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BOUNDARIES FOR REAL BANACH ALGEBRAS 

B. V. LIMAYE 

I n t r o d u c t i o n . Let A be a commuta t ive real Banach algebra with unit , and 
M A its maximal ideal space. T h e existence of the Silov boundary SA for A was 
established in [5] by resorting to the complexification of A. We give here an 
intrinsic proof of this result which exhibits the close connection between the 
absolute values and the real par ts of 'functions' in A (Theorem 1.3). 

For a subset B of A, we define the Silov boundary for B relative to A, and 
use it, together with the method of complexification, to extend to the real case 
some recent results in [6] for complex function algebras. These determine MB 

and SB in terms of MA and SA if B is a closed subalgebra of A and contains an 
ideal J of A such tha t hullA / contains no non-empty perfect subset (Theorems 
3.1 and 3.4). They also extend a result in [5] where B is a part icular type of real 
subalgebra of a complex function algebra A (Corollary 3.5 and Example 3.6). 

1. C h o q u e t se t s a n d Si lov b o u n d a r i e s . Let A be a commuta t ive real 
Banach algebra with 1, and MA the set of all maximal ideals of A. For e a c h / 
in A, l/l and R e / are well defined functions on MA. (See, e.g., [1].) Let 
\A\ = {l/l :jmA\ and Re A = { R e / : / i n ^ } . 

PROPOSITION 1.1. The weak \A\ topology on MA is the same as the weak Re A 
topology on MA, and it makes MA a compact Hausdorff space. 

Proof. Let J^~i and 3T 2 be the weak \Â\ and the weak Re A topologies on MA. 
Let LA denote the set of all real linear maps of A into the complex numbers , and 

J7" the weak A topology on it. If T : <j>A —• MA, by T(k) = &-1(0)> where <j>A is 
the closed set [k in LA : k multiplicative, k{\) = 1}, then <f>A is onto MAj and T 
is continuous if LA and MA are given the topologies 3/~ and $~\ respectively. 
Since the closed unit ball in LA is compact by the Banach-Alaoglu theorem, 
(MA,<!7~i) is compact . We next show tha t (MA,^2) is Hausdorff. This follows 
since Re A separates points of MA: Let yi ^ y2 be in MA, and / in A which 
belongs to y\ bu t not to y2. If k\ and k2 are in LA such t ha t T(k\) = y\ and 
T(k2) = y2, then ki(f) = 0, and k2(f) = a + ib, for some real numbers a and b, 
which are not both zero. Then Ref(yi) = 0, R e / ( ^ 2 ) = a, Re ( / 2 ) " (^ i ) = 0, and 
Re(/2)"(3 ;2) = (i2 — b2. Hence either R e / o r R e ( / 2 ) " separates yx and y2. 

Now, the identi ty map from (M,^~i) to (M, •(f 2) is continuous, since for 
each / in A, R e / = log | ( e x p / ) " | . All is proven. 

Definition 1.2. A subset 5 of MA is called a Choquet set for A if each element of 
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Re A assumes its maximum on S. S is called a boundary for A if each element of 
\A | assumes its maximum on S. 

T H E O R E M 1.3. 

(i) Every boundary for A is a Choquet set for A. 
(ii) Every closed Choquet set for A is a boundary for A. 

(iii) There exists a (unique) smallest closed Choquet set for A, and it is the 
smallest closed boundary for A. 

Proof, (i) follows since, for e a c h / i n A, R e / = log | ( e x p / ) " | . 
Let S be a closed Choquet set for A. If it were not a boundary for A, there 

e x i s t s / in A, e < 1, and y in MA such tha t | / | ^ e on S, bu t \f\(y) = 1. Since, 
for each positive i n t e g e r s , | Re ( / n )" | ^ | ( / w ) 1 S tn on S, and S is a Choquet set 
for A, |Re( / w )" | ^ ew on MA , and in particular a t y. If k is a real homomorphism 
of A with null space y, then, since | / | (y) = 1, k(f) = exp( ia) , for some real 
number a. Thus , \R(fn)" (y)\ = |cos na\ ^ en, for each positive integer n. But , 
as w tends to infinity, en tends zero while cos na does not, a contradiction. I t 
follows tha t S is a boundary for A. 

Finally, it follows from (i) and (ii) tha t if a smallest closed Choquet set for A 
exists, it must also be the smallest closed boundary for A. T h a t a smallest 
closed Choquet set for A exists follows from these results of Choquet : Let Y be 
a compact Hausdorff topological space, and H a linear subspace of the space of 
all real valued continuous functions on Y. Let Ch(H) be the set of all points of 
Y which admi t unique representing measures with respect to H. Then, if H 
separates points of Y, each h in H a t ta ins its maximum on Ch( i f ) and the 
closure in Y of Ch(H) is the smallest closed subset of Y on which each h in H 
at ta ins its maximum [2, Corollary 29.6 and Proposition 29.8]. 

Definition 1.4. The smallest closed boundary for A is called the Silov boundary 
for A. We shall denote it by SA. 

If B is a subset of A, and if there exists a (unique) closed subset of SA such 
tha t each element of |i51 = {|/| : / in B\ a t ta ins its maximum on it, then such a 
set will be called the Silov boundary for B relative to A, and denoted by ASB. 

PROPOSITION 1.5. Let B be a closed subalgebra of A containing 1, MB its 
maximal ideal space, and r : MA —> MB, the restriction map. Then, 

(i) SB is contained in r(SA). 
(ii) / / r is one to one on SA, then ASB exists and equals SA C\ r - 1 ( 5 f l ) . 

Proof, (i). T h a t SB is contained in r(MA) ; i.e., every maximal ideal of B which 
is in SB can be extended to a maximal ideal of A follows as in the case where 
A and B are complex algebras [4, p. 78-80]. Hence r(MA) is a boundary for B. 
This together with the fact tha t 5^ is a boundary for A shows tha t r(SA) is a 
boundary for B. 

(ii). Since SB is contained in r(SA), each | / | , / in B, a t ta ins its maximum on 
5.4 C\ r _ 1 ( 5 B ) . On the other hand, if F is a closed subset of S on which each | / | , / 
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in B, attains its maximum, then r(F) is a boundary for B, so that SB is contained 
in r(F). But r is one to one on SA, hence SA C\ r _ 1 (5 s ) is contained in F. This 
shows that ASB exists and equals SA r\ r_ 1(SB). 

Remark 1.6. It is well known that if A is a complex subspace of C( F), the set 
of all complex-valued continuous functions on a compact Hausdorff space F, 
such that A contains constants and separates points, then there exists a 
(unique) smallest closed subset of F on which every/ in A attains its maximum 
modulus. If A is only a real subspace of C{Y)} then the proof of Theorem 1.3 
shows that if A is a ring such that / in A implies exp / also in A, and if Re A 
separates points of F then the same conclusion holds. 

2. Complexifications. Let A be a commutative real Banach algebra with 
unit 1. Under the natural operations 

ex A = {1 <g> / + i ® g : / , g in A ) 

becomes a commutative complex algebra with unit 1 0 1, and there exists a 
norm on ex A for which ex A becomes a Banach algebra, and the natural injec­
tion of A into ex A is an isometry. If ex* : Mcx A —> MA is the restriction map, 
then ex* is surjective, and if Mcx A is given the Gelfand topology, it is con­
tinuous as well as open [1, 3.3 and 3.9]. Let a : ex A —» ex A, by 

o"(l 0 / + i 0 g) — 1 0 / — i 0 g, for every 1 0 / + i 0 g in ex ^4, 

and r : Mcx A -> Mcx A, by 

r(x) = {h: <r{h) in x}, for every x in ATCX .̂ 

Then ex* or = ex*, and if 5CX A is the Silov boundary for ex A, r(Scx A) = 5CX A-

PROPOSITION 2.1. cx*(5cx^) = SA, and (cx*)_1(5A) = ScxA. 

Proof. Since ex*(5CX A) is compact, it is closed and is clearly a boundary for A, 
so it containsSA. Conversely, we show that Scx A is contained in (cx*) - 1 ^^) = F, 
say. For this it is enough to prove that F is a boundary for ex A. If it were not a 
boundary, there exists h in ex A, e < 1, and x in Mcx A such that \h\ ^ e < 1 on 
7% but h{x) = 1. Let c = a(h)"(x). For each positive integer n, 

\(hY+ (<r(hyy\ ^ \(hy\ + \(*(hyr\ s w 
on F. Since h + a(h) 'belongs' to A, this inequality is valid on all of Mcx A, in 
particular at x. This gives |1 + cn\ ^ 2en, for each positive integer n. But, as n 
tends to infinity, 2en tends to zero, while 1 + cn does not, a contradiction. Thus, 
SCx A is contained in (CX*) _ 1 (5A) . 

Note. Compare the above result with Proposition 1.0 of [5]. The proof given 
there uses the trace map taking h to h + <r(h), and the norm map taking h to 
h - a(h), while the above proof uses only the trace map. The proof in [1, 3.16] is 
incorrect, for it uses the inequality \u(x)\ ^ \u(x) + iv(x)\, for complex func­
tions u and v. 
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As an application of the above proposition we prove the following result 
which will be used in § 3. 

PROPOSITION 2.2. If SA contains no non-empty perfect subset, then SA = MA. 

Proof. Since ex* : Scx A —» SA is at most two to one, it is clear that if K is a 
perfect subset of Scx A then ex* (K) is a perfect subset of SA. Since SA contains no 
non-empty perfect subset, neither does Scx A. Now ex A is a complex commuta­
tive Banach algebra with a unit, and if 5CX A = Mcx A, then 

SA = cx*(Scx^) = cx*(McxA) = MA. 

Thus, it is enough to prove the proposition when A is a complex commutative 
Banach algebra with 1. But this is given in [8, p. 107]. 

Let now B be a real subalgebra A containing 1, and 

cxB = {1 ®f + i ® g : / a n d gin B}. 

Then ex B is a complex subalgebra of ex A containing 1 ® 1. 

PROPOSITION 2.3. Let r : MA —> MB and rcx : Mcx A —> Mcx B be the restriction 
maps. Then 

(i) ex* o rcx = r o ex*, and 
TJB o ĉx — rcx o rA, where rA and rB are the 

involutions on Mcx A and Mcx B respectively. 
(ii) rcx is surjective if and only if r is surjective. 

(iii) If rcx is infective, then r is infective. If r is infective, then rcx(xi) = rcx(x2) 
implies %2 = Xi or x2 = TA(X\). 

(iv) ex B is closed in ex A if and only if B is closed in A. In that case, 
ScxB = r(ScxA) if and only if SB = r(SA). 

Proof, (i) For M in McxA, 

ex* orcx(M) = (MC\cxB)r\B = {MC\A)C\B = rocx*(M) , 
TB o rcx (M) = {1 (8)/ + i <8> g in M with / and g in B} = rcx orA (M). 

(ii) and the first part of (iii) are clear. If r is injective, and rcx{x\) = rcx(x2)> 
then TB o rQX(Xj) = r o TA(XJ), for j = 1, 2. Hence, TA(X\) = r^(x2), so that 
X2 = Xi or X2 = TA(X\). 

If ex B is closed in ex A, then since the injection of A into ex A is an isometry, 
B is closed in A. Conversely, let B be closed in A, and 1 ® fn + i ® gn tend to 
1 ® f + i ® g, where fn and gn, for each «, are in B, a n d / and g are in A, then 
since o- is continuous 1 ® fn — i ® gn tends to 1 ® f — i ® g. This shows that / n 

tends t o / and gn tends to g, so t h a t / and g are in B. Thus, ex B is closed in ex A. 
The last statement follows from Proposition 2.1 and the definition of a Silov 
boundary. 

3. Ideals and subalgebras. Throughout this section, unless otherwise 
stated, B will be a closed subalgebra of a commutative real Banach algebra A 
with unit 1 in B, and r : MA —» MB the restriction map. We find conditions 
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under which r(MA) = MB, and r(SA) = SB. If A and B are complex function 
algebras, this was done by Lund [6, 2.1 and 2.3]. We shall use many of his 
arguments in conjunction with the results in § 1 and § 2 to t rea t the real case. 

Since every y in SB can be extended to an x in MA (Proposition 1.5), MB = SB 

implies r(MA) = MB. More generally if / is a closed ideal of A contained in B, 
MB/J = SB/J implies r(MA) = MB. The proof of the following theorem is 
modelled after this observation. If / is an ideal of A, we let 

hulU / = {y in MA : y contains J}. 

T H E O R E M 3.1. Let J be an ideal of A contained in B such that either 

(a) hulU J contains no non-empty perfect subset, and r restricted to hullA J is 

one to one, or 

(b) hulU J is at most countable. 

Thenr(MA) = MB. 

Proof. Since hulU J — hullA J , and B is closed, we can assume without loss of 
generality t ha t J itself is closed. The cannonical map cA : A —> A/J induces a 
homeomorphism cA* : MA/J —> hulU 7, and similarly for MB/J and hull# J, by 
considering cB*. The injection map from B/J to A/J induces the restriction 
map r' : MA/J —> MB!J. Moreover, r = cB* o r' o (cA*)~l on hulU J , and 
r' = (^/?*)_1 o r o c^*. Our assumption implies tha t Af^/y and hence r'(MA/J) 
contains no non-empty perfect subset. But then SB/J, which is contained in 
r'(A/J) by (i) of Proposition 1.5, cannot contain a non-empty perfect subset. 
Now, Proposition 2.2 gives MB/J '= SB/J. 

Now, again by (i) of Proposition 1.5, rf is surjective, so t ha t r(hullA J) = 
hulljs / . On the other hand, if z belongs to MB bu t not to hull^ / , then the ideal 
generated by z m A, say / , is proper: L e t / belong to / , bu t not to z. If 

1 = a i / i + . . . + anfv 

with Uj in A and fj in 2, for 1 ^ j ^ w, then 

/ = (/^i)/ i + • • • + (f««)U 

Since / is an ideal of A,faj belongs to J, and hence to B. Since z is an ideal of B, 
(faj)fj belongs to z, for 1 S j ^ n. This implies t h a t / is in z, a contradict ion. 
Thus , I is a proper ideal of A. Then / is contained in some y in MA, and 
r(y) = z. We thus have r(MA) = MB. 

WTe now turn our a t tent ion to the Silov boundaries for A and B. First we 
s ta te a result involving SA and hull4 J. Although its proof is the same as in the 
complex case [8, p. 44], we present it here for the sake of completeness. 

LEMMA 3.2. Let A be a commutative real Banach algebra with 1, and J an ideal 
of A. If B is a subset of A which contains J and such that ASB exists, then 
SA — hull A J is contained in ASB. 
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Proof. Let y be in SA — hulU / , and U a neighbourhood of y in JkfA. Since 
hullA J is closed in MA, we can assume without loss of generality tha t U does 
not intersect hulU J. L e t / b e in A such tha t | / | (yf) = 1 for some y' in U, \f\ ^ 1 
on M A and | / | ^ 1/2 on M^ — U. Since y does not belong to hullA / , there 
exists g in J such tha t \g\ (yf) = 1. Then gre = g/n belongs to / and hence to B, 
for each n, and for large enough n, \gn\ assumes its maximum only on U. Thus , y 
belongs to ASB. 

Before we state our final theorem which gives sufficient conditions for 
r(SA) = SB, we prove another lemma which seems interesting in itself. 

LEMMA 3.3. Let the map r be one to one and onto. If y in SA is isolated in SA, 

then r(y) belongs to SB. 

Proof. Let y in SA be isolated in SA, and let cx*(x) = y, for some x in Scx A. 
Then it is clear tha t x is isolated in 5CX A. We show- tha t there exists an open as 
well as closed subset E of Mcx A such tha t E P\ 5CX A = {x}. 

Since F = 5CX A — {%) is closed and is strictly contained in .Sex A, F is not a 
boundary for ex A. Hence there exists an h in ex A such tha t h(x) = l , b u t | ^ | < 1 
on F. Since the topological boundary of h(Mcx A) is contained in h(Scx A) [3, 
p. 10], it follows that {1} is open in h(McxA). Let E = \x' m Mcx A : h(x') = 1}, 
which is as required. 

Let G = E\J T(E). Then G is also open and closed in Mcx A, and 
G P\ Scx A = {X,T(X)\. If r c x : Mcx A —* Mcx B is the restriction map, then clearly 
^cx(G) is closed in Mcx B. Since r is one to one and onto, by (ii) and (iii) of 
Proposition 2.3 we obtain 

McxB - rcx(G) = rcx(McxA - G). 

Hence rcx(G) is also open. By Silov's idempotent theorem [3, p. 88], there 
exists h in ex B such tha t h = 1 on rcx(G), and h = 0 on Afcx B — rcx(G). Thus , 
rcx(G) is a peak set for ex B, and as such has non-empty intersection with ,5cX B. 
Since T(G) = G, it follows tha t either rcx(x) or r c x ( r (x)) belongs to 5CX B. By (i) 
of Proposition 2.3, then, cx*(x) = y belongs to Su. 

T H E O R E M 3.4. Let the map r be one to one. Let J be an ideal of A contained in B 

such that hull4 J contains no non-empty perfect subset. Then r(SA) = SB. 

Proof. First, since B is closed, by (ii) of Proposition 1.5, ASB exists and 
equals 5^ P\ r~l(SB). Also, by Lemma 3.2, SA — hull^ / is contained in it. Thus , 
r(SA — hulU / ) is contained in SB. If we let E = SA — r~1(SB), this implies 
tha t hulU / contains E. 

Next, by Theorem 3.1, r(MA) = MB, so tha t Lemma 3.3 applies, and if y is 
isolated in SA, then r(y) belongs to SB. This shows tha t no y in E is isolated in E. 
Since hulU J contains no non-empty perfect subset, we conclude tha t E must be 
empty, so tha t r(SA) = SB. 

COROLLARY 3.5. Let A be a complex function algebra on a compact Hausdorff 
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space Y. Let E be a subset of MA, and for each y in E, let Dy be a continuous point 
derivation of A at y. Let 

B = {/ in A :f(y) and Dy{f) real for each y in E). 

Assume that for y \ ^ y 2in MA, there exists fin B such that f(yi) = l}andf(y2) = 0, 
and that the set 

{y in MA : / = 0 on E implies f(y) = 0} 

is at most countable. Then MB is homeomorphic to MA, and SB to SA. 

Proof. First , r : MA —> MB is one to one. Let 

/ = {/ in A : f(y) = A X / ) = 0 for each y in E\. 

Then by Theorem 3.1 r(MA) = MBf and by Theorem 3.4, r(SA) = SB. 

Example 3.6. T h e above corollary generalizes Proposition 2.2 of [5] where the 
set E was finite. We give here an example to show tha t it is a str ict generaliza­
tion. Let A be the s tandard algebra on the uni t circle, and let (yn) be a sequence 
in the open unit disk such tha t Yln=i (1 ~ \yn\) converges and (yn) has only one 
limit point y on the circle. 

Let DVn(f) = (f)'(yn), and let B and J be as in the above corollary with 
E = {yn\. Then, by the factorization theorem for functions in A, \iu\\A J 
consists of \yn) together with the limit point y, and for y' ^ y" in the closed 
unit disk, there ex i s t s / in B such t h a t / ( y ) = 1 a n d / ( y r ) = 0. Hence MB is the 
closed uni t disk and SB is the uni t circle. 

Added in proof. We have s ta ted in the beginning of § 2 t ha t ex* : Mcx A —• MA 

is an open map, and referred to Lemma 3.9 of [1] for a proof. We now notice 
t ha t this proof is incorrect since it assumes t ha t if u(xo) + iv(xo) = 0, then 
U(XQ) = V(XQ) = 0, where u and v are complex-valued functions. We supply 
here a valid proof for the openness of cx*. Let V be an open subset of Mcx A. 
T o prove cx*(F) is open in MA. Since cx*(F) = c x * ( r ( F ) ) , we assume without 
loss of generality t ha t V = T(V). Let yo = cx*(x0), with x0 in V. There exist 
hi, . . . , hk in cx A such tha t hi(x0) = . . . = hk(xo) = 0, and an e, 0 < e ^ 1/3, 
such tha t if Um = {x in Mcx A : \h(x)\ < e, m = 1, . . . , k\ then n l = i Um is 
contained in V. 
^Letfm,n =^hma(hn) + hna(hm), m, n = 1,^. . . , k. Then fm>n is in A, and 

l/m.»|(yo) = \U.n(xo)\ = O.UW= {ymMA: \fm,n\{y) < 2e4, m, n = 1, . . . ,k}, 
then W is an open set in MA containing y0. We show tha t W is contained in 
cx* (F ) . Let y = cx*(x), with y in W. We have 

\h(x)\\&(hm)(x)\ = l/2\fmJ(y) < e4, l ^ m ^ k . 

Fix m and n, 1 ^ m, n ^ k. We prove t ha t either x belongs to Um r\ Un, or to 
r(Um) r\ r(Un). Now, either \hm(m)\ < e2, or \&(hm) (x)\ < e2. Assume first t ha t 
\hm(x)\ < e2. If \hn(x)\ < e2, then since e < 1, x belongs to Um H Un, while if 
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I An 0*01 = e2, then \â(hn)(x)\ < e2. In this case we claim that \&(hm)(x)\ < e, so 
that x belongs to r{Um) C\ r(Un). For, if \&(hm)(x)\ ^ e, then 

e3 - e4 < \hn{x)à(hm)(x)\ - \hm(x)&(hn)(x)\ 

è \Ln(x)\ = \Ln\(y) < 2 e 4 . 

But this is impossible since e ^ 1/3. Next, assume that \&(hm)\ < e2. Then the 
above argument goes through if we interchange hm and a(hm)} and hn and a(hn). 
Thus we see that x belongs to Um C\ Un} or to r ( Um) ^ T( Un). Since this is true 
for every m, n = 1, . . . , k, either x belongs to Pil=i Um, or to Hm=i r{Um). In 
any case x belongs to V, since V = T{V). Hence cx*(F) contains W. 
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