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On Motivic Realizations of the Canonical
Hermitian Variations of Hodge Structure of
Calabi–Yau Type over type DH Domains

Zheng Zhang

Abstract. LetD be the irreducibleHermitian symmetric domain of typeDH
2n . _ere exists a canoni-

cal Hermitian variation of real Hodge structureVR of Calabi–Yau type overD. _is short note con-
cerns the problem of giving motivic realizations forVR. Namely, we specify a descent ofVR fromR
toQ and ask whether theQ-descent ofVR can be realized as sub-variation of rational Hodge struc-
ture of those coming from families of algebraic varieties. When n = 2, we give amotivic realization
forVR. When n ≥ 3, we show that the unique irreducible factor of Calabi–Yau type in Sym2VR can
be realizedmotivically.

Introduction

Let D be a period domain, that is, a classifying space for polarized Hodge structures
of weight n with Hodge numbers {hp,q} for p + q = n. It has been known since
Griõths’ pioneering work that any variation ofHodge structure coming from a fam-
ily of algebraic varieties is contained in a horizontal subvariety of D (i.e., an integral
manifold of the diòerential system corresponding to Griõths transversality). More-
over, if a closed horizontal subvariety is semialgebraic (cf. [FL13, Deûnitions 1.1–1.2]),
then it is an unconstrainedMumford–Tate domain (and hence aHermitian symmet-
ric domain) whose embedding into D is equivariant, holomorphic, and horizontal
(see [FL13,_eorem 1.4]). It is thus of interest to study the following horizontal sub-
varieties ofD.

Deûnition ([FL13, Deûnition 2.1]) We say a horizontal subvariety D ↪ D is of
Hermitian type ifD is aHermitian symmetric domain embedded intoD via an equi-
variant, holomorphic, horizontal embedding. When D ⊂ D is ofHermitian type, the
induced variation ofHodge structure V onD is called aHermitian variation ofHodge
structure.

_e Hermitian variations of Hodge structure are those parameterized by Hermit-
ian symmetric domains considered byDeligne [Del79]. Also,whenD is irreducible, a
subvarietyD ⊂ D ofHermitian type is the same thing as aMumford–Tate subdomain
that is unconstrained (see [GGK12, p. 12]).
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Remark _e irreducible Hermitian symmetric domains are classiûed by pairs
(R, αs), where R is a connected Dynkin diagram and αs is a special node of R (see
[Del79, 1.2.6]). We use these pairs to denote the isomorphism classes of irreducible
Hermitian symmetric domains.

We shall be especially interested in Hermitian variations of Hodge structure of
the following two special types: abelian variety type and Calabi–Yau type. Hermitian
variations of Hodge structure of abelian variety type give families of abelian varieties
over the corresponding Hermitian symmetric domains. _ey have been classiûed by
Satake [Sat65] and Deligne [Del79] (see also [Mil13, Chapter 10]). Following [FL13],
we deûneHodge structures of Calabi–Yau type as follows.

Deûnition ([FL13, Deûnition 2.3]) AHodge structure V of Calabi–Yau (CY) type is
an eòective weight n Hodge structure such that V n ,0 is 1-dimensional. If n = 2, we
say that V is of K3 type.

Let D be a classifying space of certain polarized Hodge structures of CY type.
_e horizontal subvarieties D ⊂ D of Hermitian type induce Hermitian variations
of Hodge structure of CY type over D. Examples of Hermitian variations of Hodge
structure of CY type were constructed by by Gross [Gro94] (over tube domains) and
Sheng–Zuo [SZ10] (over non-tube domains). Based on these, Friedman and Laza
[FL13] classiûed Hermitian CY variations of real Hodge structure. In this note we
mainly consider the tube domain cases. As discussed in [Gro94, Sections 1, 2, and 8]
and [FL13, Section 2], there are six types of irreducibleHermitian symmetric domains
of tube type:

(A2n−1 , αn), (Bn , α1), (Cn , αn), (DR
n , α1), (DH

2n , α2n), (E7 , α7).

Over every irreducible tube domain D there exists a canonical R-variation ofHodge
structure VR of CY type (which descends to a Q-variation of Hodge structure up to
some choices). Any other irreducibleR-variation ofHodge structure of CY type over
D can be obtained from the canonical VR by taking the unique irreducible factor of
Sym●VR of CY type. Note that the canonical R-variations of Hodge structure over
type B and DR domains all have weight 2 (i.e., they are of K3 type) and are less inter-
esting to us.

Hermitian symmetric domains are universal coverings of connected Shimura vari-
eties that parameterize certain abelian varieties. It is a natural problem to investigate
the possibility of constructing Hermitian variations of Hodge structure of CY type
from families of abelian varieties. _e case for the (Cn , αn) domains is classical and
well known. One can simply take the middle cohomology of abelian n-fold, which
will contain a Hodge structure of CY type. At the other extreme, Satake and Deligne
showed that there is no variation of Hodge structure of abelian variety type over
(E7 , α7). _us, the canonical variation of Hodge structure of CY type over (E7 , α7)
cannot come from variations of Hodge structure of abelian variety type. _e case
when the domain is of type A has been discussed in [Zha15]. Speciûcally, certain Q-
descents of the canonical CY variations over type A tube domains can be realized as
sub-variations ofHodge structure of certainQ-variations ofHodge structure that are
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naturally associatedwith families of abelian varieties ofWeil type (or generalizedWeil
type in the presence of nontrivial real multiplication).

_e goal of this short note is to prove the following theorem concerning the re-
maining DH case.

Main _eorem Let D be the irreducible Hermitian symmetric domain (D2n , α2n)
that has real rank n.

(i) When n = 2, there exist two families of abelian 8-folds π1∶A1 →D and π2∶A2 →
D such that R1π1∗Q⊗Q R1π2∗Q contains a Hermitian Q-variation of Hodge structure
V of K3 type. Moreover, V ⊗Q R is isomorphic to the canonical CY variation of real
Hodge structure (which has weight 2) over D.

(ii) When n ≥ 2, there exists a family of abelian 4n-folds π∶A → D over D such
that R2nπ∗Q contains an irreducible Hermitian Q-variation of Hodge structure V′ of
CY type. Moreover, V′⊗QR is isomorphic to the unique irreducible factor of CY type in
Sym2 VR where VR is the the canonical R-variation of Hodge structure of CY type over
D (n.b. VR is of weight n).

Remark LetV be aHermitianQ-variation ofHodge structure of CY threefold type
over (D6 , α6)withV⊗QR the canonicalCYR-variation ofHodge structure. By [FL13,
Corollary 3.8], the generic endomorphism algebra of V is Q. One could consider the
more general situationwhen the generic endomorphism algebra is an arbitrary totally
real ûeld. _e issue isVwill then be overHermitian symmetric domains ofmixed type
D (cf. [FL13, _eorem 3.18]) over which there is no variation of Hodge structure of
abelian variety type (cf. [Mil13, p. 532]).

Remark Over Hermitian symmetric domains of type DH, one important reason
why the rank 2 case is distinguished from the higher rank cases is that there are two
diòerent symplectic nodes for the rank 2 case, while there is only one for the higher
rank cases (cf. [Mil13, pp. 529–530]). _is factwas also noted and used byAbdulali to
solve a quite diòerent problem (cf. [Abd02]).
Also, in the higher rank cases, one has to quotient out the kernel of ϖ1 (viewed as a

character) from the simply connected groups of DH type to obtain faithful symplectic
representations (i.e., Hodge representations giving variations of Hodge structure of
abelian variety type, see [Mil13, p. 530 and _eorem 10.21]). More speciûcally, we
should view these faithful representations as representations of the groups SO∗ (cf.
[Mil94, Remark 1.22]).

Remark In part (ii) of the Main _eorem, we only realize the Q-descents of
Sym2 VR (not the canonical VR) when the rank of D is bigger than or equal to 3.
For some representation-theoretic reasons, this is the best our constructions can do.
See Remark 3.5.

A�er reviewing some background materials on Hermitian symmetric domains,
Hodge representations, and the groups Spin∗ and SO∗ in Section 1,we prove theMain
_eorem for the rank 2 case and higher rank cases in Section 2 and Section 3, respec-
tively. _e constructions for these two cases are diòerent, but the ideas of the proof
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are quite similar and were also used in [Zha15]. Speciûcally, to give aHermitian vari-
ation of Hodge structure it suõces to give a Hodge representation. In this way one
reduces the problem of constructing a sub-variation of Hodge structure to the prob-
lemof constructing a subrepresentation. Another key step is to prove the rationality of
certain representations (e.g., the half-spin representations) using representation the-
ory and the ideas from [FL14]. We hope that our motivic realizations give a hint as to
how to construct families of Calabi–Yau varieties overHermitian symmetric domains
(geometric realizations). For example, the families of abelian varieties we construct
can also be obtained (up to isogeny) as certain Prym varieties associated with quater-
nionic covers of some algebraic curves (cf. [vGV03]). We wonder if it is possible to
construct Calabi–Yau varieties out of these quaternionic covers.

1 Preliminaries

1.1 Hermitian Variations of Hodge Structure and Hodge Representations

In this subsection,we collect some basic facts onHermitian variations ofHodge struc-
ture. _e emphasis will be on Hermitian symmetric domain of type DH andHermit-
ian variations ofHodge structure of abelian variety type and of CY type. _e general
references include [Mil13,GGK12,Ker14].

Let D = G(R)/K be an irreducibleHermitian symmetric domain (where G is the
almost simple and simply connected R-algebraic group associated with D and K is a
maximal compact subgroup of G(R)). Recall that irreducible Hermitian symmetric
domains are classiûed by the root system R of G(C) together with one of its spe-
cial roots αs . In particular, an irreducible Hermitian symmetric domain of type DH

2n
(n.b. it has real rank n) corresponds to the pair (D2n , α2n) and the associated sim-
ply connected algebraic group is Spin∗(4n) (cf. [Gro94, Section 1]). A�er choosing
a suitable arithmetic subgroup of Hol(D), we may also assume that the associated
algebraic group G is deûned over Q (cf. [Mil13,_eorem 3.13]).

To give aHermitianQ-variation ofHodge structure overD, one needs to construct
a representation ρ∶G → GL(V) deûned overQ and a compatible polarizationQ onV
such that ρ(V) ⊆ Aut(V ,Q). As explained in [GGK12, Step 4 of (IV.A)], a compatible
polarization typically exists and is unique. Also, without loss of generality, one can
assume that ρ is irreducible over Q.

We recall the following theorem of Deligne (see also [FL13, Section 2.1.1]). _e
necessary and suõcient conditions for ρ∶G → GL(V) togetherwith a reference point
φ∶U(1)→ G (where G = G/Z(G) is the adjoint group) to give aHermitian variation
ofHodge structure are as follows: there exists a reductive algebraic group M ⊆ GL(V)
deûned overQ (the genericMumford–Tate group of the variation ofHodge structure)
and amorphismof algebraic groups h∶S→ MR ⊆ GL(VR) (S = ResC/RGm) such that
(a) the homomorphism h deûnes aHodge structure on V ;
(b) the representation ρ factors through M and ρ(G) = Mder;
(c) the inducedmap h∶S/Gm → Mad,R = G is conjugate to φ∶U(1)→ G.

Remark (i) Following [GGK12], we call ρ aHodge representation.
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(ii) Asmentioned in [FL13, Section 2.1.1], for variations ofHodge structure of pure
weight it suõces to consider the restrictionsH = M∩SL(V) (thought of as the generic
special Mumford–Tate group or the genericHodge group) and h∣U(1)∶U(1)→ HR.

(iii) Subrepresentations of V correspond to sub-Hermitian variations of Hodge
structure and operations on representations correspond to the same operations on
Hermitian variations ofHodge structure.

Satake [Sat65] and Deligne [Del79] (especially Table 1.3.9) classiûedHodge repre-
sentations of abelian variety type (see also [Mil13, Chapter 10]). Based on the earlier
work of Gross [Gro94] and Sheng and Zuo [SZ10], Friedman and Laza [FL13] clas-
sifyHermitianR-variations ofHodge structure (or HermitianQ-variations ofHodge
structure that remain irreducible overR) of CY type. Over every irreducibleHermit-
ian symmetric domainD, there exists a canonicalR-variation ofHodge structure VR
of CY type; any other irreducible CYHermitianR-variation ofHodge structure onD

can be obtained from the canonical VR by taking the unique irreducible CY factor of
Sym●VR or, for non-tube domains, Sym●VR{− a2 } (a ∈ Z, { ⋅} denotes the half twist;
see [FL13, Section 2.1.3]). To describe the canonical variation of Hodge structure of
CY type, we set (R, αs) to be the pair determined by the domain D, and let G be the
associated algebraic group. Also let ρ∶G → GL(V) be a representation deûned overQ
such that VR ∶= V ⊗QR is still an irreducible representation. For tube domains, if the
representation VC ∶= VR ⊗R C of G(C) is irreducible (in other words, the represen-
tation VR is of real type, see, for example, [GGK12, p. 88]) and has highest weight ϖs
which is the fundamentalweight corresponding to the special root αs , then ρ gives rise
to a Hermitian Q-variation of Hodge structure of CY type whose scalar extension to
R is the canonical Hermitian R-variation ofHodge structure of CY type. _e weight
ϖs will be called the fundamental cominuscule weight associated with the domain D.
We refer the reader to [FL13] for the description of the canonical CY variation over
non-tube domains.

In particular, the canonical R-variation of Hodge structure of CY type VR over
(D2n , α2n) is given by a R-representation S+0,R of G(R) = Spin∗(4n) with the prop-
erty that S+0,R ⊗R C is the half-spin representation with highest weight ϖ2n (which is
the fundamental cominuscule weight associated with the domain (D2n , α2n)). _e
weight of VR equals n, the real rank of (D2n , α2n).

1.2 The Groups Spin∗ and SO∗

We construct a form H of the real algebraic group SO∗(2m) over Q following [FL14]
in this subsection. _en the spin double cover G ofH,which is simply connected and
of type DH

m , gives aQ-formof Spin∗(2m). _is speciûes the descents of the canonical
CY variations from R to Q.

Let E = Q(
√
−d) be an imaginary quadratic extension of Q. Set W to be an

E-vector space of dimension 2m with an E-basis e1 , . . . , e2m . We write z = ∑2m
i=1 z i e i ,

and similarly forw ∈W . Suppose that Q( ⋅ , ⋅ ) is a nondegenerate E-bilinear formon
W , written in the standard form

Q(z,w) =
2m

∑
i=1
(z iwm+i + zm+iw i).
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Also, let h be the standard (E ,Q)-Hermitian formof signature (m,m) onW , given by

h(z,w) =
m

∑
i=1

z iw i −
m

∑
i=1

zm+iwm+i .

Now we deûne H to be the group of E-linear isomorphisms ofW that have deter-
minant 1 and preserve Q and h. _e group H is deûned over Q, since it is the inter-
section of ResE/QSO(W ,Q) with SU(W , h). Recall that the real group SO∗(2m) is
deûned to be the isometry group of a skew-Hermitian form on Hm . By [GW09, Ex-
ercise 1.1.5(12)], one has H ⊗Q R ≅ SO∗(2m).

LetG be the neutral component of the preimage ofH in ResE/QSpin(W ,Q) under
the spin double covering map. Clearly, G is aQ-form of Spin∗(2m).

To conclude this subsection, let us note that there are some natural representations
of G. _e ûrst one is the standard representation G → H → GL(W). Moreover, G
also admits two half-spin representations. To construct them, letW1 (resp.W2) be the
Q-isotropic E-vector subspace ofW spanned by e1 , . . . , em (resp. em+1 , . . . , e2m). _e
half-spin representations are then given by the direct sum of even and odd exterior
powers ofW1:

S+ =
even
⋀
E

W1; S− =
odd
⋀
E
W1 .

2 Proof of the Main Theorem for the Rank 2 Case

We shall prove part (i) of theMain _eorem in this section. _e notation remains the
same as in Subsection 1.2 (with m = 4). In particular, D is an irreducible Hermitian
symmetric domain of type (D4 , α4) andG is the simply connectedQ-algebraic group
associated with D (n.b. G is a Q-form of Spin∗(8)). First, we construct two families
of abelian varieties over D.

Proposition 2.1 _e standard representation G → GL(W) and the half-spin repre-
sentation G → GL(S−) are both Hodge representations giving Hermitian Q-variation
of Hodge structure of abelian variety type over D.

Moreover, there exist two families of abelian 8-folds, π1∶A1 → D and π2∶A2 → D,
such that the associated variation of Hodge structure R1π1∗Q (resp. R1π2∗Q) corre-
sponds to the Hodge representation ResE/QW (resp. ResE/QS−).

Proof _e representations G → GL(W) and G → GL(S−) are both deûned overQ.
According to [Mil13, Summary 10.11], there are two symplectic nodes associated with
the domainDH

4 , namely, α1 and α3. By the standard representation theory (e.g., [FH91,
Chapters 19 and 20]), the irreducible factors of the representations (ResE/QW)⊗Q C
and (ResE/QS−) ⊗Q C have highest weight ϖ1 and ϖ3, respectively. So they give two
HermitianQ-variation ofHodge structure of abelian variety type. A�er choosing the
underlying integral structures we get two families of abelian 8-folds, π1 and π2 (see
also [Mil13,_eorem 11.8]).
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Remark 2.2 Recall that there is a classiûcation of irreducible polarized Q-Hodge
structures of weight 1 (or the corresponding abelian varieties) according to their en-
domorphism algebras (see for example [Moo99, (1.19)–(1.20)]). Speciûcally, there are
the following four types: real multiplication (type I), totally indeûnite quaternion
multiplication (type II), totally deûnite quaternionmultiplication (type III), and com-
plex multiplication (type IV). In our case, [GGK12,_eorem IV.E.4] implies that the
generic ûber of π1 and π2 are both of type III; therefore, the generic special Mumford–
Tate group (a.k.a. Hodge group) of the Hermitian variations of Hodge structures
R1π1∗Q and R1π2∗Q are both semisimple (cf. [Moo99, Proposition (1.24)]). We also
note that a general ûber of the family of abelian varieties A1 is isogenous to a certain
Prym variety associatedwith a quaternionic cover of a genus three curve (cf. [vGV03,
Section 3]).

Next we show that ResE/QS+ is a G-subrepresentation of ResE/QW ⊗Q ResE/QS−.

Lemma 2.3 (i) S+ is a subrepresentation ofW ⊗E S−.
(ii) _ere is a natural inclusion ResE/Q(W ⊗E S−) ⊆ (ResE/QW) ⊗Q (ResE/QS−)

that also commutes with the G-action.

Proof (i) Let g = Lie(G). Every representation will be viewed as representation
of g in this proof. _anks to the complete reducibility, it suõces to construct a surjec-
tion p∶W ⊗E S−↠ S+ compatible with the action of g. To deûne p, we use the inclu-
sion W ⊆ C(W ,Q) ≅ End(S+ ⊕ S−) (where C(W ,Q) is the Cliòord algebra for Q).
In otherwords, there is an action ofW on S+⊕S−. By [FH91, Lemma 20.9], the action
ofW exchanges S− and S+. In other words, we haveW × S− → S+, (w , ξ) ↦ w(ξ),
which is clearly E-bilinear and hence can be used to deûne p. It is not diõcult to check
that p is surjective.

Next we check that p is compatible with the action of g, that is, p(g ⋅ (v ⊗ ξ)) =
g ⋅ p(v ⊗ ξ) for every g ∈ g, v ∈ W and ξ ∈ S−. To do this, recall that we have
(g ⊆)so(W ,Q) ≅ ⋀2

E W ↪ C(W ,Q) ≅ End(S+ ⊕ S−), where the ûrst two maps
aremorphisms of Lie algebras and the last one is an algebra isomorphism (cf. [FH91,
Lemma 20.7]). Without loss of generality we assume that g = a ∧ b for a, b ∈ W . Let
us also recall that the multiplication in the Cliòord algebra C(W ,Q) is deûned by
ab + ba = 2Q(a, b). Now we have

p(g ⋅ (v ⊗ ξ)) = p((g ⋅ v)⊗ ξ + v ⊗ (g ⋅ ξ)) = (g ⋅ v)(ξ) + v(g ⋅ ξ)
= 2Q(b, v)a(ξ) − 2Q(a, v)b(ξ) + v( ab(ξ)) − Q(a, b)v(ξ)
(by [FH91, (20.4) and (20.6)])

= 2Q(b, v)a(ξ) − 2Q(a, v)b(ξ) + (vab)(ξ) − Q(a, b)v(ξ)
= (abv)(ξ) − Q(a, b)v(ξ)
(by the deûnition of Cliòord algebra)

= (ab)v(ξ) − Q(a, b)v(ξ) = g ⋅ p(v ⊗ ξ).

(ii) _e proof is essentially the same as that of [Zha15, Lemmas 3.1 and 3.2]. Re-
placing wedge product by tensor product causes no essential changes. Let us denote
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ResE/Q byRes and the E-dual vector space using ∗. First observe that there is a natural
surjection

Res(W∗)⊗Q Res(S−∗)↠ Res(W∗ ⊗E S−∗)
which gives, by duality, an injection

HomQ (Res(W∗ ⊗E S−∗),Q) ↪Ð→ HomQ (Res(W∗)⊗Q Res(S−∗) ,Q).

Also, for any E-vector space M there is a natural isomorphism

ResHomE(M , E) ≅ HomQ(ResM ,Q), f z→ Tr ○ f

as in op. cit. _e natural inclusion can be deûned as follows.

Res(W ⊗E S−) ≅ Res( HomE(W∗ , E)⊗E HomE(S−∗ , E))
≅ ResHomE(W∗ ⊗E S−∗ , E)
≅ HomQ (Res(W∗ ⊗E S−∗),Q)
⊆ HomQ(Res(W∗)⊗Q Res(S−∗),Q)
≅ HomQ(ResW∗ ,Q)⊗Q HomQ(ResS−∗ ,Q)
≅ Res(W∗∗)⊗Q Res(S−)∗∗ ≅ ResW ⊗Q ResS− .

Finally, to check that this map is G-equivariant (also a�er scalar extensions by arbi-
traryQ-algebras) is straightforward and quite similar to what we did in op. cit..

Now we show that the half-spin representation S+ is deûned over Q.

Lemma 2.4 _ere exists a G-subrepresentation on a Q-vector space S+0 ⊆ ResE/QS+
such that S+0 ⊗Q E ≅ S+.

Proof As is well known, it suõces to construct an E-conjugate linear operator
⋆∶ResE/QS+ → ResE/QS+ that is compatible with the G-action and satisfy ⋆ ○ ⋆ = id.
Let us consider the Hodge star operator ⋆ associated with the Hermitian form h∣W1
and the volume form e1 ∧ ⋅ ⋅ ⋅ ∧ e4 deûned in [FL13, Section 3.5] (see also Lemma 3.3).
One can easily show that ⋆ is E-conjugate linear and maps ⋀2+2k

E W1 to ⋀2−2k
E W1

for k = −1, 0, 1. _e more diõcult part is to verify that ⋆ is a morphism of G-
representations. But this has been done in [FL14, Section 3].

Remark Over an arbitrary totally real ûeld, ⋆ may not commute with the corre-
sponding group action. To ûx this, one should use the “twistedHodge star operator”,
which is deûned in [FL14, Deûnition 3.10].

We also need the following lemmas to prove the Main _eorem. Let us denote
the special Mumford–Tate group (a.k.a. Hodge group) of a Q-Hodge structure V by
Hg(V).

Lemma 2.5 Let V be aQ-Hodge structure. Let W ⊆ V be a sub-Hodge structure.
(i) _ere exists a surjective homomorphism Hg(V)↠ Hg(W).
(ii) IfHg(V) is semisimple, then Hg(W) is also semisimple.
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Proof Part (i) follows from [GGK12, (I.B.7)]. Since any quotient of a semisimple
algebraic group is semisimple, part (ii) is clear from part (i).

Lemma 2.6 Let V be aQ-Hodge structure. IfHg(V) is semisimple, then Hg(⋀k
Q V)

is semisimple (with k a non-negative integer).

Proof Note that ⋀k
Q V is a sub-Hodge structure of ⊗k

QV . By Lemma 2.5 it suf-
ûces to show that Hg(⊗k

QV) is semisimple. According to [Moo99, (1.8)], we have
Hg(⊗k

QV) = r(Hg(V)) where r∶GL(V) → GL(⊗k
QV) is the natural homomor-

phism. In other words, we have a surjective homomorphism Hg(V)↠ Hg(⊗k
QV).

BecauseHg(V) is semisimple,Hg(⊗k
QV) is also semisimple.

Now let us prove part (i) of theMain _eorem.

Proof By Lemma 2.3 and Lemma 2.4,we have S+0 ⊆ ResE/QS+ ⊆ ResE/Q(W⊗E S−) ⊆
(ResE/QW)⊗Q (ResE/QS−) as representations ofG. Also, ResE/QW (resp. ResE/QS+)
corresponds to a family of abelian 8-folds π1∶A1 → D (resp. π2∶A2 → D) (cf. Propo-
sition 2.1). Let A i be the generic ûber of π i (i = 1, 2), which is a simple abelian variety.
Using [GGK12,_eorem IV.E.4], it is easy to see that A1 and A2 are both of type III.
By [Moo99, Proposition (1.24)], the special Mumford–Tate group of H1(A1 × A2 ,Q)
is semisimple. _e special Mumford–Tate group ofH2(A1×A2 ,Q) is also semisimple
because H2(A1 ×A2 ,Q) ≅ ⋀2

Q H1(A1 ×A2 ,Q) (cf. Lemma 2.6). Since H1(A1 ,Q)⊗Q
H1(A2 ,Q) is a sub-Hodge structure ofH2(A1×A2 ,Q),H1(A1 ,Q)⊗QH1(A2 ,Q) has
a semisimple special Mumford–Tate group as well (Lemma 2.5).
As a result, the special Mumford–Tate group of the Hermitian variation of

Hodge structure R1π1∗Q ⊗Q R1π2∗Q (which corresponds to the Hodge represen-
tation (ResE/QW) ⊗Q (ResE/QS−)) is semisimple. Let us denote it by Hg. By
Deligne’s theorem in Subsection 1.1 (especially condition (ii)), Hg is the image of G
in SL((ResE/QW) ⊗Q (ResE/QS−)) (see also [Roh09, Corollary 1.3.19] and [Mil15,
Corollary 22.123] ). It follows that S+0 is a Hg-subrepresentation of (ResE/QW) ⊗Q
(ResE/QS−) (n.b. Hg is the generic special Mumford–Tate group) and hence gives a
variation of sub-Hodge structure V (cf. [Moo99, (1.12)]).

Now it suõces to show that S+0 ⊗QR (or equivalently, V⊗QR) gives the canonical
R-variation of Hodge structure of K3 type. Note that S+0 ⊗Q C ≅ S+0 ⊗Q E ⊗Q R ≅
S+ ⊗Q R. Since S+ ⊗Q R is isomorphic to ⋀evenC (W1 ⊗Q R) (by the construction),
S+0 ⊗Q R is the half-spin representation of G(C) ≅ Spin(8,C) with highest weight
ϖ4. Because ϖ4 is the fundamental cominuscule weight associated with the domain
D, the theorem follows from [Gro94, Section 3] or [FL13,_eorem 2.22].

3 Proof of the Main Theorem for the Higher Rank Cases

Let D be the irreducible Hermitian symmetric domain of type (D2n , α2n) with n ≥
2. We will prove part (ii) of the Main _eorem for D in this section. Recall that G
is the simply connected Q-algebraic group associated with D and H is a Q-form of
SO∗(2m). _ere is a spin double cover G → H. We also use the other notation in
Subsection 1.2 (in particular, note that m = 2n).
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Proposition 3.1 _e standard representation H → GL(W) is a faithful Hodge repre-
sentation corresponding to aHermitianQ-variation ofHodge structure of abelian vari-
ety type over D. Furthermore, there exists a family of abelian 4n-folds π∶A → D such
that the associated variation of Hodge structure R1π∗Q is given by the Hodge represen-
tation ResE/QW .

Proof By [Mil13, Summary 10.11], the only symplectic node of DH
2n (n ≥ 3) is α1. _e

rest is the same as the proof of Proposition 2.1.

Remark As discussed in Remark 2.2, the generic ûber of π is of type III and has a
semisimple special Mumford–Tate group.

From [Zha15, Lemmas 3.1 and 3.2], we deduce the following lemma.

Lemma 3.2 ResE/Q(⋀m
E W) is naturally an H-subrepresentation of⋀m

Q(ResE/QW).

We construct elements L and ⋆ of the endomorphism algebra EndQ[H](⋀m
E W),

which will be used to decompose ⋀m
E W . _e operator ⋆ is deûned in the same way

as in [FL13, Section 3.5]. Speciûcally, there are two natural pairings on ⋀m
E W : the

wedge product

∧∶
m
⋀
E
W ×

m
⋀
E
W Ð→

2m
⋀
E
W ≅ E

and

∧mh∶
m
⋀
E
W ×

m
⋀
E
W Ð→ E , (∧mh)(w1 ∧ ⋅ ⋅ ⋅ ∧wm , u1 ∧ ⋅ ⋅ ⋅ ∧ um) ∶= det (h(w i , u j)) .

_ey give an E-linear isomorphism φ∶⋀m
E W → ⋀m

E W∗ and an E-conjugate-linear
isomorphism ρ∶⋀m

E W → ⋀m
E W∗ respectively. _e operator ⋆ is then deûned by

⋆ = φ−1 ○ ρ. Note that there is another E-linear isomorphism τ∶⋀m
E W → ⋀m

E W∗

given by the pairing

∧mQ∶
m
⋀
E
W ×

m
⋀
E
W → E , (∧mQ)(w1 ∧ ⋅ ⋅ ⋅ ∧wm , u1 ∧ ⋅ ⋅ ⋅ ∧ um) ∶= det(Q(w i , u j)).

We deûne L by L = φ−1 ○ τ.
Concerning ⋆ and L, they satisfy the following properties.

Lemma 3.3
(i) _e E-linear operator L commutes with the H-action and L ○ L = id.
(ii) _e E-conjugate-linear operator ⋆ commutes with the H-action and ⋆ ○ ⋆ = id.

Proof For (i), the action of H preserves the pairing

∧∶
m
⋀
E
W ×

m
⋀
E
W Ð→

2m
⋀
E
W ≅ E

and the symmetric bilinear form ∧mQ, and hence commutes with L. By [FH91,_e-
orem 19.2(iii)], L ○ L = id. Part (ii) follows from [FL13, Lemma 3.21].
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Lemma 3.4 _e operators L and ⋆ commute (i.e., L○⋆ = ⋆○L) in EndQ[H](⋀m
E W).

Proof We ûrst set up some notation. Let {e1 , . . . , e2m} be a basis ofW such that the
symmetric bilinear form Q and the Hermitian form h can be expressed in the same
form as in Subsection 1.2. Also denote the corresponding dual basis by {e∗1 , . . . , e∗2m}.
Now deûne B∶W → W∗ by B(v)(w) = Q(v ,w), and F∶W → W∗ by F(v)(w) =
h(w , v). It is clear that B(e i) = e∗m+i , B(em+i) = e∗i and that F(e i) = e∗i , F(em+i) =
−e∗m+i for 1 ≤ i ≤ m. Using these we can make the operators τ and ρ more explicit.
Speciûcally, we have τ(e l1 ∧ e l2 ∧ ⋅ ⋅ ⋅ ∧ e lm) = B(e l1) ∧ B(e l2) ∧ ⋅ ⋅ ⋅ ∧ B(e lm) and
ρ(e l1 ∧ e l2 ∧ ⋅ ⋅ ⋅ ∧ e lm) = F(e l1) ∧ F(e l2) ∧ ⋅ ⋅ ⋅ ∧ F(e lm).

Nowwe consider φ. Let I = {i1 , i2 , . . . , im}with 1 ≤ i1 < i2 < ⋅ ⋅ ⋅ < im ≤ 2m. Set J =
{1, 2, . . . , 2m} ∖ I = { j1 , j2 , . . . , jm} with j1 < j2 < ⋅ ⋅ ⋅ < jm . _en it is not diõcult to
see that φ(e i1∧e i2∧⋅ ⋅ ⋅∧e im) = єI , J ⋅e∗j1∧e

∗

j2∧⋅ ⋅ ⋅∧e
∗

jm = (−1)n+i1+i2+⋅⋅⋅+im e∗j1∧e
∗

j2∧⋅ ⋅ ⋅∧e
∗

jm
(recall that n = m

2 ). So φ−1(e∗j1 ∧ e
∗

j2 ∧ ⋅ ⋅ ⋅ ∧ e
∗

jm) = (−1)
n+ j1+ j2+⋅⋅⋅+ jm e i1 ∧ e i2 ∧ ⋅ ⋅ ⋅ ∧ e im .

Let us prove the lemma. Let I and J be the ordered set as above. Clearly, it suõces
to verify that τ ○φ−1 ○ ρ = ρ ○φ−1 ○ τ for eI = e i1 ∧ e i2 ∧ ⋅ ⋅ ⋅∧ e im (i1 < i2 < ⋅ ⋅ ⋅ < im). We
ûrst determine which e∗j ’s appear for the le�-hand-side (i.e., (τ ○ φ−1 ○ ρ)(eI)) and
the right-hand side (i.e., (ρ ○φ−1 ○ τ)(eI)). To do this, we deûne s(i) ∈ {1, 2, . . . , 2m}
(for every 1 ≤ i ≤ 2m) by s(i) = m + i if i ≤ m and s(i) = i − m if i > m. If i ∈ I
while s(i) ∉ I, then e∗i will appear for both the le�-hand-side and the right-hand side;
if i ∈ I and s(i) ∈ I, then neither e∗i nor e∗s(i) will be contained in (τ ○ φ−1 ○ ρ)(eI) or
(ρ○φ−1○τ)(eI); if i ∉ I and s(i) ∉ I, then e∗i and e∗s(i) will be contained in both the le�-
hand-side and the right-hand side. So (τ○φ−1 ○ρ)(eI) and (ρ○φ−1 ○τ)(eI) consist of
the same e∗j ’s. It follows that both (τ○φ−1○ρ)(eI) and (ρ○φ−1○τ)(eI) can be expressed
uniquely, up to a sign, as e∗l1 ∧e

∗

l2 ∧⋅ ⋅ ⋅∧e
∗

lm with the same sub-indices l1 < l2 < ⋅ ⋅ ⋅ < lm .
Now let us verify that the signs are the same. Let k = Card(I∩{m+1, . . . , 2m}). _en
it is straightforward to check that the sign of (τ ○ φ−1 ○ ρ)(eI) is (−1)k+n+i1+⋅⋅⋅+im+k ,
and the sign for (ρ ○ φ−1 ○ τ)(eI) is (−1)k+n+s(i1)+⋅⋅⋅+s(im)+(m−k). Since m is an even
number, we get i ≡ s(i) (mod 2) for every i, which implies that the two signs are the
same.

We now prove part (ii) of theMain _eorem. Note that m = 2n.

Proof Let S = ker(L − id). _en S is an H-subrepresentation of ⋀m
E W . By

Lemma 3.4, we have L ○ ⋆ = ⋆ ○ L and hence L(⋆(s)) = ⋆(L(s)) = ⋆(s) for any
s ∈ S. So the restriction of ⋆ to S is well deûned. Let S0 = ker(⋆ ∣S −id) ⊆ S. Since ⋆
is E-conjugate-linear, S0 is aQ-subrepresentation of ResE/QS.

Note that we have S0 ⊆ ResE/QS ⊆ ResE/Q(⋀m
E W) ⊆ ⋀m

Q(ResE/QW) as repre-
sentations of H (cf. also Lemma 3.2). Recall that theHodge representation ResE/QW
corresponds to a family of abelian 4n-folds π∶A→D constructed in Proposition 3.1.
By [GGK12,_eorem IV.E.4] and [Moo99, Proposition (1.24)], the special Mumford–
Tate group of theHermitian variation ofHodge structure R1π∗Q (which corresponds
to the Hodge representation ResE/QW) is semisimple. It follows that the special
Mumford–Tate group of the variation ofHodge structure Rmπ∗Q given by theHodge
representation ⋀m

Q(ResE/QW) is semisimple (Lemma 2.6). Let us denote it by Hg.
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_e next part of the proof is quite similar to the rank 2 case. Speciûcally, by the re-
sult of Deligne (see Subsection 1.1, especially Condition (ii)) Hg is the image of H in
SL(⋀m

Q(ResE/QW)). As a result, S0 ⊆ ⋀m
Q(ResE/QW) is invariant under the action of

the generic special Mumford–Tate group Hg and hence corresponds to a variation of
sub-Hodge structure V′.

It remains to prove that S0 is theHodge representation of CY type and compareV′
to the canonicalCYvariation. Let us consider S0,R ∶= S0⊗QR. Because S0⊗QE ≅ S,we
get S0,R⊗RC ≅ S0⊗QC ≅ S0⊗QE⊗QR ≅ S⊗QR. According to [FH91,_eorem19.2(ii)
and (iii)], S⊗QR ⊆ ⋀m

C WR is the irreducible representation ofH(R) ≅ SO∗(2m)with
highestweight 2ϖm . Sinceϖm is the fundamental cominusculeweight associatedwith
the domainD,V′ isof CY type [FL13,_eorem 2.22]. Consider thehalf-spin represen-
tation S+. Note that S+ is deûned over Q (that is, there exists a G-subrepresentation
on aQ-vector space S+0 such that S+0⊗QE ≅ S+). By [Gro94] or [FL13], S+0⊗R gives the
canonical CY variation VR over D. Using the highest weight theory, it is easy to see
that S0,R⊗RC ≅ S⊗QR is isomorphic to an irreducible summand of Sym2(S+0 ⊗QC).
_e theorem then follows.

Remark 3.5 Note that in part (ii) of theMain theoremwe, only realize Sym2 VR (not
the canonical CY variation VR). _is is the best our constructions can do when the
rank of the domain is bigger or equal to 3. One important reason is that the half-spin
representationwith highestweight ϖm is not a representation of the orthogonal group
H(C) ≅ SO(2m,C) (cf. [FH91, Proposition 23.13]). As a result,VR is not contained in
any tensor construction of the cohomology of the universal family of abelian varieties
π∶A → D. Speciûcally, let WR be the standard representation corresponding to a
Hermitian variation ofHodge structure of abelian variety type, and set S+0,R to be the
Hodge representation corresponding to the canonicalR-variation ofHodge structure
of CY type. By [GGK12,_eorem (IV.E.4)],WR is of quaternion type (i.e.,WR⊗RC =
U ⊕ U∗ with U ≅ U∗ and ResC/RU = WR). Suppose we have S+0,R ⊆ ⊗l

RWR as
representations of G(R) ≅ Spin∗(2m). _en S+0,R ⊗R C is a subrepresentation of
(⊗l

RWR) ⊗R C ≅ ⊗l
C(U ⊕ U∗) (as representations of G(C) ≅ Spin(2m,C)) which

factors through H(C) ≅ SO(2m,C). Since SO(2m,C) = Spin(2m,C)/{±1}, (−1)
also acts trivially on the half-spin representation S+0,R ⊗R C which is a contradiction.
_is argument also works for other tensor constructions (⊗l1

RWR)⊗ (⊗l2
RW

∗

R ).
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