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Congruences for Modular Forms mod 2
and Quaternionic S-ideal Classes

Kimball Martin

Abstract. We provemany simultaneous congruences mod 2 for elliptic andHilbert modular forms
among forms with diòerent Atkin–Lehner eigenvalues. _e proofs involve the notion of quater-
nionic S-ideal classes and the distribution of Atkin–Lehner signs among newforms.

1 Introduction

In this paper,we use the notion of quaternionic S-ideal classes and the Jacquet–Lang-
lands correspondence to show that certain behavior of Atkin–Lehner signs yields
many simultaneous congruences of newforms mod 2. We begin by explaining our
main results over Q and will discuss the extensions to Hilbert modular forms at the
end of the introduction.

Let N be a squarefree product of an odd number of primes, M∣N and k ∈ 2N. By
a sign pattern ε for M wemean a collection of signs εp ∈ {±1} for each p∣M. Denote
the sign pattern with εp = −1 for all p∣M by −M .

Let Snew
k (N) denote the span of newforms of weight k for Γ0(N). For a sign

pattern ε for M, let Snew,ε
k (N) be the subspace spanned by newforms f with the

p-th Atkin–Lehner eigenvalue wp( f ) = εp for all p∣M. _e case k = 2 is a lit-
tle diòerent than k ≥ 4, due to the interaction with the weight 2 Eisenstein series
E2,N(z) ∶= ∑d ∣N µ(d)dE2(dz). To state our ûrst result uniformly, we introduce
the augmented space Snew

k (N)∗, which is just Snew
k (N) if k ≥ 4 but Snew

2 (N)∗ =

Snew
2 (N) ⊕ CE2,N . Similarly, we set Snew,ε

k (N)∗ = Snew,ε
k (N) if k ≥ 4 or ε /= −M

and Snew,−M
2 (N)∗ = Snew,−N

2 (N)⊕CE2,N .
Denote the n-th Fourier coeõcient of amodular form f by an( f ). Our ûrst main

result is the following theorem.

_eorem 1.1 Suppose M ,N are as above such that, for each divisor d∣M with d > 1,
there exists an odd prime p∣ NM such that (−dp ) = 1. If M is even, assume also that N

M is
divisible by a prime that is 1 mod4. Let f ∈ Snew

k (N)∗ be a newform and ℓ a prime of
Q above 2.

_en for any sign pattern ε for M, there exists an eigenform g ∈ Snew,ε
k (N)∗ such

that an( f ) ≡ an(g) mod ℓ for all n ∈ N. Moreover, we can take g ∈ Snew
k (N) to be a

cuspidal newform if k /= 2, ε /= −M , or N is not an even product of 3 primes.
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In particular, this theorem applies if there exists a prime p∣ NM with p ≡ 1 mod4
such that ( q

p ) = 1 for each prime q∣M, e.g.,M = 26 and N = 17 ⋅M. _e theorem also
holds with the alternative hypotheses that M ≡ 7 mod8 is prime and N is even (see
Remark 4.9).

Quadratic reciprocity implies that if p1p2 ∣ N and p1 ≡ 3 mod4, then M = p1 or
M = p2 satisûes the hypothesis of this theorem. _is yields the following corollary.

Corollary 1.2 Suppose N is composite and divisible by some p ≡ 3 mod4. Let k ∈ 2N
with k /= 2 if N = 2p1p2 for some primes p1 , p2. Fix a prime ℓ of Q above 2. _en for
any newform f ∈ Snew

k (N), there exists a non-Galois-conjugate newform g ∈ Snew
k (N)

such that an( f ) ≡ an(g) mod ℓ for all n ∈ N.

Our secondmain result is the following theorem.

_eorem 1.3 Let f ∈ Snew
2 (N)⊕CE2,N be an eigenform, and ℓ a prime ofQ above 2.

_en there exists an eigenform g ∈ Snew,−N
2 (N)⊕CE2,N such that an( f ) ≡ an(g) mod ℓ

for all n ∈ N. Moreover, if N is not an even product of 3 primes, we can take g ∈

Snew,−N
2 (N).

Notemany existing congruence results exclude small primesorprimesdividing the
level, e.g., [3, 7, 10], whereas our method is speciûc to congruences mod 2 and does
not require 2 ∤ N . Moreover, these results indicate that congruences modulo (primes
above) 2 are very common. Indeed, they seem much more common than congru-
ences modulo odd primes, since (at least large) congruence primes must divide the
special value of an L-function (e.g., see [3]). Further, whilemany congruence results
are known, simultaneous congruence results seem harder to come by. However, our
results exhibit many simultaneous congruences.

Namely, if ω(M) is the number of prime factors of M, _eorem 1.1 gives con-
ditions for all newforms as well as E2,N to be congruent to at least 2ω(M) (non-
Galois-conjugate) eigenforms. Further, _eorem 1.3 says that for any squarefree
level N with ω(N) odd, there are at most 1 + dim Snew,−N

2 (N) congruence classes in
Snew
2 (N). An exact formula for dim Snew,−N

2 (N) is given in [6] and is approximately
2−ω(N) dim Snew

2 (N), so theremust be at least one congruence class containing many
newforms when ω(N) is large.

In weight 2, we note there have been some recent results giving simultaneous con-
gruences. Le Hung and Li [4], in their investigations on level raising mod 2, have
shown for certain forms in S2(N) one gets congruences with forms with prescribed
Atkin–Lehner signs. Speciûcally, under the assumption that f is not congruent to an
Eisenstein series mod 2, the methods in [4] give both _eorem 1.3, and a version of
_eorem 1.1 (at least in weight 2) where one can prescribe all but one Atkin–Lehner
sign for g. We note that our methods seem quite diòerent, though both make use of
the Jacquet–Langlands correspondence.

On the other hand, Ribet and laterYoo (see [10]) investigated congruences of new-
forms in S2(N) with Eisenstein series modulo primes p > 3 with prescribed Atkin–
Lehner signs, which gives simultaneous Eisenstein congruences under certain condi-
tions. Taking f = E2,N in _eorem 1.1 gives an analogue of the suõcient conditions in
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[10] for an Eisenstein congruence with prescribed Atkin–Lehner signs mod 2. How-
ever, we cannot specify signs at all places (except when all signs are −1, by taking
f = E2,N in _eorem 1.3).

Now let us discuss the proofs, which have a couple of features we ûnd interesting,
such as the connection with distributions of Atkin–Lehner signs and the connection
between certain eigenspaces of quaternionicmodular forms and quaternionic S-ideal
classes.
First, we discuss the distribution of Atkin–Lehner signs. Let us say the sign pat-

terns ε for M are perfectly equidistributed in weight k and level N if dim Snew,ε
k (N)∗

is independent of ε. Wewill ûnd that perfect equidistribution inweight 2 implies per-
fect equidistribution in weight k. (_is is also evident from [6] under the hypotheses
of_eorem 1.1.) _enwewill prove that this perfect equidistribution implies the con-
gruences in _eorem 1.1, and use [6] to see the above hypotheses are suõcient for
perfect equidistribution.

Theorem 1.3 is related to a diòerent fact about distribution of sign patterns. In [6],
we showed that although the sign patterns are equidistributed asymptotically as the
weight or level grows, there is a bias toward or against certain sign patterns in ûxed
spaces Snew

k (N). In particular, when k = 2 and ω(N) is odd, there is a bias towards
−N in the sense that dim Snew,ε

2 (N) ≤ dim Snew,−N
2 (N)∗ for any sign pattern ε for

N . Below we will give a simple proof of this using quaternion algebras, and the idea
behind this proof is what allows us to construct the congruences in Theorem 1.3.

_e overall strategy to get our theorems is to use the arithmetic of deûnite quater-
nion algebras to construct congruences between quaternionic modular forms, and
then use the Jacquet–Langlands correspondence to deduce congruences for elliptic
or Hilbert modular forms. _is is why we restrict to ω(N) odd over Q. We also used
this idea in [5] to get Eisenstein congruences in weight 2, generalizing results from
[7, 10]. Whereas in that paper we used mass formulas for quaternionic orders to get
Eisenstein congruences, here we use the structure of quaternionic S-ideal classes to
get our congruences.

In Section 2, we deûne the notion of S-ideal classes for quaternion algebras in an
analogous way to the deûnition of S-ideal classes for number ûelds. _e S-ideal class
numbers interpolate between the usual class number and the type number of a quater-
nion algebra.

In Section 3we review the theory of (deûnite) quaternionicmodular forms. If B is a
deûnite quaternion algebra of discriminant N andO is amaximal order of B, then the
space Snew

k (N)∗ corresponds to a space ofMk−2(O) of quaternionicmodular forms.
_ese can be viewed as certain vector-valued functions on the set of right O-ideal
classes Cl(O). In the case k = 2, Snew

2 (N)∗ simply corresponds to the space of all
C-valued functions on Cl(O).

In Section 4 we describe the action of ramiûed Hecke operators on quaternionic
modular forms in terms of local involutions acting on Cl(O). _is gives a realization
of the space of quaternionic forms corresponding to Snew,ε

k (N)∗ as certain functions
on the set of S-ideal classes ClS(O) for O. However, the precise description of this
space in general is somewhat complicated as it involves both the way the local invo-
lutions for diòerent primes interact globally as well as the way they interact with the
weight and the signs εp .
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_ere are two situations where we can make this description simpler. One is if
the local involutions act on Cl(O) both without ûxed points as well as without ûx-
ing orbits of points under the other local involutions. _is corresponds to the S-class
numbers being as small as possible, which corresponds to perfect equidistribution of
sign patterns in weight 2. From our description of quaternionic forms corresponding
to Snew,ε

k (N), we can deduce that perfect equidistribution in weight 2 implies it in all
weights. In this situation, this is enough to construct the quaternionic congruences
that imply _eorem 1.1, excluding the cuspidal condition in weight 2, upon apply-
ing our dimension formulas for Snew,ε

k (N) in [6] to determine when we have perfect
equidistribution of signs.

_e other situation where this description becomes simpler is in weight 2, so one
only needs to understand how the local involutions interact. Namely, if k = 2, these
forms are just theC-valued functions on the set of S-ideal classes that are “admissible
for −ε.” Since all S-ideal classes are admissible when ε = −N , this immediately gives
bias towards the sign pattern −N in weight 2. _is description also yields relations
between type numbers or generally S-ideal class numbers and dimensions of spaces
of newforms, and allows us to construct the quaternionic congruences needed for the
ûrst part of Theorem 1.3.

To show that one can take g to be a cusp form in _eorem 1.3 (and thus also _e-
orem 1.1) when N is not an even product of 3 primes, we prove two auxiliary results.
By a variant of our argument in [5], we show in Proposition 5.4 that E2,N is congru-
ent to a newform in Snew,−N

2 (N) under certain conditions, in particular, if ω(N) > 3
or N is a product of 3 odd primes. We treat the N prime case by showing that lack
of perfect equidistribution of Atkin–Lehner signs means the congruent quaternionic
modular formwe construct must be cuspidal (Proposition 5.5). Using dimension for-
mulas from [6], we see that lack of perfect equidistribution is automatic for N prime.
_ese auxiliary results in fact give other conditionswhenN = 2p1p2 wherewe can still
take g to be cuspidal in _eorem 1.3; for instance, if p1 or p2 is 1 mod4 and N > 258,
see Section 5.3 for details. We note that some exceptions to taking g cuspidal when
N = 2p1p2 are in fact necessary; e.g., Snew

2 (42) and Snew
2 (70) are 1-dimensional but

not all Atkin–Lehner operators act by −1.
Now we summarize what we can say in the case of Hilbert modular forms. For

simplicity, we only work over totally real ûelds F of narrow class number h+F = 1;
however, we expect that our arguments can be suitably modiûed to remove this re-
striction. (See Section 3 for comments on what needs to be modiûed.) _e proofs
we have described above then go through for Hilbert modular forms over F with the
exception of the explicit determination of when we have perfect equidistribution of
signs, as we have not worked out an analogue of [6] over totally real ûelds. In other
words, one does not have the explicit criteria in terms of quadratic residue symbols
for theHilbert analogue of_eorem 1.1 (see Corollary 5.2), nor does one have exactly
analogous conditions on the level for when one can take g to be cuspidal in the ana-
logue of_eorem 1.3 (see Corollary 5.3). However, we can still give some conditions
onwhenwe can take g to be cuspidal in Corollary 5.3 by Proposition 5.4, which gives
Eisenstein congruences under certain hypotheses.

Last, we remark in [5] we worked with quaternionic orders that were not neces-
sarily maximal (or even Eichler), which allowed us to get Eisenstein congruences for
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any level N that is not a perfect square, thoughwe could not always say the congruent
cusp form is new. We expect that our basic strategy here should be generalizable to
non-maximal orders, so we would not need to assume ω(N) is odd (when F = Q) or
N is squarefree. However, our dimension formulas from [6] are only for squarefree
level, because the trace formula we used is signiûcantly more complicated for non-
squarefree level, though the method should apply to arbitrary level. Potentially, this
couldmake the hypotheses for a non-squarefree analogue of_eorem1.1 considerably
more complicated.

2 Quaternionic S-ideal Classes

Let F be a totally real number ûeld with narrow class number h+F = 1, and let B/F
be a totally deûnite quaternion algebra of discriminant N. Fix amaximal order O of
B. For any (ûnite) prime p of F, we have the local completions Bp = B ⊗F Fp and
Op = O⊗Z oF ,p. _en Bp/Fp is a division algebra if and only if p∣N. Let Ô× =∏pO

×

p

and B̂× = ∏′

p B
×

p denote the ûnite ideles of B, i.e., the restricted direct product of the
B×p ’s with respect to the O×

p ’s.
When we restrict to F = Q, we write N for N, p for p, and so on.
Recall there is a canonical bijection of

(2.1) Cl(O) ∶= B×/B̂×/Ô×

with the set (not a group) of right (locally principal) ideal classes of O. _e class
number hB = ∣Cl(O)∣ is independent of the choice of O.

_e number ofmaximal orders in B up to B×-conjugacy is called the type number
tB of B. _e conjugacy classes ofmaximal orders are in bijection with

(2.2) B×/B̂×/Ĝ(O),

where Ĝ(O) = ∏
′G(Op) is the stabilizer subgroup with local components G(Op) =

{x ∈ B×p ∶ xOpx−1 = Op}. Here G(Op) = F×pO
×

p if p ∤ N and G(Op) = B×p if p∣N.
_e latter part follows as any ûnite-dimensional p-adic division algebra has a unique
maximal order. Hence, Ĝ(O) = F̂×Ô× ⋅∏p∣N B×p . Since tB is the cardinality of (2.2)
and [B×p ∶F

×

pO
×

p] = 2 at ramiûed places (and hF = 1), one deduces that hB
2ω(N) ≤ tB ≤ hB ,

where ω(N) is the number of prime ideals dividing N.
Let S be a set of primes dividingN. We deûne the (right) S-ideal classes of O to be

ClS(O) ∶= B×/B̂×/Ô×

S ,

where

O×

S = ∏
p∈S
B×p × ∏

p/∈S
O×

p .

_is interpolates (2.1) and (2.2) and is analogous to the deûnition of the S-ideal class
group for number ûelds: if S = ∅, one gets (2.1), and if S = {p ∶ p∣N}, one gets (2.2).
(_e factorA×

F in the quotient (2.2)makes no diòerence, since hF = 1.) _e setClS(O)

is always ûnite. Denote the S-ideal class number ∣ClS(O)∣ by hB ,S . IfM =∏p∈S p, we
sometimes also write ClS(O) =∶ ClM(O) and hB ,S =∶ hB ,M.
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3 Quaternionic Modular Forms

Let F, B, and O be as above. Let k = (k1 , . . . , kd) ∈ (2Z≥0)
d , where d = [F ∶Q].

Let τ1 , . . . , τd denote the embeddings of F into R, and put B×
∞

= ∏B×τ i . View each
B×τ i as a subgroup of GL2(C). Let (ρk i ,Vk i ) be the twist det−k i/2 ⊗Symk i of the k i-th
symmetric power representation Symk i of GL2(C) into GLk i+1(C) restricted to B×τ i .
_e twist here gives ρk i trivial central character. Put (ρk ,Vk) =⊗(ρk i ,Vk i ).

We deûne the spaceMk(O) of weight k quaternionicmodular forms of level O to
be the space of functions φ∶ B̂× × B×

∞
→ Vk satisfying

φ(γxu, γyg) = ρk(g−1
)φ(x , y) for x ∈ B̂× , y ∈ B×

∞
, γ ∈ B× , u ∈ Ô× , g ∈ B×

∞
.

Alternatively,Mk(O) is the space of functions on B×/B×(A)/Ô× onwhich B×
∞
acts on

the right by ρk. We note that a consequence of our assumption h+F = 1 is that all forms
in Mk(O) are invariant under translation by the center A×

F of B×(A). Without this
assumption, we could restrict to the subspace of forms with trivial central character
as in [5].
For the invariance conditions on φ to be compatible with the transformation con-

dition on B×
∞
, it is necessary and suõcient that φ(x , 1) ∈ V Γ(x)

k , where Γ(x) =

xÔ×x−1 ∩ B×. Write
Cl(O) = {x1 , . . . , xh}

for some ûxed choice of x1 , . . . , xh in B×(A). Put Γi = Γ(x i). _en we can and will
view the elements φ ∈Mk(O) as precisely the set of functions

(3.1) φ∶Cl(O)→⊔V Γi
k , φ(x i) ∈ V Γi

k for 1 ≤ i ≤ h.

Namely, we can view φ as a function of B̂× by φ(x) ∶= φ(x , 1). Since Cl(O) is pre-
cisely the set of orbits of B×/B×(A)/Ô× under B×

∞
, any φ ∈ Mk(O) is completely

determined by its values on x1 , . . . , xh . Consequently,Mk(O) ≃⊕V Γi
k .

Note that viewing φ as a function of B̂× (which we do from now on except where
explicated), φ is invariant under F̂× = Z(B̂×), right Ô×-invariant, and transforms on
the le� by ρk under B×, since

(3.2) φ(γx) = φ(γx , 1) = φ(x , γ−1
) = ρk(γ)φ(x , 1) = ρk(γ)φ(x), γ ∈ B× .

If k = 0 ∶= (0, 0, . . . , 0), then ρk is the trivial representation, so Mk(O) is simply
the set of functions φ∶Cl(O) → C. Here we deûne the Eisenstein subspace E0(O)

to be the space of φ ∈ M0(O) that factors through the reduced norm NB/F . By the
assumption that h+F = 1, E0(O) = C1, where 1 denotes the constant function on
Cl(O). (For general F, E0(O) is h+F -dimensional.)

In this case, we can deûne a normalized inner product on M0(O) to be

(3.3) (φ, φ′) =∑
∣o×F ∣

∣Γi ∣
φ(x i)φ′(x i).

_en we deûne the cuspidal subspace S0(O) ofM0(O) to be the orthogonal comple-
ment of the Eisenstein subspace:M0(O) = E0(O)⊕ S0(O).

Ifk /= 0, thennothingnonzero inMk(O) can factor throughA×

F , soweputEk(O) =

0 and Sk(O) =Mk(O).
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3.1 Hecke Operators

In this section, g ∈ B̂× and we view elements ofMk(O) as functions on B̂× by (3.1).
Fix aHaar measure dg on B̂× that gives Ô× volume 1. For α ∈ B̂×, we associate the

Hecke operator Tα ∶Mk(O)→Mk(O) given by

(3.4) (Tαφ)(x) = ∫
Ô×αÔ×

φ(xg) dg .

Writing Ô×αÔ× = ⊔ β jÔ
× for some ûnite collection of β j ∈ Ô×, we can rewrite

(3.4) as the ûnite sum
(Tαφ)(x) =∑φ(xβ j).

For p a prime of F, let ϖp denote a uniformizer in Fp. _en for p ∤N, identify B×p
with GL2(Fp) and set αp = ( ϖp 0

0 1 ) ∈ B
×

p . For p∣N, let Ep be the unramiûed quadratic
extension of Fp, write

Bp = {(
x ϖp y
x y ) ∶ x , y ∈ Ep}

and set αp = ϖBp
= ( 0 ϖp

1 0 ) ∈ B×p . Here we used the notation ϖBp
to indicate that this

element is a uniformizer for Bp.
For any prime p, let Tp = Tαp , where we view αp ∈ B×p as the element β = (βv)v ∈

B̂× satisfying βv = αp when v = p and βv = 1, otherwise. When p ∤ N, this deûnition
agrees with the (suitably normalized) deûnition of unramiûed Hecke operators for
holomorphicHilbert modular forms.

Suppose p∣N. Since Op is the unique maximal order of Bp, it is ûxed under con-
jugation by αp = ϖBp

. (In fact, explicit calculation shows that conjugation by αp in
Bp acts as the canonical involution of Bp.) Consequently, Ô×αpÔ× = ϖBp

Ô×, and the
deûnition of theHecke operator means

(3.5) (Tpφ)(x) = φ(xϖBp
), p∣N.

Hence, for ramiûed primes, since ϖ2
Bp

= ϖp ∈ Z(B̂×),we have (T2
pφ)(x) = φ(xϖp) =

φ(x); i.e., Tp acts on Mk(O) with order 2.
In this paper, we say that φ ∈Mk(O) is an eigenform if it is an eigenfunction of all

Tp’s. _en Mk(O) has a basis of eigenforms as (Tp)p is a commuting family of diag-
onalizable operators. Recall that this is not quite true for Hilbert (or elliptic) modular
forms; rather, one either needs to restrict the deûnition of eigenforms to be eigen-
functions of the unramiûedHecke operators or restrict to a subspace of newforms. In
our quaternionic situation, all eigenforms are “new”, because we are working with a
maximal order. _e diagonalizability of the ramiûedHecke operators Tp, p∣N, follows
from the fact that they are involutions.
Any eigenform φ ∈ Mk(O) lies in an irreducible cuspidal automorphic represen-

tation π of B×(A) with trivial central character. (Our deûnition of cusp forms does
not exactlymatch up with the usual notion of cuspidal automorphic representations;
the eigenform 1 ∈ M0(O) is not a cusp form, and it generates the trivial automor-
phic representation, which is a cuspidal representation of B×(A) using the standard
deûnition. However, it will not correspond to a cuspidal representation of GL2(A),
which is why we do not call the form 1 a cusp form.) At a ramiûed prime p, the
local representation πp is 1-dimensional and factors through the reduced norm map
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NBp/Fp . Because we are working with trivial central character, either πp is the trivial
representation1p or the reduced normmap composedwith the unramiûed quadratic
character ηp of F×p . Since Tpφ = π(ϖBp

)φ, we see that Tp acts on φ by +1 (resp., −1)
if πp = 1p (resp., ηp ○ NBp/Fp).

3.2 The Jacquet–Langlands Correspondence

_e Jacquet–Langlands correspondence, proved in the setting of automorphic repre-
sentations, gives an isomorphism:

Sk(O) ≃ Snew
k+2 (N),

where 2 ∶= (2, . . . , 2) ∈ Nd . _is isomorphism respects the action of Tp for p ∤N;
i.e., it is an isomorphism of modules for the unramiûed Hecke algebra. (To get the
right normalization of Hecke operators, we take the convention of viewing the space
ofHilbert modular forms Mk(N) adelically and deûning theHecke operators analo-
gously to (3.4).)

Let Stp denote the Steinberg representation ofGL2(Fp). For p∣N, theAtkin–Lehner
operator Wp acts on an eigenform f ∈ Snew

k+2(N) with eigenvalue −1 (resp. +1) if the
associated local representation π f ,p is Stp (resp. Stp ⊗ ηp). In fact, we can take this
to be the deûnition of the Atkin–Lehner operator on the space of Hilbert modular
newforms of squarefree level. (See [9] for amore classical approach to Atkin–Lehner
operators for Hilbert modular forms.) A standard computation shows that the (nor-
malized) ramiûedHecke eigenvalue ap( f ) = −wp( f ), i.e., Tp = −Wp for p∣N.

Since the local Jacquet–Langlands correspondence associates 1p with Stp and ηp ○
NBp/Fp with Stp ⊗ ηp, we see that the action of the ramiûed Hecke operators Tp

on Sk(O) corresponds to the action of Tp = −Wp on Snew
k+2(N) under the Jacquet–

Langlands correspondence. _is can be viewed as a representation-theoretic gener-
alization of the relationship between the Fricke involution on the space of weight 2
elliptic cusp forms and quaternionic theta series given by Pizer [8].

While the Jacquet–Langlands correspondence is technically only a correspondence
of cusp forms (or rather, cuspidal representations that are not 1-dimensional), we can
extend the aboveHeckemodule isomorphism to include all ofMk(O).

Namely, it suõces to assume k = 0, so Mk(O) is just the space of C-valued func-
tions on Cl(O). _en E0(O) = C1, and the p-th eigenvalue of 1 ∈ E0(O) is simply
the degree of Tp, i.e., 1 + N(p) if p ∤ N or 1 if p ∣ N. _ere is an Eisenstein series
E2,N ∈ M2(N)with these sameHecke eigenvalues for all p. When F = Q,we can take
E2,N ∶= ∑d ∣N µ(d)dE2(dz), where E2 is the quasimodular weight 2 Eisenstein series
for SL2(Z) and µ is theMöbius function. _us, when k = 0, we can extend the above
Heckemodule isomorphism of cuspidal spaces to aHeckemodule isomorphism

M0(O) ≃ CE2,N ⊕ Snew
2 (N).

We take wp(E2,N) = −ap(E2,N) = −1 for all p∣N.
We remark that for general h+F , the reduced norm map from B to F induces a sur-

jective map NB/F ∶Cl(O) → Cl+(oF), and a basis of eigenforms for E0(O) is just the
collection of maps λ ○ NB/F where λ ranges over characters of Cl+(oF). We can still
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extend the Jacquet–Langlands correspondence to all ofM0(O) by associating λ○NB/F
with E2,N ⊗ λ.

3.3 Relation with Quaternionic S-ideal Classes

Let M be an integral ideal dividing N, which we just write as M when F = Q. By a
sign pattern χ = χM for M, we mean a collection of signs χp ∈ {±1} for all prime
ideals p∣M. If χp = +1 (resp. −1) for all p∣M, we denote the sign pattern by +M (resp.
−M). Also, if χ is a sign pattern for M, denote by −χ the sign pattern given by signs
−χp for all p∣M.
Consider the subspace ofMk(O) with this collection ofHecke signs:

M
χ
k(O) = ⟨φ ∈Mk(O) is an eigenform ∶ Tpφ = χpφ for all p∣M⟩.

Similarly we deûne Sχk(O) = M
χ
k(O) ∩ Sk(O). Note that Mχ

k(O) = S
χ
k(O) ⊕ C1 if

k = 0 and χ = +M; otherwiseMχ
k(O) = S

χ
k(O).

To keep notation consistent with [6] when F = Q, we denote the space of Hilbert
newforms with ûxed Atkin–Lehner (rather than Hecke) signs by

Snew,ε
k (N) = ⟨ f ∈ Sk(N) is a newform ∶Wp f = εp f for all p∣M⟩,

for a sign pattern ε forM. _e description of the Jacquet–Langlands correspondence
above tells us we haveHeckemodule isomorphisms:

S
χ
k(O) ≃ Snew,−χ

k+2 (N),

and

(3.6) M
χ
k(O) ≃

⎧⎪⎪
⎨
⎪⎪⎩

CE2,N ⊕ Snew,−χ
2 (N) if k = 0 and χ = +M ,

Snew,−χ
k+2 (N) else.

If φ ∈ M
χ
k(O), then it is right B×p-invariant (i.e., φ(xαp) = φ(x) for all αp ∈ B×p)

if and only if χp = +1. _is implies that we can view forms in M+M

k (O) as certain
functions on ClM(O). In particular, for weight zero we see that

(3.7) M+M
0 (O) ≃ {φ∶ClM(O)→ C}.

Hence,

(3.8) hB ,M = dimM+M
0 (O) = 1 + dim Snew,−M

2 (N).

We remark that when F = Q and N = p, we have hB ,p = tB , so (3.8) yields tB =

1+Snew,−p
2 (p),whichwas already known toDeuring. More generally, but stillwith F =

Q, a relation between type numbers and the full (not new) space of cusp forms with
given Atkin–Lehner eigenvalues was given by Hasegawa and Hashimoto [2], which
is similar to, but slightly diòerent from, (3.8). Note they do not restrict to square-
free level, and their approach is essentially to use explicit formulas for type numbers
and dimensions, rather than looking through the lens of the Jacquet–Langlands cor-
respondence as we do here.

When F = Q, a formula for dim Snew,ε
k (N) was given in [6], _is translates into

an explicit formula for the S-ideal class numbers hB ,S by (3.8). _e general case is
somewhat complicated, so here we just explain the formula in a simple case that will
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arise for us later: when S = {p}, we have hB ,p = 1
2 hB =

1
2 (1 + dim Snew

2 (N)) if (and
only if) p satisûes condition (i), (ii), or (iii) of Proposition 5.5.

In the next section,wewill generalize (3.7) to treat spacesMχ
k(O) of higherweight

and other sign patterns χ.

4 Action of Local Involutions

Keep the notation of the previous section. Here, for a prime p at which B is ramiûed,
we will study the action of ϖBp

on Cl(O). _is will give a “local involution” σp on
the global space Cl(O), which by (3.5) will tell us about the action of ramiûedHecke
operators on Mk(O). _is will result in an algebro-combinatorial description of the
spaces Mχ

k(O) for prescribed sign patterns χ.

4.1 Action on Ideal Classes

Let p be a prime at which B ramiûes. For S = {p}, we also write ClS(O) as Clp(O).
Now we have a surjectivemap

(4.1) Cl(O)→ Clp(O)

given by quotienting out on the right by B×p . Since B×p = F×p (O×

p ⊔ ϖBp
O×

p), given any
x ∈ B̂×, the associated {p}-ideal class [x]p ∶= B×xÔ×B×p is either [x] or [x]⊔ [xϖBp],
where [x] ∶= B×xÔ×. _us, themap (4.1) has ûbers of size 1 or 2.

Put another way, right multiplication by ϖBp
induces an involution, i.e., a permu-

tation of order 2, on Cl(O), and the orbits of this involution are precisely the ûbers of
(4.1). Denote this involution by σp, so σp([x]) = [xϖBp

] for any x ∈ B̂×.
It will be useful to know certain objects associated with ideal classes are invariant

under σp.
For a right ideal I of O, let Ol(I) = {α ∈ B ∶ αI ⊂ I} denote the le� order of I.

If I corresponds to x, we also write the le� order as Ol(x). Note that xÔx−1 ∩ B is
a maximal order of B since it is locally. Since it preserves xÔ by le� multiplication,
we have Ol(x) = xÔx−1 ∩ B. From this it is easy to see that Ol(x) = Ol(x′) for
x′ ∈ [x], so we can unambiguously call this the le� order Ol([x]) of the ideal class
[x]. Similarly, since Γ(x) = Ol(x)×, this group only depends on [x], and we can also
write it as Γ([x]).

Lemma 4.1 For x ∈ B̂×, Ol([x]) = Ol(σp([x])) and Γ([x]) = Γ(σp([x])).

Proof It suõces to prove the statement about le� orders. By the above adelic de-
scription of le� orders, it suõces to show Ô× = ϖBp

Ô×ϖ−1
Bp

. Clearly, these groups
are the same away from p, and they are the same at p since Bp has a uniquemaximal
order.

In this subsection, we needed to distinguish between x, [x], and [x]p for x ∈ B̂×,
but below this is less crucial, so we will use x i for an both element of Cl(O) and a
representative in B̂× as in Section 3.
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4.2 Action on Quaternionic Modular Forms

Fix a set of representatives x1 , . . . , xh for Cl(O) and let p∣N. _en we can view σp as
a permutation on {x1 , . . . , xh}. Writing σp(x i) = γx iϖBp

u for some γ ∈ B×, u ∈ Ô×;
then by (3.2) we see

φ(σp(x i)) = φ(γx iϖBp
) = ρk(γ)φ(x iϖBp

).

Note that γ−1 ∈ Γσp(x i) ∶= x iϖBp
Ô×σp(x i)

−1 ∩ B× . _us the ramiûed Hecke action
in (3.5) can be rewritten as

(4.2) (Tpφ)(x i) = ρk(γ)φ(σp(x i)) , for some γ ∈ Γσp(x i), for all 1 ≤ i ≤ h.

We remark that for any ûxed γ0 ∈ Γσp(x i), we can write any γ ∈ Γσp(x i) as γ = γ0γ′

where γ′ ∈ Γ(σp(x i)). Hence if the equation in (4.2) holds for a ûxed i and some
γ ∈ Γσp(x i), it holds for all such γ for that i by (3.1).

Now let χ be a sign pattern for someM∣N, and let γ i ,p ∈ Γσp(x i) for each 1 ≤ i ≤ h,
p∣M. _en for φ ∈Mk(O), we see that φ ∈M

χ
k(O) if and only if

(4.3) φ(x i) = χpρk(γ i ,p)φ(σp(x i)), for 1 ≤ i ≤ h, p∣M.

In the case k = 0 so ρk is trivial, (4.3) simply becomes

(4.4) φ(x i) = χpφ(σp(x i)), for 1 ≤ i ≤ h, p∣M.

If σp(x i) = x i , put V
Γi , χp
k = {v ∈ V Γi

k ∶ ρk(γ i ,p)v = χpv}. Note that in this case
γ2
i ,p ∈ Z(B

×), so γ i ,p acts as an involution, and we have V Γi
k ≃ V Γi ,+p

k ⊕ V Γi ,−p

k . If x i

is not ûxed by σp, put V
Γi , χp
k = V Γi

k .

Lemma 4.2 Fix χp a sign for some p∣N. Order x1 , . . . , xh so that x1 , . . . , xt is a set of
representatives for Clp(O), where t = hB ,p. _en we have an isomorphism

M
χp
k (O) ≃ {φ∶Clp(O)→⊔V Γi , χp

k ∣ φ(x i) ∈ V
Γi , χp
k for 1 ≤ i ≤ t} .

Proof Let φ be an element of the set on the right, which we temporarily denote by
A(χp). _enwe extend φ toCl(O) as follows: for t < j ≤ h,write x j = σp(x i) for some
1 ≤ i ≤ t, and put φ(x j) = χpρk(γ j,p)φ(x i). Note that φ(x j) ∈ V Γj

k by Lemma 4.1.
_is deûnes an embedding of A(χp) into M

χp
k (O). We will show surjectivity by a

dimension argument.
For 1 ≤ i ≤ t, let A i(χp) be the subspace of A(χp) consisting of elements φ such

that φ(x j) = 0 if i /= j, 1 ≤ j ≤ t. If σp ûxes x i , then V Γi
k ≃ V Γi ,+p

k ⊕ V Γi ,−p

k implies
dimA i(+p) + dimA i(−p) = dimV Γi

k . Otherwise, σp(x i) = x j for some j > t, and
dimA i(+p) = dimA i(−p) = dimV Γi

k = dimV Γj
k . Hence,

dimA(+p) + dimA(−p) =
h

∑
i=1
dimV Γi

k = dimMk(O),

and thus our embedding of A(χp) into M
χp
k (O) must be surjective.
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_ere are two situations where the above description of Mχp
k (O) becomes sim-

pler. First, if σp has no ûxed points, then we can identify this space of forms with the
functions φ on Clp(O) such that φ(x i) ∈ V Γi

k for each 1 ≤ i ≤ t. Second, if k = 0,
then we can identify this space with functions φ∶Clp(O) → C such that φ(x i) = 0 if
σp(x i) = x i and χp = −1.

4.3 Actions Without Fixed Points

Let sp denote the number of orbits of size 2 for σp, so h − 2sp is the number of ûxed
points of σp. For φ ∈M0(O), note the equation Tpφ = φ imposes sp linear constraints
on φ: φ(x i) = φ(σp(x i)) for x i in any orbit of size 2. On the other hand, Tpφ = −φ
forces φ(x i) = 0 for any x i ûxed by σp and φ(x i) = −φ(σp(x i)) for x i in an orbit of
size 2. Hence, for a sign pattern χp for p, we have

(4.5) dimM
χp
0 (O) =

⎧⎪⎪
⎨
⎪⎪⎩

h − sp χp = +1
sp χp = −1.

Consequently, we can compute sp from a dimension formula for Snew,−χp
2 (N) and

(3.6). In particular, σp acts without ûxed points if and only if

dim Snew,+p

2 (N) = dim Snew,−p

2 (N) + 1.

Nowwe assume F = Q andwill use a trace formula for the Atkin–Lehner operator
Wp on Snew

2 (N) from [6] to give necessary and suõcient criteria for σp to act on
Cl(O) without ûxed points, which is equivalent to sp = h/2.

Lemma 4.3 Let p∣N.
(i) For p > 2, sp = h

2 if and only if (−p
q ) = 1 for some odd prime q∣N or if N is even

and p ≡ 7 mod8.
(ii) For p = 2, sp = h

2 if and only if N is divisible by a prime that is 1 mod4 and
(−2

q ) = 1 for some prime q∣N.

Proof By (4.5), sp = h
2 if and only if dim Snew,+p

2 = 1+ dim Snew,−p
2 , i.e., if and only if

trSnew
2 (N)Wp = 1. _is trace is computed in [6, Prop 1.4].
Let N ′ = N/p. For m ∈ N, let modd = 2−v2(m)m be the odd part of m. We deûne a

constant b(p,N ′) by the following table:

b(p,N ′) b(p,N ′)

p mod8 for N ′ odd for N ′ even
1, 2, 5, 6 1 −1

3 4 −2
7 2 0

If p > 3, the trace of interest is

trSnew
2 (N)Wp = 1 −

1
2
∣Cl(Q(

√
−p))∣b(p,N ′

) ∏
q∣N ′

odd

((
−p
q

) − 1) .
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_is is 1 if and only if the second term on the right is 0, which gives part (i) when
p > 3. If p = 3, this trace is

trSnew
2 (N)W3 = 1 − (−1)v2(N

′
)
∏

q∣N ′

odd

((
−3
q

) − 1) .

_is ûnishes (i).
If p = 2, this trace is

trSnew
2 (N)W2 = 1 −

1
2
( ∏

q∣N ′

((
−2
q

) − 1) + ∏
q∣N ′

((
−1
q
) − 1)) .

_is gives (ii).

We remark that knowing the traces of the Atkin–Lehner operatorWp on Snew
2 (N)

is the same as knowing the S-ideal class numbers hB ,p together with h (see (3.8) and
[6]), so one can view the above result as an application of formulas for S-ideal class
numbers, i.e., an application of the reûned dimension formulas for Snew,ε

2 (N).

4.4 Weight Zero Spaces

To study the spacesMχ
k(O) inmore detail,weneed to understand how the involutions

σp interact for the various primes p∣M. It will be convenient to describe this in terms
of a graph. _e general case is somewhat complicated, so here we treat weight zero
before discussing higher weights.
Fix an integral idealM∣N and a sign pattern χ forM. We associatewith χ a (signed

multi)graph Σχ as follows. Let the vertex set of Σχ be Cl(O) = {x1 , . . . , xh}. For p∣M,
let E(χp) denote the set of signed edges {χp ⋅(x i , σp(x i))}where x i runs over a com-
plete set of representatives for the orbits of σp. (By signed edges, we mean weighted
edges, where the weights are ±1 according to whether χp = ±1.) _en we let the edge
set of Σχ be the disjoint union of the E(χp)’s. In other words, to construct our graph
Σχ on Cl(O), for all 1 ≤ i ≤ j ≤ h and p∣M, we add an (undirected) edge between x i
and x j with sign χp if and only if x j = σp(x i). Note that Σχ may have loops as well as
multiple edges with the same or opposite signs.

Let X1 , . . . , Xt denote the (vertex sets of the) connected components of Σχ . We
note that X1 , . . . , Xt do not depend upon χ; the sign pattern only aòects the signs of
the edges in Σχ . Moreover, x j lies in the connected component of x i if and only if it
lies in the orbit of x i under the permutation group generated by {σp ∶ p∣M}. By the
description of σp in terms of (4.1), this is equivalent to x j lying in the same S-ideal
class as x i , where S = {p ∶ p∣M}. Hence, viewing the S-ideal classes as subsets of
Cl(O), we can write ClS(O) = {X1 , . . . , Xt}, and we see that t = hB ,S .

Let E i be the edge set for X i in Σχ and partition E i = E+i ⊔ E
−

i , where E±i denotes
the subset of edges with sign ±1. We say that X i is χ-admissible if there is a partition
X i = X+

i ⊔ X−

i such that the set of edges in E i which connect a vertex in X+

i with a
vertex in X−

i is precisely E−i . In this case, we call the partition X+

i ⊔ X−

i χ-admissible.
Note that if χ = +M, then X+

i = X i and X−

i = ∅ is always a χ-admissible partition
of X i .
Denote the set of χ-admissible X i ∈ ClS(O) by ClS(O)χ−adm.
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Proposition 4.4 Let χ be a sign pattern forM∣N, S = {p ∶ p∣M}, andwriteClS(O) =

{X1 , . . . , Xt}. _en we have an isomorphism

M
χ
0(O) ≃ {φ ∶ ClS(O)

χ−adm
→ C}.

Note that when χ = +M, every class in ClS(O) is χ-admissible, so this gives (3.7).

Proof Order x1 , . . . , xh so that x i ∈ X i for 1 ≤ i ≤ t. Let φ ∈ M
χ
0(O). By (4.4), if x j1

are x j2 are vertices in X i connected by an edge with sign ±1, then φ ∈ M
χ
0(O) means

φ(x j1) = ±φ(x j2). Hence, the value of φ(x j) is determined by φ(x i) (namely, is
±φ(x i)) whenever x j ∈ X i . _is gives amap fromM

χ
0(O) into the space of functions

on ClS(O)χ−adm by restricting φ to be a function on the elements x i , 1 ≤ i ≤ t, such
that X i is χ-admissible.

To show that this map is a bijection, it suõces to show that for 1 ≤ i ≤ t there exists
φ ∈ M

χ
0(O) such that φ(x i) /= 0 if and only if X i is χ-admissible. If φ ∈ M

χ
0(O) with

φ(x i) /= 0, then the partition of X i into the two sets X+

i = {x j ∈ X i ∶ φ(x j) = φ(x i)}

and X−

i = {x j ∈ X i ∶ φ(x j) = −φ(x i)} is a χ-admissible partition of X i . Conversely, if
X+

i ⊔X
−

i is a χ-admissible partition of X i , thenwe can deûne an element of φ ∈M
χ
0(O)

by setting φ(x j) = ±1 if x j ∈ X±

i and φ(x j) = 0 if x j /∈ X i .

_us, dimM
χ
0(O) is the number of χ-admissible classes in ClS(O), which gener-

alizes (3.8). For congruences applications, we want to knowmore about which X i are
admissible. Clearly we have the following corollary.

Corollary 4.5 All X i ∈ ClS(O) are χ-admissible if and only if

dimM
χ
0(O) = dimM+M

0 (O).

It does not seem easy to say exactly what Σχ looks like in general; however, we
can get some information from considering how the edge sets E(χp) can interact for
various p.

Lemma 4.6 IfM = pM0 and X ∈ ClM0(O), then there exists X′ ∈ ClM0(O) such
that x i ∈ X implies σp(x i) ∈ X′.

Proof _e projection ClM0(O) → ClM(O) has ûbers of size 1 or 2. If the ûber
containing X has size 1, the lemma is true with X′ = X. Otherwise, let X′ be the
other element in the ûber containing X. _en there exists x i ∈ X such that σp(x i) ∈

X′, i.e., x iϖBp
∈ X′. One easily sees that this implies x jϖBp

∈ X′ for all x j ∈ X =

B×x iÔ
×
∏q∣M0 B

×

q .

_us, ifwe think of building Σχ in stages by adding the edge sets E(χp) one prime
at a time, we see that at each stage each connected component comprises exactly one
or two connected components from the previous stage. Furthermore, if a connected
component is obtained by linking two connected components X and X′ from the
previous stage, then involution σp linking X and X′ must be a bijection between the
set of right O-ideal classes in X and those in X′.
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Consequently, each connected component X i ∈ Σχ has cardinality 2m for some
0 ≤ m ≤ 2ω(M).

4.5 Admissibility in Higher Weight

Now we return to arbitrary weight k ∈ (2Z≥0)
d .

As before, letM∣N and put S = {p∣M}. Write ClS(O) = {X1 , . . . , Xt} and Cl(O) =

{x1 , . . . , xh} with x i ∈ X i for 1 ≤ i ≤ t. For a sign pattern χ for M, we say X i is
χ-admissible inweight k if for any v ∈ V Γi

k there exists φ ∈M
χ
k(O) such that φ(x i) = v.

By the proof of Proposition 4.4, being χ-admissible in weight 0 is just the notion of
χ-admissible from the previous section.

If every X i is χ-admissible in weight k, then similar to previous sections to we get
an isomorphism

(4.6) M
χ
k(O) ≃ {φ∶ClS(O)→⊔V Γi

k ∣ φ(x i) ∈ V Γi
k for 1 ≤ i ≤ t}

by simply restricting φ ∈ M
χ
k(O) to x1 , . . . , xt . Without the admissibility condition,

there is always an injection from the set on the le� to the set on the right, and we see
that dimM

χ
k(O) = ∑

t
i=1 dimV Γi

k if and only if each X i is χ-admissible in weight k.

Lemma 4.7 Suppose dimM
χ
0(O) = dimM

χ′

0 (O) for any choices of sign patterns
χ, χ′ for M. _en for any k, sign pattern χ for M and X i ∈ ClS(O), we have that X i
is χ-admissible in weight k. Moreover, for ûxed k, the spaces Mχ

k(O) have the same
dimension for all χ.

Proof We prove this by induction onM. It is vacuously true forM = oF , so suppose
M = p0M0 and assume the lemma is true for M0. Write ClS(O) = {X1 , . . . , Xt} and
order x1 , . . . , xh , so x i ∈ X i for 1 ≤ i ≤ t. Put S0 = {p∣M0}. _e hypothesis in the
lemma with χ, χ′ taken to be the two sign patterns for M that restrict to +M0 for
M0 implies ClS(O) = 1

2 ClS0(O) by (3.8). _en for any X i ∈ ClS(O), we can write
X i = Yi ⊔ Y ′

i , where Yi ,Y ′

i ∈ ClS0(O). By Lemma 4.1, the Γj ’s are the same for all
x j ∈ X i .
Fix a sign pattern χ for M and let χ0 be the restriction of χ to S0. Let χ′ be the

extension of χ0 to S such that χ′p0 = −χp0 . On one hand, we have

dimM
χ0
k (O) = 2

t

∑
i=1
dimV Γi

k .

On the other hand, we have

dimM
χ0
k (O) = dimM

χ
k(O) + dimM

χ′

k (O).

But each of the dimensions on the right is atmost∑t
i=1 dimV Γi

k , so our previous equa-
tion means in fact dimM

χ
k(O) = dimM

χ′

k (O) = ∑
t
i=1 dimV Γi

k . _is implies both the
admissibility and dimension assertions.

Corollary 4.8 Suppose F = Q and M∣N such that for each divisor d∣M with d /= 1,
there exists an odd p∣ NM such that (−dp ) = 1. If M is even, we further assume N

M is
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divisible by a prime p ≡ 1 mod4. _en each X i ∈ ClM(O) is χ-admissible in weight k
for all weights k and sign patterns χ for M.

Proof By the lemma, we want to know that the sign patterns for M are perfectly
equidistributed in the spaceM0(O), i.e., that dim Snew,ε

2 (N) = dim Snew,−M
2 (N)+1 for

all sign patterns ε for M with ε /= −M . _is is immediate from [6,_m 3.3] (which also
immediately implies the sign patterns for M are perfectly equidistributed in higher
weight).

Remark 4.9 If M is prime which is 7 mod8 and N is even, then the conclusion of
the corollary also holds by Lemma 4.3.

5 Congruences

Now we prove a congruence result under admissibility hypotheses. In particular, we
will ûnd that equidistribution of sign patterns in weight 0 implies sign patterns are in
some sense equidistributed in congruence classes in all weights.

Let F , B,O,N be as above. Fix a set of representatives x1 , . . . , xh for Cl(O).

5.1 Integrality

First we describe some notions and properties of integrality.
Recall τ1 , . . . , τd are the embeddings of F into C. Let E/F be a totally imaginary

quadratic extension that splits B. _en we can ûx an embedding of B into M2(E) so
thatOmaps into M2(oE). If v i is the place of F associatedwith τ i , the embedding of B
into M2(E) induces an embedding τBi ∶Bv i → M2(C) such thatOmaps into M2(oE i ),
where E i the image of E under an extension of τ i . We take these embeddings in our
deûnition of (ρk ,Vk). In particular, ρk i (γ) ∈ Mk i+1(oE i ) for γ ∈ O.

Let R ⊂ C be a ring such that τBi (O) ⊂ M2(R) for all 1 ≤ i ≤ d. Realizing Vk = Cn ,
let Vk(R) = Rn be the subspace of “R-integral vectors.” We say that φ ∈ Mk(O) is
R-integral (with respect to x1 , . . . , xh) if φ(x i) ∈ Vk(R) for 1 ≤ i ≤ h. Let Mk(O;R)
be the R-submodule of R-integral forms in Mk(O) (with respect to x1 , . . . , xh).

Recall for any Hecke operator T = Tα , there exists a ûnite collection of β j ∈ B̂×

such that for any φ ∈Mk(O),

(Tφ)(x) =∑φ(xβ j).

For any 1 ≤ i ≤ h,we canwrite x iβ j = z i jγ i jxm i ju i j for some z i j ∈ Z(B×), γ i j ∈ B×∩O,
1 ≤ m i j ≤ h, and u i j ∈ Ô

×. _en

(Tφ)(x i) =∑ ρk(γ i j)φ(xm i j), 1 ≤ i ≤ h.

By our integrality condition on γ i j and assumptions on R, Tφ is R-integralwhen φ is.
Moreover, viewing φ as a vector in Cnh formed by concatenating the vectors

φ(x i) ∈ Cn for 1 ≤ i ≤ h, we can think of T as given by a nh × nh Brandt matrix
with entries in R (in fact in Z≥0 when k = 0).
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Since there exists a Hecke operator T = Tα with distinct eigenvalues, a basis of
eigenforms ofM(O) can be described as a complete set of eigenvectors for some R-
integral matrix T . _us, M(O) has a basis consisting of R-integral eigenforms for
some integer ring R.
For integral φ, φ′ ∈ Mk(O;R) and an ideal ℓ of R, we write φ ≡ φ′ mod ℓ if the

vectors φ(x i) and φ′(x i) are coordinate-wise congruent mod ℓ for all i.

5.2 Congruences Under Admissibility

Let M∣N and S = {p∣M}.

_eorem 5.1 Let φ ∈ Mk(O) be an eigenform, χ a sign pattern for M, and ℓ∣2 a
prime ofQ. Suppose each X ∈ ClS(O) is χ-admissible in weight k. _en there exists an
eigenform φ′ ∈Mχ

k(O) such that ap(φ) ≡ ap(φ′) mod ℓ for all primes p of F.

Proof Let K be suõciently large number ûeld. Namely, assume K contains the ra-
tionality ûelds for all eigenforms in Mk(O) and τBi (O) ⊂ M2(oK) for all 1 ≤ i ≤ d.
We can assume φ is oK-integral with respect to x1 , . . . , xh .

Let I be a prime ideal of oK under ℓ, and R the localization of oK at I. A priori, if I is
not principal, it may not be possible to scale the values of φ so that φ is R-integral and
φ /≡ 0 mod I, but we can pass to a ûnite extension of K (i.e., enlarge K if necessary)
that principalizes I to assume this.

Let ε be the sign pattern forM such that φ ∈Mε
k(O). Write ClS(O) = {X1 , . . . , Xt}

and order x1 , . . . , xh so that x i ∈ X i for 1 ≤ i ≤ t. For each p∣M and 1 ≤ i ≤

h, let γ i ,p ∈ Γσp(x i). _en φ is determined by φ(x1), . . . , φ(xt) and φ(x i) =

εpρk(γ i ,p)φ(σp(x i)) for all i , p.
We deûne a function φ′ on Cl(O) as follows. For 1 ≤ i ≤ t, let φ′(x i) = φ(x i).

Extend φ′ to Cl(O) by requiring φ(x i) = χpρk(γ i ,p)φ(σp(x i)) for all i , p. _en φ′ ∈
M

χ
k(O) by (4.6), and φ′(x i) = ±φ(x i) for 1 ≤ i ≤ h. _us, φ′ ≡ φ mod 2 with respect

to x1 , . . . , xh . However, this φ′ need not be an eigenform.
Take a basis ofMk(O) consisting of eigenforms φ1 , . . . , φm ∈Mk(O;K) such that

φ1 = λφ for some λ ∈ K×. Since φ′ ∈Mk(O;R)we have that φ′ = ∑ c jφ j for some c j ∈
K. By rescaling our basis vectors if necessary, we may assume φ′ and φ are R-linear
combinations of φ1 , . . . , φm .

Let M be the R-module generated by φ1 , . . . , φm , and let M χ be the submodule
generated by the collection of φ j ’s that lie in M

χ
k(O). _en φ′ ∈ M χ .

_en the integrality property of Hecke operators implies each Hecke operator Tα
acts on M as well as M/IM. Now φ′ ≡ φ mod I, so the image of φ′ in M χ/IM χ is
a (nonzero) mod I eigenvector of each Tα . _e Deligne–Serre li�ing lemma [1, Lem
6.11] now tells us there is an eigenform φ′′ ∈ M χ , i.e., some φ j , which has the same
mod IHecke eigenvalues as φ′, and thus φ. (Note the Deligne–Serre lemma does not
tell us that wemay take φ′′ ≡ φ mod I; cf. [5, (3.3)].)

Let Snew
k (N)∗ be the space Snew

k (N) if k /= 2 and Snew
2 (N) ⊕ CE2,N if k = 2.

Similarly, for a sign pattern ε for M, let Snew,ε
k (N)∗ be Snew,ε

k (N) unless k = 2 and
ε = −M, in which case it is Snew,−M

2 (N)⊕CE2,N.
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Corollary 5.2 Let M∣N. Suppose all sign patterns ε for M are equidistributed in
the space Snew

2 (N)∗, i.e., dim Snew,ε
2 (N)∗ is independent of ε. Let k ∈ (2N)d , f an

eigenform in Snew
k (N)∗ and ℓ a prime ofQ above 2. _en for any sign pattern ε forM,

there exists an eigenform g ∈ Snew,ε
k (N)∗ such that ap( f ) ≡ ap(g) mod ℓ for all primes

p. In particular, there are at least 2ω(M) eigenforms in Snew
k (N)∗ that are congruent to

f mod ℓ.

Proof Use the Jacquet–Langlands correspondence, Lemma 4.7, and the above the-
orem.

By Corollary 4.8, this gives Theorem 1.1 when F = Q excepting the assertion that
we can take g ∈ Snew,−M

2 (N) when the weight k = 2, ε = −M and N is not an even
product of three primes. We handle this below.

Since, in weight 0, all quaternionic S-ideal classes are +M-admissible, the above
theorem also gives the following corollary.

Corollary 5.3 Let f ∈ S2(N) be a newform and ℓ a prime of Q above 2. _en there
exists an eigenform g ∈ S2(N) ⊕CE2,N such that ap( f ) ≡ ap(g) mod ℓ for all p and
ap(g) = +1 for all p∣N.

_is gives Theorem 1.3 when F = Q excepting the assertion about when we may
take g to be cuspidal.

5.3 Eisenstein and Non-Eisenstein Congruences

Here we will reûne the latter corollary to show that when F = Q, we can take g ∈

Snew,−M
2 (N) if N is not an even product of three primes, which will ûnish the proof

of both Theorem 1.1 and Theorem 1.3.
First we reûne themain theorem of [5] in the setting ℓ = 2 and h+F = 1. (_e proof

is also similar.)

Proposition 5.4 Suppose the numerator of 21−d ∣ζF(−1)∣N(N)∏p∣N(1 − N(p)−1) is
even and the type number tB > 1. _en there exists a newform g ∈ S2(N) such that
wp(g) = −1 for all p∣N and ap(g) ≡ ap(E2,N) mod 2 for all p.

Proof Consider the graph Σχ described above when χ is the sign pattern +N for N
with components X1 , . . . , Xt . Let n j = ∣X j ∣ for 1 ≤ j ≤ t. Recall t = tB , and t > 1 means
S+N
0 (O) /= 0. By Lemma 4.3, for a ûxed X j the coeõcients ∣o×F ∣/∣Γi ∣ appearing in (3.3)
are identical for all i with x i ∈ X j . Let c j be this number for X j . _en

(1,1) =
h

∑
i=1

∣o×F ∣

∣Γi ∣
=

t

∑
j=1
c−1
j n j .

_is number is themass m(O) of O studied by Eichler and equals

21−d
∣ζF(−1)∣N(N)∏

p∣N
( 1 − N(p)−1)

(see, e.g., [5]).
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Let us deûne φ′ ∈ M+N
0 (O) by φ′(x i) = a j for all x i ∈ X j , where a j ∈ 2Z + 1 for

1 ≤ j ≤ t. _en φ′ ≡ 1 mod 2, and the argumentwith the Deligne–Serre lemma above
will give our proposition if we can choose φ′ ∈ S+N

0 (O). By (3.3), this means we want
to show there is a solution to∑t

j=1 c
−1
j a jn j = 0 in the a j ’s. We can scale the quantities

n j
c j
by some λ ∈ Q× so that m j = λ n j

c j
∈ Z for 1 ≤ j ≤ t and gcd(m1 , . . . ,mt) = 1.

_e hypothesis that m(O) is even means ∑m j also is. Writing a j = 2b j + 1 for
all j, our desired (scaled) linear equation is that ∑m j2b j = −∑m j , i.e., ∑m jb j =

− 1
2 ∑m j , which has a solution as gcd(m1 , . . . ,mt) = 1.

Hence, if the hypotheses of this proposition are satisûed, we can take g to be a
newform in S2(N) in Corollary 5.3.
From now on, assume F = Q.
_en themass m(O) is just φ(N)

12 , where φ(N) = ∏p∣N(p − 1), so Proposition 5.4
tells uswe can take g to be a cusp form if 8∣φ(N) and tB > 1. Recall that tB ≥ 2−ω(N)hB
and hB ≥ m(O), so tB > 1 whenever φ(N) > 12 ⋅ 2ω(N). _is is automatic if N has
at least 5 prime divisors, in which case we also have 8∣φ(N). Hence, if ω(N) > 3, we
can take g to be a cusp form in Theorem 1.3.

Suppose N = p1p2p3 with 2 < p1 < p2 < p3. Automatically, 8∣φ(N). Also, if p1 ≥ 5
or p1 = 3, p2 ≥ 7, or p1 = 3, p2 = 5, p3 ≥ 17 then the above reasoning shows tB > 1.
_e remaining possibilities are N = 3 ⋅ 5 ⋅ 7, N = 3 ⋅ 5 ⋅ 11 or N = 3 ⋅ 5 ⋅ 13, and in fact
one checks that tB > 1 in these three cases as well. Hence, if N is an odd product of 3
primes, we can take g to be a cusp form in Theorem 1.3.

To ûnish the theorems in the introduction, it thus remains treat N prime.

Proposition 5.5 Let f ∈ Snew, χ
2 (N) be a newform. Suppose there exists p∣N such that

wp( f ) = +1 but p does not satisfy any of the following conditions:
(i) p ≡ 7 mod8 and N is even;
(ii) p /= 2 and (

−p
q ) = 1 for some odd prime q∣N ;

(iii) p = 2, N is divisible by a prime that is 1 mod4 as well a (not necessarily diòerent)
prime q such that (−2

q ) = 1.

_en there exists a newform g ∈ Snew,−N
2 (N) such that f ≡ g mod 2.

Proof Let φ be an associated integral newform to f . By Lemma 4.3, the hy-
pothesis on p implies σp has at least one ûxed point x i ∈ Cl(O). _e condition
Tpφ = −φ then implies φ(x i) = 0. Now the construction of φ′ ∈ M+N

0 (O) in _eo-
rem 5.1/Corollary 5.3 with φ′ ≡ φ mod 2 also means φ′(x i) = 0.

Write φ′ = ∑ a jφ j as a sum of eigenforms. Note that a j = 0 unless φ j ∈ M
+N
0 (O),

since φ′ ∈ M+N
0 (O). While we used the Deligne–Serre lemma above to get an eigen-

form φ′′ with the same Hecke eigenvalues as φ′ mod 2, we gave a diòerent argument
for this type of result in the proof of [5,_eorem 2.1]. _at argument tells us that (pos-
sibly upon replacing φ′ with a diòerent form inM+N

0 (O) that is congruent to φ′ mod
2) the Hecke eigenvalues of φ j are congruent to the Hecke eigenvalues of φ′ mod 2
for all j such that a j /= 0. Say φm = 1 is the constant function generating E2(O).
Since φ′(x i) = 0 /= φ1(x i), it is not possible that a j = 0 for all j /= m. _is gives
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(at least one) φ j ∈ S+N
0 (O) congruent to φ mod 2, which gives our desired g by the

Jacquet–Langlands correspondence.

Let us ûnish by explicating additional conditions when F = Q and k = 2 where we
can take g to be a cusp form inTheorem 1.3. Assume that N = 2p1p2 with 2 < p1 < p2.
First note that 8∣φ(N) if p1 or p2 is 1 mod4. Here tB > 1 if p1 ≥ 11 or p1 = 7, p2 ≥ 19

or p1 = 5, p2 ≥ 29 or p1 = 3, p2 ≥ 53. _us, tB > 1 if N > 294 by this reasoning, and
exact calculation of class numbers shows in fact tB > 1 if N > 258. Hence, if N > 258
is an even product of 3 primes, at least one of which is 1 mod4, then we can take g to
be a cusp form in Theorem 1.3 by Proposition 5.4.

On the other hand, suppose p1 ≡ p2 ≡ 3 mod4. _en p = 2 never satisûes (i),
(ii), or (iii) of Proposition 5.5. Now p1 , p2 never satisfy (iii), and satisfy (i) if and only
if they are 7 mod8. By quadratic reciprocity, (−p1

p2
) = (−1)(−p2

p2
), so Theorem 1.3(ii)

will be satisûed for exactly one of p = p1 and p = p2. Hence, Proposition 5.5 cannot
be used to guarantee g is a cusp form in the remaining cases of N = 2p1p2 for f with
arbitrary signs. However, it can be used to say we can take g to be a cusp form if
wp1( f ) = wp2( f ) = +1 (or justwp i ( f ) = +1 forwhichever p i does not satisfy (ii)) and
p1 ≡ p2 ≡ 3 mod8.
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