic equilibrium

value of Thermodynamic Entropy through the most likely statistical value of

Boltzmann Entropy is not unusual within the wider reduction project (for an

extended version of this argument, Sklar, 1993, pp. 348–61). As an epistemic

defect, this mismatch is therefore one that is unlikely to inhibit the progress of

the wider project of the reduction of thermodynamics, and might well provide

an example of the kind of redefinitions one can expect to see within this project.

That said, as we will see in Section 3.3.2, the Coarse-Grained Gibbs Entropy

(Section 3.2.2) has a deterministic equilibrium value. However, this comes at

the cost of moving away from considering particle systems that directly map

onto the ones we think reduce (idealised) thermodynamic systems.

Figure 5 Ensemble sizes, probability densities, and entropy values for four

particles in a box partitioned into two halves. The shading represents the

probability density in each part of the partition.
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3.3.2 Reductive Potential of Gibbs Entropy

In contrast to Boltzmann Entropy (Section 3.3.1), it is more difficult to argue

that either Fine- or Coarse-Grained Gibbs Entropy straightforwardly reduces

Thermodynamic Entropy (Section 3.1) or furthers the larger project of redu-

cing thermodynamics to statistical particle mechanics. Firstly, and most glar-

ingly (e.g., Callander, 1999; Frigg & Werndl, 2011), Gibbs Entropy assigns

a value of entropy not to macrostates of a single system but to an ensemble of

systems all instantiating this macrostate. The object of this definition is

therefore quite different from those of the other two entropy definitions and

is eminently less compatible with the standard methodology of both thermo-

dynamics (Section 3.1) or other areas of statistical particle mechanics

(Section 3.2). In other words, it raises some additional questions about the

ontological interpretation of such things as ‘virtual ensembles of systems’ or

a probability distribution over such ensembles. In fact, Frigg & Werndl

(p. 128) argue, there are at least two conceptual interpretations available of

what Gibbs Entropy actually measures: (i) the abstract probability (frequency)

of ‘drawing’ a system in a given microstate provided a fixed macrostate; or (ii)

the average time a system would spend in a particular region of phase space,

again provided a fixed macrostate and no energy exchange with the outside

world. Independent of the plausibility one assigns to each of these interpret-

ations, they are clearly less intuitively relatable to the particle-mechanics of

the system or (as Callander, 1999 argues), to the thermodynamic states of the

system. Accordingly, with respect to furthering the larger project of reducing

thermodynamics to statistical mechanics, Gibbs Entropy performs less well

than Boltzmann Entropy.

However, there is one aspect in which Coarse-Grained Gibbs Entropy

straightforwardly matches a feature of Thermodynamic Entropy) that

Boltzmann Entropy struggled to recover (Lavis, 2005): it assigns a time-

dependent value to SG,c, which has a binary equilibrium state, that is, once the

function reaches a stable local maximum, it will remain in this state unless an

outside intervention takes place. However, this feature only exists for Coarse-

Grained Gibbs Entropy; Fine-Grained Gibbs Entropy can be shown to be

a constant of motion, that is, it remains the same throughout the system’s

development. The mathematical proof of this feature involves the application

of Liouville’s Theorem6 (Frigg & Werndl, 2011, p. 129) but this fact is also

evident from the two possible conceptual interpretations of Fine-Grained Gibbs

6 Liouville’s theorem provides a conservation equation for the development of an ensemble of
particles subject to a given phase-space density function. Applying it to the density function made
available by (3.4) yields the result that Fine-Grained Gibbs Entropy is a constant of motion.
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Entropy: if it is interpreted as the probability drawing a specific microstate for

a fixed macrostate, then this is independent of the actual instantiation of those

states with time; if it is interpreted as the average time a system spends in a given

region of phase space, then any time-dependency is eliminated through aver-

aging. There is currently no unequivocal judgement among philosophers and

physicists on how those two aspects – the difficulties of finding a conceptual

interpretation of Gibbs Entropy and the fact that it recovers a key feature of

Thermodynamic Entropy – are to be weighed against each other. In the context

of deriving entropy-groundings for the Arrow of Time, which (as we will see in

Section 5) often involves significant conceptual reasoning about reduction,

Boltzmann Entropy offers more straightforward tools for reductive arguments

and has therefore been the statistical entropy most often underpinning such

groundings.

3.4 Statistical Entropy and Disorder

As described in Section 1.2, entropy is often conceptualised as a measure for

the visible disorder one might find in a child’s bedroom or in the shards of

a shattered wine glass. For example, Rickles (2016, Chapter 6) displays an

actual picture of a child’s bedroom with different toys strewn all over the

available space. While we might easily be able to conceive of similar

paradigmatic examples of visible disorder, for example, a ‘well-mixed’

pile of Lego bricks or a busy crowd of people in a public square, capturing

the notion of visible disorder (and its different degrees) formally has proven

more difficult. Firstly, considering the preceding examples, we would (i) like

our notion of visible disorder to be anchored by a notion of randomness

(Section 2). Secondly, even a closer look at some of the paradigmatic

examples reveals that visible disorder is not the only permissible notion of

order, and that (ii) we often measure disorder against very specific, scenario-

dependent notions of order. In this section, I will first demonstrate aspect (i)

and (ii) on the simple, paradigmatic example of a pile of Lego bricks

(Section 3.4.1). Then I will discuss how well each of the two statistical

entropies performs as a measure for visible disorder (Section 3.4.2). This

section will contain a counterexample that shows that statistical entropy is

not a good measure for visible disorder. However, I will then argue that it is

still possible to view those entropies as measuring deviations from

a scenario- dependent state of order, which should be motivated by the

physical realities of a given phenomenon (Section 3.4.3). Therefore, statis-

tical entropies can be interpreted as measures of an abstract notion of

disorder, but not as measures of visible disorder.

30 Philosophy of Physics

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
21

73
47

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781009217347


3.4.1 Visible and Abstract Disorder

Let’s illustrate aspects (i) and (ii) on the example of a pile of Lego bricks. For

this example, the most prominent visible individual properties of the bricks are

colour and size, the latter given by the number of interlocking studs rather than

a more conventional measure. Additionally, we might want to take into account

their position ‘in the pile’, whereby auxiliary questions about the boundaries of

this entity also need to be addressed. Let’s assume our Legos are spread out on

a square tablecloth of 1 m2 size (Figure 6a). We can then link our visibly

disordered state definition to a notion of randomness (Section 2) by requiring,

say, that a sequence of bricks randomly selected from anywhere on the cloth will

result in random sequences of colour and size numbers. Or, if we subdivide the

cloth into four subsections of 25 cm2 and number those subsections consecu-

tively, the requirement that randomly taking a brick from each subsection in turn

results in a sequence of four random colour and size numbers. In this example, it

becomes immediately apparent in that there are different ways of linking

‘visible disorder’ to randomness.

Similarly, there are different ways of defining the contrasting visibly ordered

state. ‘Ordering’ or ‘sorting’ a pile of Lego bricks can involve different numbers

of sub-piles: for example, we might want to make many different sub-piles for

each size and colour and put each of those sub-piles in a different place on the

tablecloth (Figure 6b). However, both for building and for ordering purposes, it

is usually advantageous to keep the number of separate categories smaller than

is strictly possible given the set of properties. For example, we might want to

group all shades of primary colour together or all ‘very small’ bricks with less

than a given number of studs. Independent of how many different piles we

make, the ordered state will no longer be associated with a random sequence in

(a) (b)

Figure 6 a) Selecting a random sequence from a disordered pile of Lego bricks.

b) An ordered ensemble of Lego bricks.
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the way that the disordered state was: for example, let’s assumewe put each sub-

pile in one of eight subsections, then we know exactly what sequence of colour

and size numbers we obtain by randomly taking a brick from each subsection in

turn and the sequence will no longer be random. Therefore, with respect to

aspect (i), the multi-realisability with respect to the formalisation of visible

disorder through a partitioning of the ‘phase space’ of visible properties is

largely a measure of fine- or coarse-graining of categories and should not affect

our ability to decide to formalise visible disorder as a mapping on a random

sequence, suitably defined according to a randomness definition as discussed in

Section 2.

However, there is a deeper multi-realisability even in this example, which

illustrates that visible order/disorder is not the only permissible kind of order/

disorder. Legos (and most other construction toys) are usually sold in sets of

bricks that all relate to one specific construction project, for example, a pirate

ship or a space station, for which building instructions are also provided. Those

sets contain a variety of bricks of different colours and sizes, as well as special

pieces (e.g., pirate flag or a space helmet) that fall entirely outside the visible

property categories we have defined earlier. Another permissible way of order-

ing a pile of Lego bricks (Figure 6) would therefore be to make piles according

to the building project the bricks originally belonged to, for example, a ‘pirate

ship’- and a ‘space station’-pile. Those piles might well be visible disordered,

for example, drawing from them would still result in a sequence of randomly

sized and coloured bricks, but are ordered according to the non-visible property

of ‘belonging to set X’. Therefore, with respect to aspect (ii), even in this simple

example, we have to recognise that not all notions of disorder match onto visible

disorder and that what counts as ordered should be situation dependent, but still

justified by the reality of the given situation (in this case, the existence of

instructions and pre-compiled sets).

It might seem somewhat facetious to spend that much time discussing what is

literally a ‘toy example’. However, the typical systems in statistical physics –

the field of physics in which the definitions of entropy as a measure of disorder

are located – are not that different from piles of Lego bricks: instead of bricks,

they consist of particles, and instead of visible properties like colour, size, and

positions, we usually consider particle velocity and position. Instead of consid-

ering how N different bricks can be distributed on a tablecloth, we will consider

how N particles, each with a phase space vector xi comprising its six position

and velocity components, can be distributed through a phase space region with

different partitions. Therefore, we would expect that a visibly disordered state in

such a system of particles can be shown to be mapping onto a random sequence

with respect to those visible properties, much as the disordered state of Lego
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bricks has been shown to do earlier. In fact, we usually consider gases, with

particles strewn through the available spatial space and moving at different

velocities to be a paradigm of a visibly disordered state and crystals, with

particles fixed in symmetrical positions and all at the same (low or zero)

velocity, to be a paradigm of a visibly ordered state of a system.

However, in Section 3.4.2, we will see that particles can have non-visible

properties, too, for example, spin, rotational momentum, interactive properties,

and so on, and that it seems to be orderings over such abstract phase spaces that

should be considered if entropy should be seen as a measure of disorder

(Section 3.4.3).

3.4.2 Statistical Entropy as a Measure of Visible Disorder

As discussed in Section 1.1, statistical entropy has been associated with

visible disorder from the very moment of its inception. However, it should

be noted right away that the kind of systems usually discussed in statistical

mechanics, and discussions of entropy in particular, are ones that are best

described by the visible properties of velocity (momentum) and position, that

is, whose microstates are located in the standard six-dimensional (x, p)-phase

space. The particles in those systems are not usually taken to be directly

visible to the human eye, of course, but it is assumed that they would

seamlessly scale up to visible size without alterations to their dynamics, that

is, we could visualise everything that happens in such a system with billiard

balls. The fact that it is permissible to only take those two visible properties,

namely position and momentum, into account is predicated on the assumption

that those are systems of identical (except for those two properties), non-

interacting, elastic, point particles. We will see in what follows that even

minor violations of these conditions lead to different results with respect to

entropy calculations.

However, let us initially consider systems which fulfil the condition that they

can permissibly be described in the (x, p)-phase space. For such systems, does

Boltzmann Entropy assign maximum entropy states to the states with the highest

degree of disorder, which itself is defined through an acceptable definition of

randomness (Section 2)? It can be shown (e.g., Frigg&Werndl, 2011, p. 123) that

themaximumentropy values of the formula for Boltzmann Entropy correspond to

one whereN1 =N2 = . . . =Nk = n, that is, where the particles are spread out evenly

through the partition (this is also illustrated in Figures 3 and 4). Can we translate

this state into a sequence comparable to (S1)–(S3) in Section 2? Note that we

previously said that we could label the particles from 1 to N. Let’s assume we

operate a separate lottery box in which we have collected all of the particle
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numbers and from which we will randomly draw such a number. The probability

pk of drawing a particle which is in a given partition k is then:

pk ¼ 1

n
: ð3:3Þ

We can then write down the partition numbers to produce a sequence that can be

analysed through the randomness definitions introduced in Section 2. Assuming

that we do not interfere with the particles in the box and always replace the

particle number in the lottery box, this drawing process corresponds to

a Bernoulli scheme and would therefore be Independent Probability Random

(Section 2.1) and Unpredictability Random (Section 2.3)7. Given that the

probabilities here are equal, we can also be relatively (but not absolutely) sure

that this process will produce sequences that are – at least heuristically, if not

strictly – Stable Frequencies Random (Section 2.2.1) and Maximum

Complexity Random (Section 2.2.2).

Two worries can be raised here: (i) we might be accused of having ‘smuggled

in’ randomness by constructing the sequence through a random drawing from

a lottery box; (ii) a random distribution over the partition does not necessarily

correspond to a random distribution over other distributions, that is, the multi-

realisability of defining categories and piles that we already encountered in the

toy example (Section 3.4.1). Worry (i) can be allayed by the fact that the process

described earlier robustly maps high-entropy states to random sequences and

low-entropy states to non-random sequences, that is, the introduction of the

lottery box does not lead to a random sequence for a low-entropy state like the

one where all particles are in one box. We can thus be confident that the process

of sequence construction preserves the feature conceptualised by Boltzmann

Entropy, namely the distribution of particles over the partition.

However, this result leads us back to worry (ii): namely, that randomness and

visible disorder relative to a given partition might not correspond to what we

would intuitively consider to be visible disorder. Figure 7 illustrates some scen-

arios in which this would be the case: in the case that the partition is simply too

coarse-grained to capture order on smaller scales (Figure 7a) or that the partition

is chosen in a way that is at odds with other symmetries of the set-up (Figure 7b).

However, questions of coarse- and fine-graining of the (x, p)-phase space might

not be as alarming as they first seem. It can be shown that, for typical statistical

7 The fact that the maximum entropy state can bemapped onto maximum unpredictability has led to
a separate branch of entropy research in which entropy is described as a lack of information (for
review, see, e.g., Frigg & Wendl, 2011, section 3). The information-theoretical formulation of
entropy does not directly feed into the derivation of the Arrow of Time and will therefore will not
be discussed in detail here.
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mechanical particle systems with a long development over time, partitions with

a similar symmetry converge towards the same high- and low-entropy states

(Sklar, 1993, pp. 357–8), that is, barring pathological arrangements, the

Boltzmann Entropy for different comparable, but coarser or finer, partitions,

will not assign completely different states as low- and high-entropy states.

Secondly, while there might be pathological partitions that would assign

high-entropy states to visibly ordered systems or vice versa, those are usually

partitions which are recognisable as inappropriate for the given phenomenon. In

line with the argument made by Sklar (1993, p. 358), I maintain that there are

usually good reasons for why certain kinds of partition appear to be suitable for

a certain kind of system. For example, the irregular partitions in Figure 7b are

clearly at odds with the symmetry of the relevant phase space region (the box),

while a regular partitioning into halves (or quarters or eights) can be justified by

this symmetry. Accordingly, for the restricted class of point particle systems

considered here, Boltzmann Entropy is a good measure of visible disorder.

For this class of systems whose microstates can be captured in the (p, x)-phase

space only, howwell doesGibbs Entropywork as a measure for visible disorder?

It is evident both from the formal definitions of the Fine- and Coarse-Grained

Gibbs Entropy, and in particular the ability to define the probability function (3.4),

as well as the conceptual interpretations of Gibbs Entropy that we can associate

a random sequence with high-entropy states. This can be done by requiring that

the probability p(Xi, t) of finding a system in a given phase space region Xi is

independent of the probability p(Xi+1, t) of finding the system in any other phase

space region Xi+1 (and that those probabilities are approximately equal), thereby

fulfilling the Independent Probability Randomness definition (Section 2.1). It can

be shown that this is indeed the case for non-interacting, identical particle

ensembles (Frigg & Werndl, 2011, 129). A sequence constructed by randomly

(a) (b)

Figure 7 a) Different permissible arrangements for the maximum entropy state

of a system of two particles in a box portioned into two halves. b) Different

partitions leading to different entropy values for the same particle arrangement.
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drawing a system from the ensemble and then writing down their phase pace

region or partition will therefore very likely (although not certainly) fulfil the

phenomenological randomness definitions, that is, Stable Frequency

Randomness (Section 2.2.1) and Maximum Complexity Randomness

(Section 2.2.3). We have seen in Section 2.3 that if a system is both dynamical

and phenomenologically random, then it is also Unpredictability Random.

Given the discussion of how partitions might distort the mapping between

visible disorder and Boltzmann Entropy, the fact that Fine-Grained Gibbs

Entropy does not use a partition is often

cited as amajor advantage ofGibbsEntropy overBoltzmannEntropy (e.g., Sklar,

1993, p. 355).However, the conceptual difficulty remains thatGibbs Entropy values

are actually not assigned to those macrostates but to the whole virtual ensemble

corresponding to each macrostate. The conceptual interpretation of what a low-

entropy, ordered state means in physical space therefore remains unclear.

While both statistical entropies therefore appear to be good measures of

visible disorder for the restricted class of systems that can be described in (x, p)-

phase space, that is, systems of identical, non-interacting, elastic point particles,

it has been argued that this is no longer the case when even slightly more

realistic scenarios are considered (Burgers, 1970; Denbigh, 1989; Frenkel,

1999; Leff, 2007).

In particular, Frenkle (1999, pp. 27–8) presents (among others) a system of

rod-like particles, which is otherwise similar to the point-particle systems

discussed earlier. However, in addition to the six (x, p)-degrees of freedom, rod-

like particles can also rotate around their own axes of symmetry, namely,

additional movement on an even smaller, not-immediately visible scale is

possible. The correct phase space to describe the dynamics of the rod-like

particles is then the (x, p, l)-phase space, where l is a vector specifying the

rotational momentum in three-dimensional space. If those additional degrees of

rotational freedom are taken into account, then it turns out the entropy of the

visibly ordered, crystalline arrangement, which allows each particle more

‘wiggle room’ to rotate around its axes of symmetry, is higher than the entropy

of the visibly disordered, liquid phase (Figure 8). Frenkel (1999) demonstrates

that there are several such systems with ‘invisible’ degrees of freedom, for

which high-entropy states do not align with visible disorder, and writes (p. 28):

In fact, we shall see this mechanism returning time-and-again in ordering
transitions of hard-core systems: the entropy decreases because the density is
no longer uniform in orientation or position, but the entropy increases
because the free-volume per particle is larger in the ordered than in the
disordered phase.
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It is notable that the changes we have made to the systems for which statistical

entropy did align with visible disorder is relatively minor: we have simply

changed the geometry of the particles and thereby added additional degrees of

freedom on a scale even smaller than the visible, translation variables. It can

therefore be safely assumed that such systems are not rare – in fact, Frenkel

(1999) and others (e.g., Georgii & Zagrebnov, 2011; Gobbo et al., 2020) demon-

strate that they seem to capture the dynamics of laboratory-prepared systems of

molecules with the correct symmetry very well, and that similar effects occur in

mixtures of certain types of particles, where the separated, visibly more ordered

phase has higher entropy because it allows for more small-scale movement of

each individual particle. Accordingly, we can assume that many natural phenom-

ena might well be more similar to the rod-like rather than the point-particle

system and that statistical entropy should not be expected to align with visible

disorder. As we will see in Sections 4 and 5, this also has consequences for the

associated assumption that visible disorder increases with time.

3.4.3 Statistical Entropy as a Measure of Abstract Order

Is it possible to salvage some of the interpretation of entropy as a measure for

disorder? I think it is, if we make sure that we eschew any notion of visible

disorder and, instead, consider a more abstract notion of order within a phase

space that is appropriate to the phenomenon under investigation. We already

saw that abstract order can exist even in everyday examples (e.g., in the form of

project-based Lego sets), so that this redefinition of the notion of order is not

a distortion of the established meaning of the phrase.

It is also important to notice that the phase space that the entropy is computed

in is not arbitrary: the degrees of freedom that need to be taken into account are

given by the physical realities of a phenomenon, for example, the additional

rotational degrees of freedom of the rod-like particles that arise from their specific

asymmetries. Similarly, any partition we would like to impose on this system to

(a) (b)

Figure 8 a) Low-entropy, visibly disordered macrostate versus b) high-entropy,

visibly ordered macrostste of a system of rod-like particles. The horizontal,

dashed arrows indicate that there is available ‘wiggle room’ in each case.
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compute a coarse-grained entropy should be reasonable given the scale and

symmetries of the problem. As such, entropy could be interpreted as a notion

that measures disorder within an appropriately defined phase space and over an

appropriately chosen partition. This definition does not lend itself to the kind of

conceptual arguments based on visible order and disorder we discussed in

Section 1 but does seem to allow us to move entropy away from being a notion

whose interpretation is strictly tied to very simplified point particle systems.

4 Two Versions of the Second Law

In its simplest formulation, the second law of thermodynamics8 states that, in an

isolated system, entropy increases with time. Conversely, the law states that

entropy does not spontaneously decrease with time. Here, being isolated implies

that there is no heat or other energy transfer in and out of the system. In the

following we will make this a standard condition for the laws presented, that is,

unless otherwise stated, they only apply to isolated systems. We will use the

term ‘spontaneous’ to refer to any process that happens in an isolated system,

that is, without energy transfer in and out of the system.

However, as described in Section 3, there are two fundamentally different

kinds of entropy the second law of thermodynamics could refer to:

Thermodynamic Entropy (Section 3.1) and Statistical Entropy in the form of

either Boltzmann Entropy (Section 3.2.1) or Gibbs Entropy (Section 3.2.2). As

Boltzmann Entropy is conceptually easier to interpret (Section 3.3), we will

focus our discussion here on this form of Statistical Entropy. However, I will

highlight any significant differences that would arise if Gibbs Entropy was

chosen instead. Depending on which kind of entropy the second law applies

to, its derivation and formalisation are very different: as we will see in what

follows, in the case of Thermodynamic Entropy, the empirical second law is

derived inductively as an analytical law (Section 4.1); in the case of Boltzmann

Entropy, the statistical second law follows deductively from the definition of

this entropy and is a statistical law (Section 4.2). Furthermore, the deductive

derivation of the statistical second law from the definition of Boltzmann

Entropy requires the introduction of an additional assumption about the particle

mechanics of the systems under consideration, namely that of equal accessibil-

ity of all microstates. The veracity of this Equal Accessibility Assumption will

be discussed in Section 4.3. Furthermore, the statistical second law does not

8 The first law of thermodynamics is the requirement of energy conservation, and the third law of
thermodynamics fixes the initially entropy value, usually requiring that it is zero at absolute zero
temperatures. A zeroth law of thermodynamics is sometimes added, requiring that if thermal
equilibrium is an expansive property, namely, if two systems are both in thermal equilibrium with
a third, they are also in thermal equilibrium with each other.
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predict a monotonic entropy increase but allows statistical deviations from this

course. The implications of this feature have featured large in debates on the

suitability of the statistical second law as grounding for the Arrow of Time and

will be discussed in Section 4.4.

It is notable that the second law is already a dependent notion: as fore-

shadowed earlier, it can be derived, inductively or deductively, from different

kinds of entropy. Accordingly, the discussion from now on will focus on

comparing different derivational routes (i.e., as mapped in Figure 1) rather

than different concepts. Instead of focusing on properties and interpretations,

we will therefore compare assumptions that have to be made during different

derivational steps and discuss the implications of different derived concepts. As

such, the switch in dialectic between the first two content sections of this

Element and the remaining two is evidence of the dependent nature of both

the second law and the Arrow of Time.

4.1 The Empirical Second Law of Thermodynamics

The empirical second law of thermodynamics is derived from the observation

that certain processes occur spontaneously in nature while their time-reversals

only happen if energy is expended on the system, that is, the time-reversals do

not happen in isolated systems. Prominent examples used throughout this

Element and in many discussions of the second law are the spreading of

a gaseous substance through a room or the shattering of a wine glass. Those

processes happen spontaneously in one direction (in the case of the wine glass,

the natural disintegration process would be on a fairly long timescale, of

course), but their time-reversed courses would take an outside intervention

into the system, that is, breaking the system’s isolation and expending energy

on it. They are therefore also called irreversible processes, whereby the term

only refers to spontaneous reversal.

Furthermore, if we analyse those empirically irreversible processes in terms

of their thermodynamic (p, T, V)-variables, then it becomes apparent that the

common processes are associated with increasing or constant Thermodynamic

Entropy (Section 3.1), while the forbidden reverse processes are associated with

decreasing Thermodynamic Entropy. Empirical data therefore shows that, for

closed systems, Thermodynamic Entropy STD monotonically increases or stays

constant:

Empirical Second Law: dSTD

dt ≥ 0:

It is worthwhile pointing out that the irreversibility captured by the

empirical second law only applies to spontaneously occurring processes,
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namely, to processes that do not receive or lose outside energy through heat or

work. It is possible, of course, to repair a broken wine glass or to suck dispersed

gaseous molecules back into a small space using a suction pump with an

external energy supply. In other words, as stressed at the beginning of the

section, the empirical second law only applies to isolated systems.

The derivation of the empirical second law is inductive: we have observed –

so far – that thermodynamic entropy always increases in spontaneous processes

in isolated systems and, therefore, we expect this to be the case in the future as

well. The empirical second law codifies this expectation. It is widely known that

induction is not a means of logically valid reasoning and that one can imagine

scenarios in which well-established inductive laws might suddenly become

invalid (e.g., the Problems of Induction posed by Hempel, 1945 and

Goodman, 1955/1983). There can be no logical certainty that an inductively

derived law will really be correct for all future instances, that is, while we have

never so far observed a process with spontaneously decreasing entropy in

a closed system, we have no other reason than that very fact to assume that

this will also be true in the future. Due to its inductive derivation, the

empirical second law is therefore subject to this fundamental uncertainty

inherent in inductive reasoning.

However, while philosophers of science have discussed the validity of

inductive reasoning in science (for a prominent sceptical view, see, e.g.,

Popper, 1959/2002), there is little doubt that many important and fully accepted

scientific results are inductive laws. An example of an equally directional law

would be the law of gravitational attraction, which posits that the gravitational

force is directed towards masses and is proportional to each mass. Notably, the

inductively derived directionality here is not one of ‘up’ and ‘down’ as we

experience it on Earth, as the fact that all objects on Earth seem to fall towards it

is a consequence of the magnitude of the mass of the planet compared to that of

the objects on it (e.g., Sklar, 1993, p. 389). However, the fact that masses attract

each other (rather than repel or remain unaffected) is an inductively derived fact

and one which we are willing to view as load bearing, namely, make the basis

for further derivations and definitions. As such, the inductive derivation of the

empirical second law is epistemically unproblematic, in the sense that it does

not raise any problems beyond those inherent in inductive reasoning itself.

The inductive derivation of the empirical second law limits its possible

explanatory functions. In particular, it cannot be drawn upon to explain the

existence of irreversible processes in nature since it is simply a codification of

this very fact. However, it can be drawn upon to explain the specific develop-

ment of a given system or process by referring to the necessity of that process

obeying this particular law of nature. To return to our earlier comparison
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example, the law of gravitational attraction similarly cannot explain why

masses attract each other, as it is merely an expression of this fact, which we

accept on empirical evidence; however, it can explain why a given mass

behaves in a certain way in response to the gravitational forces it experiences.

This distinction between the explanation of directionality itself and the explan-

ation of directed behaviour might seem pedantic but will becomemore pertinent

when we compare the explanatory function of the empirical second law to that

of the statistical second law (Section 4.2).

4.2 The Statistical Second Law of Thermodynamics

How can we derive the statistical second law of thermodynamics from the

definition of Boltzmann Entropy (Section 3.2.1)? Let’s recall that Boltzmann

Entropy is essentially a measure for the number of microstates that can instanti-

ate a given macrostate. Therefore, higher entropy values can be instantiated by

more microstates; in fact, as we have seen in Section 3.1, for systems with

a large number of particles, by many, many more microstates. Let’s make one

further assumption about the dynamics of the system we are considering:

Equal Accessibility Assumption: During the time-development of a given

system (to which the statistical second law should apply), the system is (at least

approximately) equally likely to access any of its possible microstates.

We have called this the Equal Accessibility Assumption; in Section 4.3, we will

see that it has been given different names as well. If the Equal Accessibility

Assumption is true, then macrostates with high entropy become overwhelm-

ingly more likely to instantiate than macrostates with low entropy values since

there are simply so many more microstates that can instantiate them.

Accordingly:

Statistical Second Law: P dSB
dt ≥ 0

� �
≫P dSB

dt < 0
� �

,

that is, at any point in the development of an isolated system for which the Equal

Accessibility Assumption holds, the probability that the entropy is increasing is

much higher than that the entropy is decreasing.

The statistical second law is clearly very different from the empirical second

law (Section 4.1). Firstly, it is derived deductively from the definition of

Boltzmann Entropy and the Equal Accessibility Assumption. As such, it avoids

the inherent problems of induction that could be asserted for the

empirical second law. However, it introduces an additional assumption in the

form of the Equal Accessibility Assumption. Therefore, for a given class of

systems, whether the deduction of the statistical second law is valid depends on
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whether the Equal Accessibility Assumption holds for this class of system. In

the context of the derivation of the Arrow of Time, one needs to show that the

assumption is valid for the system we are basing this derivation on, in the first

instance, systems of many atom-like particles. In Section 4.3, we will see that

proving that the Equal Accessibility Assumption is true for such systems has

occupied physicists and philosophers of physics since the inception of the

statistical second law in Boltzmann (1872).

Secondly, in comparison to the empirical second law, the statistical second

law has different implications for the expected behaviour of systems to which it

applies. It is important to note here that while the statistical second law itself

was derived deductively, the underlying deductive reasoning is a reasoning with

probabilities, as is evident in the formalisation of the law as a comparison

between probabilities. As such, the law only states what is more likely to

happen, rather than what is definitely going to happen. Since it has only

statistical validity, deviations from the most likely behaviour of entropy

increase can occur; for systems with a long development time, they would

even be expected to occur. Therefore, the statistical second law does not predict

a monotonic entropy increase, it only states that, at any point in the development

of a system to which it applies, an entropy decrease is much less likely to occur

than the system remaining at constant high entropy or the entropy increasing. In

particular, a prolonged period of overall entropy increase (albeit with statistic-

ally expected dips) would only be predicted by the statistical second law if the

system starts in a low-entropy state. We will discuss this conditionality on the

system’s initial conditions in more detail in Section 5. The potential ramifica-

tions of deviations from amonotonic increase or constantly high state of entropy

have been discussed extensively. However, as we will see in Section 4.4, the

purely theoretical implications are not as grave as expected in the last century.

Nevertheless, the possibility of such deviations can have a larger influence on

whether and how the Arrow of Time should be grounded in statistical entropy

(Section 5.2).

As we have seen in Section 3.4, statistical entropy is only a good measure for

visible disorder for the restricted class of systems that can be described in the

(x, p)-phase space, namely, identical, non-interacting, elastic, point particles.

For those systems, the statistical second law also predicts that visibly disordered

macrostates have a higher probability of instantiating, for example, we should

expect to see a development towards visible disorder in such systems (if they are

isolated). However, as pointed out in Section 3.4.2, even small deviations from

the conditions put on those systems (e.g., moving from point-like to rod-like

particles) means that statistical entropy is no longer a good measure for visible
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disorder. As such, the statistical second law should not be seen as predicting that

visibly disordered states are more likely to instantiate in nature.

It is possible to derive a statistical second law for Coarse-Grained Gibbs

Entropy (e.g., Sklar, 1993, pp. 199–207). However, like Gibbs Entropy itself

(Section 3.2.2), the law then refers to the behaviour of virtual ensembles of

systems, which makes it less suitable as a grounding for the Arrow of Time.

However, it is worth noting that the assumptions made during this derivation and

the implications of the statistical nature of the law are the same as the ones arising

during the derivation of the statistical second law from Boltzmann Entropy.

4.3 The Equal Accessibility Assumption

In discussion of the statistical second law, from the beginning, it has been noted

(for an analysis of this early debate, see, e.g., Brown et al., 2009) that the

mechanics of the particles that make up a typical statistical mechanics ensemble

(e.g., elastic collisions between point-particles of a given initial velocity) are

symmetric and not themselves irreversible. That is, in contrast to the spreading

gas or the shattering wine glass, there is nothing to indicate that the time-

reversals of such particle collisions do not or cannot happen spontaneously. In

other words, if we viewed a recording of a given particle collation backwards,

we could not tell that this was a backwards recording and not a ‘normal’

recording of the collision with reversed initial velocities. Therefore, from the

mechanics of the particles alone, we would not expect an asymmetric probabil-

ity relation like the statistical second law to arise.

The statistical asymmetry found in the statistical second law must therefore

arise from the statistics of the interaction of particles within the ensemble rather

than from considerations of individual trajectories and collisions. Statistics of

interactions here refers to the likelihood of a particle experiencing a collision

with a certain outcome, for example, reversing its velocity vector; speeding up,

or slowing down. In particular, those interaction-statistics need to make true the

Equal Accessibility Assumption, which was crucial in the derivation of the

statistical second law (Section 4.2), and in doing so, introduce the asymmetry

we see in the statistical second law. There are therefore two separate questions

to address when assessing the Equal Accessibility Assumption: (i) whether it is

possible to find theoretical interaction-statistics that render all microstates

equally accessible (Section 4.3.1) and (ii) whether such interactions are likely

to occur spontaneously in ‘real’, or at least defensibly ‘idealised’, ensembles of

particles (Section 4.3.2). In Section 4.3.2, we will also discuss whether the

interaction-statistics put forward in response to (i) introduce an artificial

asymmetry.
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4.3.1 The Stosszahlansatz

As an answer to question (i), Boltzmann (1972) proposed the Stosszahlansatz as

a suitable assumption about the interaction-statistics of particles in a given

ensemble to which the statistical second law should apply. The Stosszahlansatz

requires that for each particle in the ensemble we define a region S which it

will traverse in a given time t; the size of S will depend on the particle’s

velocity vi, of course. We then make the crucial assumption that the likelihood

of this particle experiencing a collision with a second particle with velocity

vk during time t is directly proportional to the number of particles with velocity

vk in S. The same is true for all other velocities of particles in the ensemble. In

other words, the Stosszahlansatz assumes that each particle is equally likely to

collide with any other particle in its vicinity, independent of previous inter-

actions or the relationship of their respective velocities. Notably, while this

might sound like a symmetric set-up, it does introduce a time-asymmetry in

that previous collisions do not affect future collisions in a realistic way, for

example, the fact that two particles might just have collided with each other

and are now unlikely to do so again, is discarded. In Section 4.3.2, I will return

to this point.

A conceptual argument can be made that such interaction-statistics will

indeed make all microstates equally accessible, that is, make true the Equal

Accessibility Assumption. Imagine that we have again set up a number of

particles in a box of two halves, Half A and Half B (Figure 9). As before

(e.g., Figure 3), a microstate is then an assignment of location values of Half

A or Half B to each particle. In order for each microstate to be equally

accessible, it needs to be the case that each collision makes it equally likely

for a particle to be in Box 1 or Box 2 after the collision. This will be the case if: i)

that half of the velocity directions a particle can have after a collision will lead to

the particle remaining in the half of the box it is in and half will lead to it moving

into the other one; ii) that the velocities are initially equally distributed, namely,

that half of the particles have velocities that, in an elastic collision, would send

the other particle careering off into the opposite half and half have velocities that

would result in the particle staying in the same half of the box; iii) as decreed by

the Stosszahlansatz, each particle is equally likely to collide with any particle in

its vicinity, which is roughly equal to the half of the box it is in, and therefore

equally likely to be jolted into one or the other half during a collision. Those

assumptions mean that each particle has equal probability of being in each box

after each collision and that therefore each microstate, which is a combination

of those values, is equally accessible, as required by the Equal Accessibility

Assumption.
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It is then also easy to conceptualise how such Stosszahlansatz-interactions

make the transition from a low to a high Boltzmann Entropy state much more

likely than the other way around. Let’s assume the particles are initially all in

Half A (Figure 9). Each particle then has a very high probability of experiencing

a collision, given that there are many particles in its vicinity and, according to

the Stosszahlansatz, that means that a collision is likely. Given the equal

distribution of velocities prescribed earlier, after the first round of such collision

events, about half of the particles will therefore have been sent into Half

B. Under this new situation, particles in both halves of the box will experience

collisions but the numbers of potential collision partners in their vicinity are

lower (Figure 9). Similarly, it is always less likely that a particle will change

back into a half with currently more particles in it than the other way around.

Therefore, each collision event will tend to move the system from a lower-

entropy state to a higher-entropy state. In addition, any minor imbalances

between the particle numbers will tend to be balanced out in the next round of

collisions, as particles in the half with momentarily more particles in it will

experience more collisions than those in the half with momentarily fewer

particles in it, until the number have balanced again. Therefore, the high-

entropy state is not only the one towards which the system will tend over time

but also a stable state, in the sense that the system will tend to correct back to it.

Such simplified models and similar thought experiments (e.g., Ehrenfest &

Ehrenfest, 1907; 1909) show that Stosszahlansatz-like assumptions can be

successful in ensuring the Equal Accessibility Assumption is true and, there-

fore, guarantee the validity of the statistical second law in a variety of scenarios.

Hence, we can answer in response to question (i) that it is possible to find

Figure 9 Stosszahlansatz-dynamics in a box with halves A and B and four

particles. The arrows indicate the direction a particle will jolt (‘stoss’) its next

collision partner. Assuming no interactions with the box’s boundaries and that

particles only change halves during collisions, the figure shows the probabilities

for the next collision in each half resulting in a particle leaving this half or

staying in it. It is easily apparent that collisions that lead to macrostates with

equal or higher entropy are always more likely.
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theoretical interaction-dynamics that make true the Equal Accessibility

Assumption. However, this does not imply that such interaction dynamics

also exist in real, or acceptably idealised, ensembles of particles, that is, it

does not imply a positive answer to question (ii).

4.3.2 Objections to the Stosszahlansatz

Let’s first consider an ensemble of elastic, identical particles, namely, the ideal

gas that is the paradigm scenario in statistical mechanics. Even for this idealised

scenario, the Stosszahlansatz-assumption that each particle is equally likely to

collide with each other particle in its vicinity, and that the probability for

a collision only depends on the local particle density, is clearly unrealistic.

Even for completely elastic collisions, the velocities of two particles that have

collided with each other will become correlated and the probability of those two

particles colliding again will become dependent on the precise modalities of that

collision. For example, consider two particles colliding at relatively slow

speeds. By the law of momentum conservation, after the collision, the particles

will be on reversed trajectories, moving slowly away from each other. Despite

the fact that the two slow-moving particles will still be in the vicinity of each

other for some time to come, this previous collision means that they are

currently moving in opposite directions, namely, their velocities have become

anti-correlated, and they will not collide again (unless deflected in some other

way). However, the assumptions of the Stosszahlansatzmean that this cannot be

taken into account and that the probability of those particles experiencing

another collision is computed as if the previous collision never happened.

This could be rephrased to state that the Stosszahlansatz requires a deliberate

discarding of any information about potential velocity correlations between the

particles in the ensemble (Brown et al., 2009). Given that velocity correlations

are clearly a physical feature of particle collisions, this raises the worries that the

Stosszahlansatz i) introduces an artefact into the situation; and ii) that it is

precisely this artefact that leads to the asymmetry that is captured by the

statistical second law.

In particular, by discarding information about past collisions, the Stosszahlansatz

introduces a time-asymmetry, which – as discussed earlier – is not present in the

mechanics governing the particle collisions. One could therefore argue that the

Stosszahlansatz artificially distorts the system towards the time-asymmetry found in

the statistical second law. This concern was first raised by Loschmidt (1876) and is

therefore often titled Loschmidt’s objection.

How damaging is Loschmidt’s objection? It is undoubtedly true that velocity-

correlations are a feature of all particles’ microdynamics that the Stosszahlansatz
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deliberately ignores. However, it can be argued that these correlations become less

important the larger the particle ensemble itself is and the longer we observe it. In

particular, in an ensemble of many particles and many collisions, the trajectories of

any given particle will quickly become determined by other factors rather than that

of any given past collision. Hence, after a sufficiently long time-period, it is

a reasonable approximation to treat any two particles as uncorrelated again. The

length of time-period will depend on the size of the ensemble and the frequency of

the collisions within it: the larger the number of particles and the larger the number

of collisions, the shorter the time for which velocity correlations are expected to

last. Figure 9 illustrates this argument.9

Accordingly, Loschmidt’s objection can be interpreted as a condition on the

kind of systems to which the statistical second law is likely to apply: namely,

those with many particles, frequent particle interaction, and a long duration.

Furthermore, the stronger any correlations between the particles of a given

ensemble are, the more of a falsification of the interaction-statistics the

Stosszahlansatz becomes, and the more doubtful we should be that the Equal

Accessibility Assumption and, therefore, the statistical second law, obtains. In

particular, considering the example of rod-like particles in Section 3.4.2, the

Equal Accessibility Assumption would mean ensuring that both the (x, p)-

degrees of freedom as well as the small-scale l-degrees of freedom are equally

accessible. Therefore, one would have to ensure that particles did not just

collide with each other in a certain way but also that they are simultaneously

able to rotate freely around their symmetry axes. As Frenkel (1999) recognises,

in such situations, it is often not possible to ensure all states are equally

accessible and the dynamics of the system will be dominated by trade-offs

between the different degrees of freedom. This is less of a problem in the

context of statistical physics proper, where large ensembles of fully elastic

particles are the typical subject of study, but will become more relevant in the

context of asking whether the statistical second law applies to more complex

objects, including the universe as a whole (Section 5.2).

4.4 Statistical Deviations from Entropy Increase

As derived in Sections 4.2 and 4.3, for systems with large numbers of particles

and frequent particle interactions, macrostates with statistical entropy values

become overwhelmingly more likely than those with lower statistical entropy

values. This is evident even for a small system of 100 particles (Figure 4),

whose maximum-entropy macrostate is more than 1028 times more likely to

instantiate than its minimum-entropy macrostate. For more realistic systems

9 Brown et al. (2009, p. 188) present a formal version of this argument.
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with particle number on the magnitude of 1023 or more, the probability differ-

ences will be even larger. A transition from a high statistical entropy to a low

statistical entropy state is therefore a statistically highly unlikely exception.

That said, in a system governed by probabilistic laws, even unlikely events

are expected to occur, if a sequence of enough such events instantiates. In

other words, if we observe a system of particles long enough, then even low-

entropy states should eventually occur with a finite probability. For the 100-

particle system, it would take about 1030 ‘tries’ for one of the lowest-entropy

states to instantiate with more than 90 per cent likelihood.10 This back-of-the-

envelope calculation can be formalised to prove that any closed dynamical

system (e.g., like the simplistic particle systems most of the discussion is

based on) will eventually return infinitely close to its initial state. This result

was first published in Poincaré (1890) and is known as Poincaré’s Recurrence

Theorem.

To get an idea of the timescales involved here, let’s assume that each

‘instantiation’ of a microstate takes about 1 s to complete. To have

a 90 per cent likelihood of a low-entropy state occurring, the system with 100

particles would have to evolve for about 1022 years, namely, longer than the

current estimated age of the universe. It is worthwhile emphasising what this

means for our expectation about the world: in this universe, we should not

expect (i.e., assign a likelihood of more than 90 per cent) to see 100 particles

spontaneously returning to one half of a box, much less to see typical systems of

many more atomic particles spontaneously assuming a low-entropy state.

As such, the statistical second law leads to expectations that tally very well

with the observations that have been used to inductively derive the

empirical second law (Section 4.1). However, the fact that the probability of

such an event occurring is extremely small still leaves open the possibility of it

occurring against overwhelming odds. In other words, the statistical second law

is not exceptionless, while the thermodynamic second law is exceptionless.

Accordingly, we re-encounter the problem discussed in Section 3.3: the

statistical second law and the thermodynamic second law are qualitatively

different and any proposed reduction of the latter to the former will have to

bridge this difference. In the context of this Element and our Aim 2 of analysing

different routes of derivation of entropy-groundings, it is important to note that

this conceptual difficulty is not resolved along those routes. As discussed in

Section 3.3, the overall reduction project remains unfinished, and entropy-reduction

is one of the unfinished key issues.

10 Using P(X, n) = nP(X) for the probability of an event X with probability P(X) occurring in
a sequence of n independent trials.
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4.4.1 Maxwell’s Demon

The possibility for deviations from the most probable course of a system as

predicted by the statistical second law leaves open the possibility that one may

find a way of amplifying this extremely small (but finite) probability to a larger

one by a series of energy-preserving manipulations on the system. The possi-

bility of exploiting statistical deviations by amplifying them within a closed

system, namely, without expending any externally generated energy on the

system, underpins a sequence of influential thought experiments proposed

throughout the twentieth century: namely, various versions of Maxwell’s

Demon. In recent years, Earman and Norton (1998, 1999) and Norton (2013)

have criticised the ongoing importance of Maxwell’s Demon in the literature on

the foundations of statistical mechanics as overly focused on the extraneous

details of this thought experiment, rather than on actual foundational problems.

I agree with those authors that the highly hypothetical nature of Maxwell’s

Demon thought experiments renders them of limited usefulness to the investi-

gation of what the statistical second law actually entails. Accordingly, I will

keep the discussion here relatively brief and view those thought experiments as

means of highlighting the existence of the (extremely small) probability of low-

entropy transitions by presenting imaginative, hypothetical scenarios in which

such an instantiation could be amplified to have larger consequences, rather than

considering those scenarios as yielding insights into the foundations of statis-

tical physics.

In Maxwell’s (1867) original thought experiment, we start out with the

following scenario: a bi-partitioned box of fast and slow particles in

a maximum entropy macrostate, that is, with equal numbers of fast and slow

particles in each half. One of the minimum-entropy macrostates of this system is

the one where all fast particles are in one half and all slow particles are in the

other. Accordingly, the transition from an even distribution of particles with

different velocities throughout the box to one where slow and fast particles are

separated into one half each is extremely unlikely to occur spontaneously. Note

that this does not imply that it would be impossible to separate the particles if we

allow work to be done on the system, for example, by installing a selectively

permeable membrane or by heating one half and cooling the other. However,

this would require outside interventions, which would themselves consume

energy. The system would therefore not be closed anymore, and we would not

expect any version of the second law (Sections 4.1 and 4.2) to apply.

Maxwell’s (1867) thought experiment hinges on the introduction of an entity

that could manipulate the system but not consume any energy in doing so,

namely, a demon. Maxwell’s Demon is able to track all of the particles in the
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box perfectly and to operate a frictionless partition between the two halves

without energy expenditure. Therefore, Maxwell’s Demon is extraordinary in

two ways: like Laplace’s Demon (Laplace, 1826/1951), it has the ability to

perfectly observe all the physically relevant components of its world (i.e., the

particles in the box); additionally, it also possesses a metabolism that does not

consume any energy when exerting itself (i.e., by lifting the partition).

Maxwell’s Demon then manipulates the particles in the box in the following

way: whenever a slow particle moves towards Half A, it will quickly lift the

partition and let it through, and whenever a fast particle approaches Half B, it

will do the same. At all other times, it will leave the partition lowered. Given

that we expect some statistical fluctuations between the particle numbers in the

halves (as described earlier), over time, the demon will be able to trap all slow

particles on one side and all fast particles on the other. Accordingly, by virtue of

its superior knowledge of the particles’ trajectories, it will be able to force

a transition from a high- to a low-entropy state. In addition, by virtue of its

superior metabolism, it will also be able to do this without expending energy.

Given that it will now be possible to exploit the energy differential between the

particles in the two halves of the box to, say, drive a little flywheel, Maxwell’s

Demon has violated the first law of thermodynamics, that is, it has violated

energy conservation!

The original thought experiment seemed to have been designed to show that

the notion of statistical entropy and the statistical second law are grounded

in the epistemic restrictions inherent to the human mind. Conversely, a demon

as described earlier would not face such restrictions and would have no need for

a notion like entropy. However, more recent discussions of Maxwell’s Demon

have usually focussed on a different aspect: namely, its ability to use statistical

deviations from a monotonic entropy increase – as predicted by the

statistical second law – to engineer a violation of energy conservation.

However, in order to show that the statistical second law would allow violations

of the law of energy conservation, one would have to show that this is not just

the case for a demon with an already energy non-conserving metabolism. As

such, many later versions of the thought experiment have focused on replacing

the demon with more realistic mechanical mechanisms. A number of such

mechanisms have been put forward and are comprehensively surveyed and

illustrated by Earman and Norton (1998, 1999): for example, several thermo-

mechanical machines introduced by Smoluchowski (1912, 1914), including

a particle-sized trapdoor that opens in one direction only; a particle-sized paddle

that is ratcheted to turn in one direction only; and a mechanical shuttle that

transfers heat excess between different reservoirs.

50 Philosophy of Physics

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
21

73
47

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781009217347


It is important to note that all those machines work on the assumption that

unlikely, but expected, fluctuation from a statistically expected distribution of

microstates can be exploited to engineer violations of energy conservation and

to amplify initially small transitions from high- to low-entropy states into larger

deviations. However, given that – under both interpretations – the second law of

thermodynamics only applies if there is no energy expenditure on the system, it

is crucial that the machines presented here be viewed as themselves operating

without energy expenditure. However, in each case, convincing arguments can

be made against this assumption: for example, in case (i), the trapdoor must

operate on a spring that stores energy; in cases (i) and (ii), energy needs to be

expended to maintain the particle-sized mechanisms against thermal fluctu-

ations themselves; in case (iii), energy needs to be expended to monitor the

temperature fluctuations in the reservoirs. With respect to the latter case, Szilard

(1929/1972) demonstrated that any measurement of microstate fluctuations can

be seen as itself increasing entropy and using energy. Accordingly, I agree with

Earman and Norton (1999, p. 5), that:

[O]ne tentatively assumes that the Second Law is secured from Demons and
then one deduces what the hidden entropy cost of demonic operation must be.
If one can find an independent justification for this cost, one then posits it
independently and infers back to the protection of the Second Law. It is our
perception that this research programme has been a disappointment if not an
outright failure.

While the devising of mechanical demons resulted in some intellectually

interesting devices, those attempts seem to have added little to the conclusions

we can securely draw from the initial thought experiment: namely, that an entity

that precisely monitors the microstates of all particles involved has no need to

describe the system in terms of macrostates and their associated entropies.

However, that does not imply that the microdynamics Maxwell’s Demon

would observe would not be compatible with the statistical second law.

Nonetheless, the fact that statistical deviations from a monotonic increase of

entropy are expected under the statistical second lawwill have consequences for

the suitability of this version of the second law of thermodynamics as

a grounding for the Arrow of Time, and we will return to this feature in

Section 5.

As in the comparison of different entropies (Section 3), the suitability of

a given version of the second law of thermodynamics for a given task needs

to be assessed against the epistemic demands of this task. In Section 5, we

will use the comparison of the two versions as presented earlier to assess

their ability to serve as a grounding (Section 1) for the Arrow of Time. This
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does not imply that both versions cannot be assessed differently in different

contexts: for example, clearly, the statistical law of thermodynamics is the

more fundamental law in the larger project of reducing thermodynamics to

statistical mechanics (e.g., Robertson, 2020); it could be argued that both

versions are contingent on a ‘Minus First Law’ codifying the requirement

for certain systems to approach an equilibrium state (Brown & Uffink,

2001). However, the characteristics highlighted in my analysis will be the

ones that are most relevant to the evaluation of each version’s suitability as

a grounding for the Arrow of Time.

5 Three Arrows of Time

Based on human experience, it seems to be undisputed that the passing of time is

an asymmetric phenomenon (for review, see, e.g., Le Poidevin & McBeath,

1993; Albert, 2000, chapter 6): we age forward, but not backward; we have

memories of the past, but not of the future; and we can causally influence future,

but not past, events. In a less anthropocentric context, our understanding of

causality itself also supports the notion that time has a direction: barring

pathological cases like strange quantum effects, there appears to be a time-

ordering between causes, which need to happen first, and effects, which need to

happen after. Conversely put, the directionality of time means that there is (on

the level of commonly accessible experience) no such thing as retro-causality. It

is also notable that this directionality of time appears to be exceptional if

compared to other fundamental notions. For example, (local) space appears

symmetric to us both experientially as well as causally.

While it is generally accepted there is an asymmetry to time and that it is

evidenced in the experiential and causal time-ordering of events as described

earlier, it is more difficult to quantitatively capture and formally define this

direction of time. One category of philosophical approaches focuses on the

possibility of defining a fundamental way of time-ordering events (e.g., prom-

inently, McTaggart, 1908; Prior, 1967, Mellor, 1998). A second category of

approaches focuses on ‘grounding’ the direction of time in an observable,

asymmetric physical property.

As discussed in Section 1, the notion of grounding can be difficult to unpack:

while there is some agreement that it establishes a relation where the grounding

entity is fundamental to the existence of the grounded one, that is, that the

grounded entity is as it is in virtue of the grounding one, there is no unequivo-

cally accepted analysis of what exactly the epistemic properties of an ‘in virtue

of’-relationship are (for review, see, e.g., Correla & Schneider, 2012). For this

Element, we will use a particular unpacking, which seems to capture a) what
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philosophers and physicists mean when they talk of entropy-groundings of the

Arrow of Time and b) does not distort the general notion of grounding as laid out

earlier. Namely, following a distinction made by Sklar (1993, pp. 388–96), we

will maintain that there are two epistemic components to a physical grounding:

(i) a definitional component, requiring that the behaviour of the physical

quantity time is ‘grounded in’ adequately defines the direction of time as we

experience it; and (ii) an explanatory component, stating that the behaviour of

the physical quantity time is ‘grounded in’ adequately explains our experience of

time as being asymmetric, namely, that it explains the past–future distinction in

phenomena like aging, memory, and causality. Thereby, the definitional compo-

nent will be unpacked as enabling us to assign a time-ordering to a given set of

events, that is, to decide which events are ‘past’ and which are ‘future’.

If we are looking for candidates of physical quantities and laws that could

ground the asymmetry of time, then entropy (Section 3) and the second law

(Section 4) are obvious candidates to do so11. However, given that there are

different definitions of entropy (Section 2) and different versions of the second

law of thermodynamics (Section 3), there are also different routes to deriving

entropy-groundings to the Arrow of Time. Any entropy-grounding of the Arrow of

Time is therefore a dependent quantity: it depends on the specific definition of the

quantities the Arrow of Time will be grounded in. Furthermore, as we will see in

what follows, it depends on the kind of systems which are seen as foundational in

entropy-grounding the Arrow of Time. As we will see later, the Arrow of Time can

be grounded in the entropy of the universe or in the entropy of local processes.

Therefore, we can actually identify three Arrows of Time: an Empirical Arrow of

Time (Section 5.1) grounded in the empirical second law (Section 4.1); a Universal

Statistical Arrow of Time (Section 5.2) grounded in the statistical second law

(Section 4.2) applied to the universe as a whole; and a Local Statistical Arrow of

Time (Section 5.3) grounded in the statistical second law applied to the local

constituting-processes of our experience of time. Note that we will refer to those

as Arrows of Time for the sake of brevity but will actually in each case be talking

about a specific entropy-grounding of this Arrow.

As in Section 4, our strategy will be to identify the assumptions that go into

derivation of each entropy-grounding. Furthermore, using the distinction

between the definitional and explanatory components of a grounding introduced

earlier, we will identify the different epistemic functions each grounding fulfils.

It will become apparent that the Empirical Arrow of Time fulfils the definitional

component but not the explanatory one, while the two Statistical Arrows of

11 There are other candidates which we will not discuss in this Element (e.g., section 1; Roberts
2022).
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Time fulfil the explanatory component – at least in the sense of having high

explanatory potential – but not the definitional one.

5.1 The Thermodynamic Arrow of Time

As we have seen in Section 4.1, spontaneous processes in closed, thermodynamic

systems have been observed to only occur in a way that increases the

Thermodynamic Entropy (Section 3.1). Processes that would decrease thermo-

dynamic entropy, including the reverse of entropy-increasing processes, do not

occur spontaneously. From those observations we inductively derived the

empirical second law. It is now possible to use the empirical second law as

a means to make visible to us the direction of time by linking it to our observations

about entropy, namely, by assuming that the direction of thermodynamic entropy

defines the direction of time, we have gained a means of deciding which direction

the Arrow of Time points at any given moment. Sklar (1993, p. 388) illustrates this

process in the following way12:

[Consider] watching a film of a physical process. How can one tell if the film
is being run in the proper direction – that is, with earlier projected images
being the images of earlier events – and not in the improper, reversed
direction that is, with the initial images being of the final events? Unless
entropic features play a role, it is argued, one simply cannot tell. . . . But if
there are entropic features of the processes involved, then one can easily tell if
the film is being run in the proper direction.

For example, we know from the empirical second law that a gas will only ever

spontaneously increase its volume, that is, in a closed container it will spread

through the whole container rather than gather in a corner. If we see a film of

a gas spontaneously gathering in a corner of a closed container, we know that we

are watching a recording of the real events backwards.

Empirical Arrow of Time: The Empirical Arrow of Time points in the

direction of the empirical second law of thermodynamics, that is, we can use

processes governed by the empirical second law define the direction of time by

time-ordering events.

As the empirical second law governs the behaviour of Thermodynamic

Entropy (Section 3.1), we have therefore – on the level of quantities rather

than processes – derived an entropy-grounding of the direction of time.

12 This specific quotation is referring to what we will label ‘Statistical Arrows of Time’. However,
the process of assigning time stamps according to the entropy of a process at a given point can be
done using any kind of entropy.
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Amore pertinent concern might be that the time-ordering defined through the

Empirical Arrow of Time could conflict with the time-ordering of processes we

consider paradigmatic for our experience of time (e.g., aging, memory-

formation, causality). However, observationally, this does not seem to be the

case: in the example presented earlier, while we observe the gas spreading, we

also grow older; we form newmemories of events where the gas was less spread

out but do not have any of when the gas will be further dispersed; and we can

reliably associate causes with more localised stages of the gas and effects with

more dispersed ones. Therefore, the Empirical Arrow of Time fulfils the

definitional component of a grounding in the empirical second law: it allows

us to time-order events by assigning labels like ‘past’ and ‘future’ based on

a comparison of the Thermodynamic Entropy development linking those

events.

There are different ways of interpreting the fact that the directionality of the

constituting-processes of our experience of time is the same as the directionality

of the empirical second law. On the one hand, we can simply assume that this

association between time-experience and thermodynamic processes is another

inductively proven fact of the world. As the empirical second law itself, it seems

to be a strong inductive association, on par in validity with other inductively

derived laws and groundings in the world, for example, the one between the law

of gravitational attraction and the up- and down-distinction (Section 4.1; Sklar,

1993, p. 389).

On the other hand, this alignment of the paradigmatic processes of our

experience of time could be deductively explained by the fact that those

processes themselves are processes for which the Thermodynamic Entropy

(Section 3.1) should increase. This would mean that the empirical second law

does not just give us a means of defining the direction of time but actually

explain our experience of directionality, that is, it explains that our experience of

the asymmetry of time results from the fact the processes that make up our

experience of time are themselves governed by the empirical second law and

therefore have the same asymmetry as the law itself. However, Thermodynamic

Entropy and the empirical second law by themselves do not offer much promise

of formulating this explanation formally and stringently. It seems unlikely that

we would be able to describe processes like aging, causality, and memory

formation in terms of the thermodynamical (p, V, T)-space with enough detail

to then prove that the Thermodynamic Entropy increases for those processes

according to the empirical second law. In and of itself, the empirical second law

therefore can be used to define the Empirical Arrow of Time, but not to explain

it, that is, it does not fulfil the explanatory component of a grounding in the

empirical second law, as defined earlier. The fact that we have inductive proof
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that this definition is consistent with our experience of time is a precondition for

our acceptance of this definition, but it is epistemically independent of the

definition itself.

However, as we will see in Section 5.2, a grounding of the Arrow of Time

through Statistical Entropy and the statistical second law has more potential for

offering an explanation rather than a mere definition. Furthermore, we have

seen that the different kinds of entropy and the two versions of the second law of

thermodynamics are not entirely independent of each other: there is a long-

standing commitment among philosophers and physicists to eventually achieve

a reduction of thermodynamic quantities to statistical mechanical ones

(Section 3.3). That said: as long as this project has not come to fruition, we

are left with several different routes to deriving the Arrow of Time and,

I maintain, the explanatory potential of a grounding in the statistical second

law cannot be counted as an epistemic advantage of the grounding in the

empirical second law, namely, of the Empirical Arrow of Time. However,

those thoughts highlight the assumption that underpins the thermodynamics-

to-statistical-mechanics reduction project: namely, that statistical mechanics is

more fundamental than thermodynamics. This implies that an entropy-

grounding in Thermodynamic Entropy (e.g., the Empirical Arrow of Time) is

less fundamental than an entropy-grounding in Statistical Entropy (e.g., the

Statistical Arrows of Time we will derive in Sections 5.2 and 5.3). In fact,

should the reduction project come to fruition, then the Empirical Arrow of Time

would become redundant. This possibility should itself be seen as a property of

the Empirical Arrow of Time, which can be weighed up against its other

advantages and disadvantages. At the current moment, however, the reduction

of the Empirical Arrow of Time remains a possibility rather than a certainty, and

this eventuality should not be given more epistemic weight than any other

properties laid out in this section.

5.2 The Universal Statistical Arrow of Time

In Section 4.2, we have demonstrated that the statistical second law can be

derived deductively from the definitions of Statistical Entropy (Section 3.2) and

the Equal Accessibility Assumption (Section 3.3). The statistical second law

states that it is always more likely – for a system that fulfils the conditions of the

Equal Accessibility Assumption – that the Statistical Entropy of this system

increases or remains at constant entropy rather than that it decreases. As such,

we should (usually with a high likelihood) expect that entropy increases or

remains at constant entropy with time. In Section 3.3, we have seen that the

Equal Accessibility Assumption is not trivially fulfilled by most natural, or even
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idealised systems. However, there are certain conditions, for example, the ones

codified in the Stosszahlansatz under which it can be seen as approximately true.

Given that there is a general assumption that virtually all processes in the universe

can be reduced to the interaction of atomic particles, the statistical second law

allows us to define an entropy-grounding based on the entropy of the universe

(viewed as an extraordinarily large system of particles):

Universal Statistical Arrow of Time: The Universal Statistical Arrow of

Time points in the direction of the statistical second law applied to the

Statistical Entropy of the Universe, that is, we can use the statistical second

law to define the direction of time and to explain our experience of it.

We have therefore derived a grounding of the Arrow of Time in Statistical

Entropy.

In complete analogy to the illustration of how the Empirical Arrow of Time

(Section 5.1) can be used to define the direction of time, we can use the

grounding presented earlier to assign time-orderings to states of the universe

if we know their entropy values: a low-entropy state of the universe is likely to

have occurred before a high-entropy state. Given the statistical nature of the

Universal Statistical Arrow of Time, such assignments will only ever be

probabilistic, that is, it is theoretically possible – if unlikely – that a low-

entropy state follows a high entropy state (Section 4.4). We will discuss in

what follows the consequences of the fact that such time-assignments are non-

deterministic.

However, as we will soon see, the assumption that the universe is subject to

the statistical second law and that a general entropy increase translates into

entropy-increasing subprocesses is not straightforwardly found to be true. In

particular, any argument towards its veracity will require two further assump-

tions. The first assumption is that the universe (i) is the kind of system for which

Boltzmann Entropy can be computed and (ii) that it is reasonably similar to the

closed systems of identical, elastic frequently interacting particles to which the

statistical second law is applicable. This can be formalised as:

Cosmic Entropy Assumption: It is possible to compute the Statistical

Entropy of the universe, and its entropy development will be subject to the

statistical second law.

There is currently no consensus view on whether the Cosmic Entropy

Hypothesis applies, nor are there any unequivocally accepted calculations or

estimates of the universe’s Statistical Entropy. On the face of it, the universe

does not appear very similar to the systems of interacting, closed, identical

particles for which the Boltzmann Entropy can be calculated andwhich fulfil the

57From Randomness and Entropy to the Arrow of Time

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
21

73
47

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781009217347


Equal Accessibility Assumption: there are many highly structured ‘clumps’ of

particles (e.g., humans, chairs, planets), which seems to speak against the

possibility of the universe being subject to the statistical second law.

However, two arguments can be made here that render the existence of such

structures less problematic: (i) we have seen in the example in Section 3.4 that

statistical entropy is not a measure of visible disorder and that structured states

can have higher entropy than visibly disordered states; (ii) even if we assume

that obviously structures are low-entropy regions in the universe, one could

argue that they are normally temporary (e.g., humans, chairs, and planets all

have finite lifespans), and their creation is associated with an entropy increase

elsewhere (e.g., the creation of humans, chairs, and planets requires energy,

whose generation can be associated with an entropy increase elsewhere). With

respect to argument (i), Denbigh (1989, p. 329) writes:

In my view some of the many discussions in the literature on the evolution of
the universe from the Big Bang onwards have been weakened by attempts to
apply the notions of ‘chaos’ and ‘disorder’ – and also ‘uniformity’ – as if
these were equivalent to using the Second Law.

Given the discussion in Section 3.4, where I argued that statistical entropy is not

a measure for visible disorder, I agree with Denbigh (1989). The fact that there

are visibly ordered regions in the universe likely tells us very little about the

statistical entropy of those regions and should therefore not be seen as indicative

of the entropy development of the universe. However, I also argued that

statistical entropy tracks a more sophisticated notion of disorder, and the

calculation of entropy should involve a detailed consideration of which degrees

of freedom need to be taken into account for each phenomenon. This would

indicate that computing the statistical entropy of the whole universe would be

fiendishly difficult and that treating the universe as a system of identical, non-

interacting, elastic point-particles would not be appropriate. There is clearly

currently no way to formally perform this calculation, so that the phrase

‘entropy of the universe’ might be, as Planck (1897, cited in Uffink, 2003)

puts it, meaningless. This judgement has been echoed in more recent works as

well (Albert, 2000, Chapters 4–5; Wald, 2006), with which I am inclined to

agree, given my own argumentation earlier.

In summary, the verdict on the veracity of the Cosmic Entropy Assumption

has not yet been delivered, although, in the round, philosophers and physicists

are sceptical about its veracity. However, what seems to be clear from the

preceding considerations is that, even if the entropy of the universe can be

defined and it is subject to the statistical second law, there is little prospect of us

assigning a numerical value to the entropy of the universe, much less
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continuously use such a value to ‘date’ different stages of the universe.

Accordingly, the actual assignments of time-orderings would have to be made

based on more easily observable sub-processes and regions of the universe. We

will return to the consequences of this realisation in what follows.

The second assumption we need to make to link the Universal Statistical

Arrow of Time to an actual increase in the Boltzmann Entropy of the universe is

that there were suitable initial conditions for the statistical second law

(Section 4.2) to predict an increase in entropy, rather than constant maximum-

entropy. In particular, given that high-entropy macrostates are actually over-

whelmingly more likely (based on the number of microstates that can instantiate

them, Section 3.2), the most likely development for any system is to stay close

to a high-entropy macrostate. Accordingly, we would only see an overall

increase in the statistical entropy of the universe if its initial macrostate was

a low-entropy one (Figure 10). This assumption is known as the Past Hypothesis

(e.g., Albert, 2000, p. 96; North, 2011, pp. 12–16):

Past Hypothesis: The initial macrostate of the universe was a low-entropy

state.

The plausibility of the Past Hypothesis, like the one of the Cosmic Entropy

Assumption, depends on the underlying model for the universe’s origin and

early development. It is therefore contingent on the resolution of fundamen-

tal debates in cosmology and, therefore, currently undecided. It is notable

that for one of the most accepted models of the early universe, the Big Bang

Model, an argument can be made for a low-entropy initial macrostate (North,

2011, p. 14):

Although this has not been worked out rigorously, there is a rough answer that
strikes many people as plausible. Immediately after the big bang, the universe
was in a uniformly hot “soup,” with matter and energy uniformly distributed
in thermal equilibrium. This state did have high Thermodynamic Entropy.
The thought is that it had extremely low entropy due to gravity. Gravity is an

(a) (b)

Figure 10Entropy increase predicted by (i) the empirical second law and (ii) the

statistical second law.
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attractive force: matter tends to clump up under this force, and then to stay
clumped up. We know from thermodynamics that maximal entropy states are
the equilibrium states toward which systems tend to evolve and then stay. For
systems primarily under the influence of gravity, then, a clumped-up state has
high entropy. The early state of the universe, non-clumped-up and uniformly
spread out, had extremely low entropy due to gravity.

The main tenet of this argument is the identification of high-entropy states with

equilibrium states, similar to Brown and Uffink’s (2001) proposal that the notion of

entropy can be reduced to that of equilibrium. In a high-gravity situation as

hypothesised by the Big Bang model, the equilibrium state is one of gravitational

clusters (‘clumps’) and the proposed uniform state is therefore an unstable, non-

equilibrium, low-entropy state. Notably, this argument is based on another example

of the kind of phenomenon discussed in Section 3.4, where entropy does not track

visible disorder. However, as North (2011, quotation above) points out, this argu-

ment has not been developed into a formal model yet and is also not universally

accepted.

Price (1997, pp. 32–7), returning to an argument made by Boltzmann (1896/

1964), has proposed an alternative scenario that would lead to an increase in

statistical entropy for the observable universe but does not require the adoption

of the Past Hypothesis. He proposes that the development of the universe’s

entropy actually consists of small fluctuations around a high-entropy state,

which we would expect from the definition of statistical entropy (Section 3.2).

However, some time before the existence of humankind, the universe experi-

enced a relatively large one of those expected fluctuations downward from its

typical high-entropy state. This very fluctuation made it possible for our struc-

tured world (containing humans, chairs, planets etc.) to come into being.

Furthermore, the increase in entropy we are currently observing in the world

is not a trend in the long-term development of the universe’s entropy but the

temporary reversal of this fluctuation (Figure 11). Price (1997, p. 47) concludes

that the statistical second law is insufficient as a grounding for the Arrow of

Figure 11 Price’s (1997) scenario of a local fluctuation leading to an observed,

but atypical, entropy increase. The universe is currently in the red region of

entropy increase.
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Time since it is likely that the long-term development of the universe will

include both periods of decreasing and of increasing Boltzmann Entropy.

While it is unlikely that humankind would be able to exist in a universe at

maximum entropy, the fact that our collective lifespan will be characterised by

increasing entropy is not a sufficient reason to define the direction of time as this

is likely atypical for the universe as a whole.

In an extension of Price’s (1997) thesis, the existence of entropy fluctuations

in the statistical second law (Section 4.4) is clearly problematic if we want to

assert that the entropy development of the universe tracks the direction of time

deterministically. The conclusions we could draw from a hypothetical film of

the entropy of the universe would simply be that it is much (much!) more likely

that a low-entropy state happens before a high-entropy state. However, we

would not be able to rule out that the sequence of entropy states had been

recorded during one of the unlikely, but possible, downward fluctuations in

entropy (Figure 9). Accordingly, in contrast to the Empirical Arrow of Time

(Section 5.1), the Universal Statistical Arrow of Time only probabilistically

fulfils the definitional component of an entropy-grounding.

What is the explanatory potential of the Universal Statistical Arrow of Time for

the constituting-processes of our experience of the direction of time? In order to

fulfil the explanatory component of a grounding in the statistical second law, we

would need to show that an increase in the entropy of the universe implies that

processes like aging, memory-formation, causality, and others only happen in one

direction, namely, are irreversible. The standard argument for this implication

requires positing that (i) those processes are individually entropy increasing and

(ii) that the overall increase in entropy predicted by the statistical second law in

conjunction with the Cosmic Entropy Assumption and the Past Hypothesis

requires (in a strong statistical sense; see previous discussion) those individual

processes to be entropy increases and is therefore explanatory for their directional-

ity. However, as North (2011, p. 15) states:

This is not a rigorous argument. It is a plausibility claim that the theory should

be able to ground our records in this way, given Boltzmann’s reasoning in

statistical mechanics, and given big bang cosmology’s account of the formation

of stars and galaxies, which in turn lead to the existence of beaches and people,

who in turn lead to the existence of frozen popsicles, and so on.

In summary, the Universal Statistical Arrow of Time has the potential to

explain our experience of time but there currently exists no formal, sufficiently

detailed, causal argument to actually do so. Progress on this matter would

require significant advances in our understanding of both the development of

the universe as well as the workings of the constituting-processes of our

experience of time.
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It should be apparent from the preceding discussion that many contingencies

on the Universal Statistical Arrow of Time – in particular, the Cosmic Entropy

Assumption and the Past Hypothesis – result from the fact that it is a grounding

in the Statistical Entropy of the universe itself, that is, from the domain of

application. In the next section, we will discuss an alternative entropy-

grounding that focuses on our local experience of time instead.

5.3 The Local Statistical Arrow of Time

It is possible to decouple the grounding of the Arrow of Time in statistical

entropy from any assertions about the entropy of the universe as such: namely,

by requiring that the statistical second law (Section 4.2) grounds our experience

of the direction of time rather than time in an abstract, non-experiential sense

(Sklar, 1993, p. 390):

Local Statistical Arrow of Time: The Local Statistical Arrow of Time points

in the direction of the average increase in entropy during the constituting

processes of our experience of time (e.g., aging, memory formation,

causality), that is, we can explain the asymmetry in those processes by

reference to the statistical second law.

Given that we are now only concerned with our experience of the direction of time

(which is immediately accessible to us), the Local Statistical Arrow of Time has

lost its definitional function. To return to the example of watching a film and trying

to time-order different frames from this film, we would have to try to identify

a constitution-process of our experience of time to do so, for example, by watching

out for cause-and-effect pairs or explicit accounts of memory formation. It there-

fore does not fulfil the definitional component of a grounding in statistical entropy.

However, the Local Statistical Arrow of Time could have an explanatory

function, that is, it has the potential to fulfil the explanatory component of

a grounding. We can now explain the fact that our experience of time is

asymmetrical by referring to the fact that the processes that constitute this

experience are governed by the asymmetrical statistical second law. While the

Local Statistical Arrow of Time avoids the additional assumptions about the

nature of the universe that we had to make in the definition of the Universal

Statistical Arrow of Time (Section 5.2), to be truly explanatory of our experi-

ence of time, we need to make an assumption about the nature of the processes

underlying our experience of time:

Local Reduction Assumption: (i) All local processes that govern our

experience of time are reducible to statistical mechanical systems, namely, to

particle dynamics; (ii) a successful reduction of those processes confirms that
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they take place in systems to which the statistical second law is applicable; and

(iii) the initial state of each such process is of lower entropy than the final state.

The first requirement of the Local Reduction Assumption, the possibility of

reducing those processes to the interactions of ensembles of particles, is

unlikely to be controversial: it is a well-established fact that, on a microscopic

level, the world is constituted of atoms and their interactions.

However, the second requirement, that those processes will be governed by

the statistical second law, is much harder to ascertain. In particular, we currently

have an imperfect understanding of even the macroscopic, neurological and

physical, processes that underpin experiences like memory-formation and

aging. There is therefore no easy ‘lever’ available to even begin a reduction

of those systems to statistics of particle interactions. Even at this stage it is

apparent, however, that both those biological processes and causal processes are

not easily framed as taking place in closed systems: for example, in the case of

memory-formation, over the lifespan of a human, there is a complex exchange

between energy drawn from the environment through metabolic processes and

the maintenance of neurological functions. Similarly, it is unlikely that the

instantiation of the Equal Accessibility Assumption, which still needs to be

fulfilled in those systems for the second law to be applicable, would take the

form of the Stosszahlansatz that was derived for and tested on systems of

identical, non-interacting, elastic point-particles. Instead, it is much more likely

that those phenomena are similar to the systems of rod-like particles discussed

in Section 3.4.2 and that the Equal Accessibility Assumption needs to take

a different form to assure that micro-states on different micro-scales are equally

accessible. It now almost goes without saying that we should also not expect

those processes to align with any transition from visible order to disorder.

The third requirement of the Local Reduction Assumption is based on the fact

that, in order for the statistical second law to predict an overall increase rather

than fluctuations around the maximum entropy value, the initial state of each of

those processes would have to be at a lower entropy value than the final state.

This is not quite as severe an assumption as the Past Hypothesis, as the low-

entropy state only has to obtain for each process and could actually be different

each time the process runs, for example, one could imagine that the entropy of

the human brain increases stepwise through each memory formation process,

with each such process starting from a slightly higher level than before.

In addition, such a reduction would run into the same fundamental problems

that the project of reducing thermodynamics to statistical mechanics has already

encountered (Section 3.1): it would have to account for the translation of

probabilistic predictions, as made by the statistical second law, into outcomes
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of (at least seemingly) deterministic processes. This appears to be a particular

problem with respect to causation, which in its most paradigmatic instances

(e.g., physical impact) seems very clearly to be deterministic. That is, even

a vanishingly small probability of, say, Newton’s Cradle not resulting in an

impact on the last pendulum in the sequence would strongly contradict our

intuitions about the world.

An alternative approach to a straightforward physical reduction would be to

attempt a reduction of both the statistical second law and the constituting-

processes of our experience of time to a third, even more fundamental quantity.

Sklar (1993, pp. 387–411) reviews several such attempts, including a reduction

to information and information exchanges. This latter approach was popular in

the second half of the twentieth century (e.g., Brillouin, 1951; Bennett, 1973;

1982). However, the information-theoretic approach to entropy is currently

more controversially debated (for arguments against, see, e.g.: Earman &

Norton 1998; 1999; Norton, 2005; for arguments for: Bub, 2001. For our

purposes, it is sufficient to note that no full reduction to any third quantity has

yet been achieved. Therefore, the explanatory potential of the Local Statistical

Arrow of Time remains exactly this: a potentiality of offering an explanation

that would avoid making assumptions about the nature of the universe (in

contrast to the Universal Statistical Arrow of Time, Section 5.2), but for

which currently no straightforward route to formalisation has been identified.

5.4 Conclusion

It is easily apparent that the derivation of the two Statistical Arrows of Time from

the statistical second law requires the introduction of more additional assump-

tions than does the derivation of the Empirical Arrow of Time. The Global

Statistical Arrow of Time requires two additional assumptions (Section 5.2):

the Cosmic Entropy Assumption and the Past Hypothesis. The Local Statistical

Arrow of Time requires one additional assumption: the Local Reduction

Assumption (Section 5.3). Carrying over from the prior derivation of the

statistical second law is the Equal Accessibility Assumption (Section 4.3).

Therefore, the validity of the Statistical Arrows of Time depends on

a comparatively large number of contingencies. Furthermore, as demonstrated

in the discussions of each assumption above, the assumptions are not trivially

fulfilled and decisions about their veracity depend on advances on other, highly

contested, questions in science and philosophy: in the case of the Cosmic Entropy

Assumption and the Past Hypothesis on advances in our understanding of the

universe’s cosmological development; in the case of the Local Reduction

Assumption on a better understanding of how atomic and molecular phenomena
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underpin biological, neurological, and causal processes. I think it is fair to say that

a resolution of those questions is currently not in sight, and that it would be overly

optimistic to assume that any such resolution would make those assumptions true

rather than false. There are therefore several authors who contest the suitability of

the Global Statistical Arrow of Time or the Local Statistical Arrow of Time as

a (sole) definition for the direction of time (e.g., Sklar, 1993; Albert, 2000).

In addition, even if one is optimistic about the validity of the assumptions that

the derivations of the Statistical Arrows of Time introduce, the statistical nature

of those groundings means that their definitional powers, defined earlier as

establishing a time-ordering of events, is reduced. As Price (1997) points out,

the fact that higher-entropy states are overwhelmingly likely to follow lower-

entropy states (and not the other way around) could be a temporary state of the

universe’s development (Section 5.2). Even if a general entropy increase is

assumed, that is, we are not in a ‘fluke’ situation as hypothesised by Price

(1997), it could be the case that the events we are trying to time-order based on

am Statistical Arrow of Time are part of an extremely unlikely, but possible,

high-to-low entropy development. Accordingly, the Statistical Arrows of Time

only provide a most likely time-ordering, not a deterministic definition of the

direction of time.

6 Conclusions

In Section 1, we defined two aims for this Element:

Aim 1: Reconstructing, analysing, and comparing different derivational routes

to a grounding of the Arrow of Time in entropy.

Aim 2: Evaluating the link between entropy and visible disorder, and the

related claim of an alignment of the Arrow of Time with a development from

order to visible disorder.

In the following, I will first discuss the insights we obtained through fulfilling

Aim 1 (Section 6.1) and then summarise the results of the evaluation of the link

between entropy and visible disorder we undertook (Section 6.2).

6.1 Entropy-Groundings of the Arrow of Time

In the last four sections, we have traced the derivational routes of different

entropy-groundings of the Arrow of Time. Comparing Figure 12 to Figure 1, we

can see that the analysis in this Element has led to an unpacking of three

different derivational routes for entropy-groundings of the Arrow of Time,

and we have now gained a better understanding of the contingencies that each
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route introduces. Based on this analysis, we are therefore able to assess the

relative epistemic benefits of each entropy-grounding: (i) the Empirical Arrow

of Time fulfilled the definitional component of a grounding, but has no explana-

tory potential or power (Section 5.1); (ii) the Universal Statistical Arrow of

Time has the potential to fulfil both the definitional and explanatory components

of a grounding, but a realisation of this potential would require the resolution of

longstanding debates on the veracity of the three assumptions it depends on

(Section 5.2); (iii) the Local Statistical Arrow of Time does not fulfil the

definitional component of a grounding, but has the potential to fulfil the

explanatory component if longstanding debates on the veracity of the two

assumptions it depends on are resolved.

What are the overarching conclusions we can draw from the results of this

analysis? I maintain that there are three general conclusions that this compre-

hensive analysis of the different derivational routes to entropy-groundings of

the Arrow of Time entails. Those will be discussed in more detail in what

follows.

Conclusion 1: Entropy-groundings of the Arrow of Time are highly dependent

notions.

It is immediately obvious from the coexistence of those different derivational

routes (Figure 12) that the precise formulation and the epistemic function of

different entropy-groundings of the Arrow of Time depend on the choice of

Figure 12 Root-concepts of and derivational routes to entropy-groundings of

the Arrow of Time.
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ancestor concepts and of derivational method. Therefore, it is not possible to

view any entropy-grounding as a notion that ‘can be read off’ from the world.

Instead, each grounding of the direction of time is derived from multiple

ancestor notions. Entropy-groundings of the Arrow of Time are therefore

deeply rooted in the foundational framework of statistical mechanics and

thermodynamics. On the one hand, this means that unresolved questions

about the ancestor concepts – for example, about the correct definition of

entropy; the relationship between entropy and disorder (also see Section 6.2);

the correct derivation of the second law of thermodynamics, the reduction of

thermodynamics to statistical physics, and so on – influence the epistemic

functions of different entropy groundings. On the other hand, the depend-

ency on fundamental entities means that advances on the foundations of

statistical physics and thermodynamics will likely improve the fulfilment of

both the definitional and explanatory components of each grounding (see

also Conclusion 3).

Conclusion 2: There is currently no entropy-grounding of the Arrow of Time

that is both definitional and explanatory for the direction of time.

One of the most prominent results of this analysis is the lack of a clearly

distinguished ‘best’ candidate among the three different entropy-groundings.

None of the groundings fulfils both the explanatory and the definitional compo-

nent of a grounding, and the one that has the potential to do so, the Universal

Statistical Arrow of Time, is the one whose derivation introduces the most

contingencies.

Conclusion 2 could lead one to think that the project of deriving an entropy-

grounding of the Arrow of Time has failed and that one should turn to other

physical quantities to derive a grounding for the direction of time. Indeed, some

authors have come to this conclusion (prominently, Price, 1997) and there exist

alternative proposals to ground the Arrow of Time in electromagnetic radiation

(Frisch, 2006); in complexity (Lineweaver et al., 2013); and in weak interaction

(Golosz, 2017; Roberts, 2022). Each of those proposals deserves a detailed

analysis of its own to decide on its relative merits and demerits compared to

entropy-groundings; I therefore remain equivocal about the possibility that one

of those groundings will turn out to have better explanatory and definitional

properties than the three entropy-groundings discussed here. However, by

making clear the derivational routes to and respective advantages/disadvantages

of each entropy-grounding of the Arrow of Time, I hope that this Element has

paved the way for a truly comparative discussion of different groundings.

Furthermore, rather than abandon the project of deriving an entropy-

grounding of the Arrow of Time, I view Conclusion 2 as additional motivation
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to ‘work very hard on statistical mechanics’ (Earman & Norton, 1998, p. 440),

that is, as motivation to work towards resolving the foundational debates about

the validity of the assumptions that go into the derivation of different entropy-

groundings, and that currently impede the realisation of their explanatory and

definitional potential.

Conclusion 3: The lack of a fully definitional and explanatory entropy-grounding

of the Arrow of Time highlights the importance of reduction- and unification-

projects in statistical mechanics.

Throughout the analysis in this Element, it has become apparent that a fully

satisfactory entropy-grounding of the Arrow of Time would require the reso-

lution of some pertinent and longstanding questions on the reduction of a variety

of processes to particle dynamics. This is particularly apparent in the case of the

Cosmic Entropy Assumption (Section 5.2) and the Local Reduction

Assumption (Section 5.3), whose veracity crucially depends on how entropy-

relevant, macroscopic processes are instantiated on the level of molecules and

atomic particles. A furthering of the general reduction-project in science and

statistical mechanics would, therefore, likely be the most efficient way of

improving the explanatory power of the two Statistical Arrows of Time.

Furthermore, the Universal Statistical Arrow of Time, which has the potential

to fulfil the definitional and explanatory components of grounding for the

direction of time, requires the resolution of open questions in cosmology to

decide on the veracity of the Cosmic Entropy Assumption and the Past

Hypothesis (Section 5.2). Similarly, gaining a better understanding of the

neurological and biological processes that underpin aging and memory forma-

tion will be required to decide on the veracity of the Local Reduction

Assumption. As such, the analysis of the different derivational routes of the

three entropy-groundings of the Arrow of Time does not just emphasise the

importance of intertheoretical reduction, but of a unification and close integra-

tion of other areas of science with statistical physics and thermodynamics.

6.2 Entropy and Disorder

Throughout the Element, we discussed the question of whether statistical

entropy is a measure of visible disorder (formalised as randomness,

Section 2) and whether the Arrow of Time, if grounded in statistical entropy,

correspondingly also points in the direction of increasing disorder. We have

seen (Section 1.1) that this supposed link between an increase in entropy and

disorder is often used in conceptual arguments about the direction of a variety of

processes.
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However, in Section 3.4, we analysed a counterexample to the claim that

statistical entropy is a measure for visible disorder and demonstrated that, for

most phenomena beyond a class of very simplified particle systems, it is

unlikely that high-entropy states will coincide with visible disorder.

Conclusion 4: Statistical entropy is not a measure for visible disorder.

I have also argued that statistical entropy can be seen as a measure for a more

abstract notion of disorder (Section 3.4.3): a deviation from a perfectly ordered

state defined by the choice of phase space and, for coarse-grained entropies,

partition. Thereby, the phase space and partition one uses is not arbitrary but

contingent on the properties of the system under consideration. However, the

severing of the close connection between high entropy and visible disorder that

arguments based on the assumption that processes will naturally move from

order to visible disorder should be avoided. Similarly, one should be careful in

engaging in the reverse kind of reasoning, that is, assuming that a macrostate

that looks visibly disordered has high entropy and that ordered states always

have low entropy.
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