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Congruences for Modular Forms mod 2
and Quaternionic S-ideal Classes

Kimball Martin

Abstract. 'We prove many simultaneous congruences mod 2 for elliptic and Hilbert modular forms
among forms with different Atkin-Lehner eigenvalues. The proofs involve the notion of quater-
nionic S-ideal classes and the distribution of Atkin-Lehner signs among newforms.

1 Introduction

In this paper, we use the notion of quaternionic S-ideal classes and the Jacquet-Lang-
lands correspondence to show that certain behavior of Atkin-Lehner signs yields
many simultaneous congruences of newforms mod 2. We begin by explaining our
main results over Q and will discuss the extensions to Hilbert modular forms at the
end of the introduction.

Let N be a squarefree product of an odd number of primes, M|N and k € 2N. By
a sign pattern ¢ for M we mean a collection of signs ¢, € {«1} for each p|M. Denote
the sign pattern with ¢, = 1 for all p|M by — .

Let S;"(N) denote the span of newforms of weight k for Iy(N). For a sign
pattern & for M, let S;*"*(N) be the subspace spanned by newforms f with the
p-th Atkin-Lehner eigenvalue w,(f) = ¢, for all p|M. The case k = 2 is a lit-
tle different than k > 4, due to the interaction with the weight 2 Eisenstein series
EyN(2z) = Yanu(d)dEx(dz). To state our first result uniformly, we introduce
the augmented space S}V (N)*, which is just S;°(N) if k > 4 but S}*¥(N)* =
S3"(N) ® CE, y. Similarly, we set S;™*(N)* = S *(N)ifk > 4ore # -y
and S TM(N)* = S ¥(N) ® CE, y.

Denote the n-th Fourier coefficient of a modular form f by a,(f). Our first main
result is the following theorem.

Theorem 1.1  Suppose M, N are as above such that, for each divisor d|M with d > 1,
there exists an odd prime p|%- such that (‘Tfi) = 1. If M is even, assume also that - is
divisible by a prime that is1 mod 4. Let f € S;®(N)* be a newform and € a prime of
Q above 2.

Then for any sign pattern ¢ for M, there exists an eigenform g € S;""*(N)* such
that a,(f) = a,(g) mod ¢ for all n € N. Moreover, we can take g € S;"(N) to be a
cuspidal newform if k # 2, € # —u, or N is not an even product of 3 primes.
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In particular, this theorem applies if there exists a prime p|% with p = 1 mod4
such that (%) =1for each prime g|M, e.g., M = 26 and N =17 - M. The theorem also
holds with the alternative hypotheses that M = 7 mod 8 is prime and N is even (see
Remark [4.9).

Quadratic reciprocity implies that if p;p, | N and p; = 3 mod 4, then M = p; or
M = p, satisfies the hypothesis of this theorem. This yields the following corollary.

Corollary 1.2 Suppose N is composite and divisible by some p = 3 mod 4. Let k € 2N
with k # 2 if N = 2p, p, for some primes py, p,. Fix a prime € of Q above 2. Then for
any newform f € Sg™(N), there exists a non-Galois-conjugate newform g € S;"(N)
such that a,,(f) = a,(g) mod € foralln e N.

Our second main result is the following theorem.

Theorem 1.3 Let f € S3¥(N) @ CE, y be an eigenform, and ¢ a prime of Q above 2.
Then there exists an eigenform g € S, "~ (N)@®CE,, y such that a,(f) = a,(g) mod ¢
for all n € N. Moreover, if N is not an even product of 3 primes, we can take g €
S3ETN(N).

Note many existing congruence results exclude small primes or primes dividing the
level, e.g., [3}|7,[10], whereas our method is specific to congruences mod 2 and does
not require 2 + N. Moreover, these results indicate that congruences modulo (primes
above) 2 are very common. Indeed, they seem much more common than congru-
ences modulo odd primes, since (at least large) congruence primes must divide the
special value of an L-function (e.g., see [3]]). Further, while many congruence results
are known, simultaneous congruence results seem harder to come by. However, our
results exhibit many simultaneous congruences.

Namely, if w(M) is the number of prime factors of M, Theorem [L1| gives con-
ditions for all newforms as well as E, y to be congruent to at least 20(M) (pon-
Galois-conjugate) eigenforms. Further, Theorem [L.3| says that for any squarefree
level N with w(N) odd, there are at most 1 + dim S} "V (N) congruence classes in
§5¢Y(N). An exact formula for dim 87" "~ (N) is given in [6] and is approximately
279(N) dim $9°¥(N), so there must be at least one congruence class containing many
newforms when w(N) is large.

In weight 2, we note there have been some recent results giving simultaneous con-
gruences. Le Hung and Li [4], in their investigations on level raising mod 2, have
shown for certain forms in S,(N) one gets congruences with forms with prescribed
Atkin-Lehner signs. Specifically, under the assumption that f is not congruent to an
Eisenstein series mod 2, the methods in [4] give both Theorem and a version of
Theorem[L]] (at least in weight 2) where one can prescribe all but one Atkin-Lehner
sign for g. We note that our methods seem quite different, though both make use of
the Jacquet-Langlands correspondence.

On the other hand, Ribet and later Yoo (see [10]]) investigated congruences of new-
forms in S, (N) with Eisenstein series modulo primes p > 3 with prescribed Atkin-
Lehner signs, which gives simultaneous Eisenstein congruences under certain condi-
tions. Taking f = E, y in Theorem[L1|gives an analogue of the sufficient conditions in
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[10] for an Eisenstein congruence with prescribed Atkin-Lehner signs mod 2. How-
ever, we cannot specify signs at all places (except when all signs are -1, by taking
f = Ez,n in Theorem [L.3).

Now let us discuss the proofs, which have a couple of features we find interesting,
such as the connection with distributions of Atkin-Lehner signs and the connection
between certain eigenspaces of quaternionic modular forms and quaternionic S-ideal
classes.

First, we discuss the distribution of Atkin-Lehner signs. Let us say the sign pat-
terns ¢ for M are perfectly equidistributed in weight k and level N if dim S}“**(N)*
is independent of . We will find that perfect equidistribution in weight 2 implies per-
fect equidistribution in weight k. (This is also evident from [6] under the hypotheses
of Theorem|[L1]) Then we will prove that this perfect equidistribution implies the con-
gruences in Theorem [L.1} and use [[6]] to see the above hypotheses are sufficient for
perfect equidistribution.

Theoremis related to a different fact about distribution of sign patterns. In [6],
we showed that although the sign patterns are equidistributed asymptotically as the
weight or level grows, there is a bias toward or against certain sign patterns in fixed
spaces S;(N). In particular, when k = 2 and w(N) is odd, there is a bias towards
—n in the sense that dim §7°"*(N) < dim 8"~ (N)* for any sign pattern ¢ for
N. Below we will give a simple proof of this using quaternion algebras, and the idea
behind this proof is what allows us to construct the congruences in Theorem[1.3]

The overall strategy to get our theorems is to use the arithmetic of definite quater-
nion algebras to construct congruences between quaternionic modular forms, and
then use the Jacquet-Langlands correspondence to deduce congruences for elliptic
or Hilbert modular forms. This is why we restrict to w(N') odd over Q. We also used
this idea in [5] to get Eisenstein congruences in weight 2, generalizing results from
[7,]10]. Whereas in that paper we used mass formulas for quaternionic orders to get
Eisenstein congruences, here we use the structure of quaternionic S-ideal classes to
get our congruences.

In Section 2} we define the notion of S-ideal classes for quaternion algebras in an
analogous way to the definition of S-ideal classes for number fields. The S-ideal class
numbers interpolate between the usual class number and the type number of a quater-
nion algebra.

In Sectionwe review the theory of (definite) quaternionic modular forms. If Bis a
definite quaternion algebra of discriminant N and O is a maximal order of B, then the
space Sp"(N)* corresponds to a space of My_,(0O) of quaternionic modular forms.
These can be viewed as certain vector-valued functions on the set of right O-ideal
classes C1(O). In the case k = 2, S3*"(N)* simply corresponds to the space of all
C-valued functions on CI(O).

In Section [4| we describe the action of ramified Hecke operators on quaternionic
modular forms in terms of local involutions acting on CI(0O). This gives a realization
of the space of quaternionic forms corresponding to S°">*(N)* as certain functions
on the set of S-ideal classes Cls(O) for O. However, the precise description of this
space in general is somewhat complicated as it involves both the way the local invo-
lutions for different primes interact globally as well as the way they interact with the
weight and the signs ¢,.
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There are two situations where we can make this description simpler. One is if
the local involutions act on Cl(©) both without fixed points as well as without fix-
ing orbits of points under the other local involutions. This corresponds to the S-class
numbers being as small as possible, which corresponds to perfect equidistribution of
sign patterns in weight 2. From our description of quaternionic forms corresponding
to $°"¢(N'), we can deduce that perfect equidistribution in weight 2 implies it in all
weights. In this situation, this is enough to construct the quaternionic congruences
that imply Theorem [L.1} excluding the cuspidal condition in weight 2, upon apply-
ing our dimension formulas for $;*"**(N) in [6] to determine when we have perfect
equidistribution of signs.

The other situation where this description becomes simpler is in weight 2, so one
only needs to understand how the local involutions interact. Namely, if k = 2, these
forms are just the C-valued functions on the set of S-ideal classes that are “admissible
for —¢” Since all S-ideal classes are admissible when & = -y, this immediately gives
bias towards the sign pattern —y in weight 2. This description also yields relations
between type numbers or generally S-ideal class numbers and dimensions of spaces
of newforms, and allows us to construct the quaternionic congruences needed for the
first part of Theorem .3}

To show that one can take g to be a cusp form in Theorem|[L3|(and thus also The-
orem L.I) when N is not an even product of 3 primes, we prove two auxiliary results.
By a variant of our argument in [5], we show in Proposition [5.4] that E y is congru-
ent to a newform in $3°*>"¥ (N) under certain conditions, in particular, if w(N) > 3
or N is a product of 3 odd primes. We treat the N prime case by showing that lack
of perfect equidistribution of Atkin-Lehner signs means the congruent quaternionic
modular form we construct must be cuspidal (Proposition[5.5). Using dimension for-
mulas from [6]], we see that lack of perfect equidistribution is automatic for N prime.
These auxiliary results in fact give other conditions when N = 2p; p, where we can still
take g to be cuspidal in Theorem [L.3} for instance, if p; or p; is 1 mod 4 and N > 258,
see Section 5.3 for details. We note that some exceptions to taking g cuspidal when
N = 2p;p, are in fact necessary; e.g., S3<V(42) and S3¢"(70) are 1-dimensional but
not all Atkin-Lehner operators act by —1.

Now we summarize what we can say in the case of Hilbert modular forms. For
simplicity, we only work over totally real fields F of narrow class number h} = I;
however, we expect that our arguments can be suitably modified to remove this re-
striction. (See Section [3|for comments on what needs to be modified.) The proofs
we have described above then go through for Hilbert modular forms over F with the
exception of the explicit determination of when we have perfect equidistribution of
signs, as we have not worked out an analogue of [|6] over totally real fields. In other
words, one does not have the explicit criteria in terms of quadratic residue symbols
for the Hilbert analogue of Theorem L1 (see Corollary[5.2), nor does one have exactly
analogous conditions on the level for when one can take g to be cuspidal in the ana-
logue of Theorem L.3|(see Corollary5.3). However, we can still give some conditions
on when we can take g to be cuspidal in Corollary[5.3|by Proposition[5.4} which gives
Eisenstein congruences under certain hypotheses.

Last, we remark in [5] we worked with quaternionic orders that were not neces-
sarily maximal (or even Eichler), which allowed us to get Eisenstein congruences for
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any level N that is not a perfect square, though we could not always say the congruent
cusp form is new. We expect that our basic strategy here should be generalizable to
non-maximal orders, so we would not need to assume w(N) is odd (when F = Q) or
N is squarefree. However, our dimension formulas from [6] are only for squarefree
level, because the trace formula we used is significantly more complicated for non-
squarefree level, though the method should apply to arbitrary level. Potentially, this
could make the hypotheses for a non-squarefree analogue of Theorem|[LIconsiderably
more complicated.

2 Quaternionic S-ideal Classes

Let F be a totally real number field with narrow class number h} = 1, and let B/F
be a totally definite quaternion algebra of discriminant 1. Fix a maximal order O of
B. For any (finite) prime p of F, we have the local completions B, = B ®p F, and
Op = O ®z 0F,,. Then B, /F, is a division algebra if and only if p|Jt. Let 0% = I, 0,
and B* = H; B denote the finite ideles of B, i.e., the restricted direct product of the
By’s with respect to the O’s.

When we restrict to F = QQ, we write N for 21, p for p, and so on.

Recall there is a canonical bijection of

(2.1) Cl(0) := B*\B* /0"

with the set (not a group) of right (locally principal) ideal classes of O. The class
number hp = | Cl(0O)] is independent of the choice of O.

The number of maximal orders in B up to B*-conjugacy is called the type number
tg of B. The conjugacy classes of maximal orders are in bijection with

(2.2) B\B*/G(0),

where G(0O) = [T’ G(0,) is the stabilizer subgroup with local components G(0,) =
{x € By : xOpx™" = Op}. Here G(Op) = F;Oy if p + 9and G(Oy) = By if p|9N.
The latter part follows as any finite-dimensional p-adic division algebra has a unique
maximal order. Hence, G(0) = FX0* - [T,jm By Since tp is the cardinality of
and [By: F,y O, | = 2 at ramified places (and i = 1), one deduces that zw}z—?}t) <tg < hp,
where w (1) is the number of prime ideals dividing .

Let S be a set of primes dividing 91. We define the (right) S-ideal classes of O to be

Cls(0) := BX\IIS\‘/@\g,
where
05 =TI B; x 1 O;.
pes pgs

This interpolates and and is analogous to the definition of the S-ideal class
group for number fields: if S = &, one gets 2.1), and if S = {p : p|9}, one gets 2.2).
(The factor A% in the quotient makes no difference, since hr = 1.) The set Clg(0O)
is always finite. Denote the S-ideal class number | Cls(O)| by hp 5. If 9 = [T,cq p, we
sometimes also write Clg(O) =: Clogn (0O) and hp s =: hp,on.
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3 Quaternionic Modular Forms

Let F, B, and O be as above. Letk = (ki,...,kg) € (2Zs0)%, where d = [F:Q].
Let 71,..., 74 denote the embeddings of F into R, and put By, = []B7,. View each
By, as a subgroup of GL,(C). Let (px,, Vi, ) be the twist det %2 @Sym*i of the k;-th
symmetric power representation Sym** of GL,(C) into GLy,,;(C) restricted to B s
The twist here gives py, trivial central character. Put (pk, Vi) = ®(px,» Vi,)-

We define the space M (O) of weight k quaternionic modular forms of level O to
be the space of functions ¢: B* x BX, — Vj satisfying

o(yxu,yyg) = pu(g)@(x,y) forx e B*,yeBy,ye B, uec0", geBL.

Alternatively, My () is the space of functions on BX\B*(A)/O* on which BX acts on
the right by p.. We note that a consequence of our assumption h = 1is that all forms
in My (0O) are invariant under translation by the center A% of B*(A). Without this
assumption, we could restrict to the subspace of forms with trivial central character
asin [j5].

For the invariance conditions on ¢ to be compatible with the transformation con-
dition on B, it is necessary and sufficient that ¢(x,1) « Vkr(x), where I'(x) =
xO0%*x~1 n BX. Write

Cl(O) = {x1,...,xn}
for some fixed choice of xi, ..., x, in B*(A). Put I; = T'(x;). Then we can and will
view the elements ¢ € My (0O) as precisely the set of functions

(3.1) @:Cl(O) > | |V', o(x;) eV forl<i<h.

Namely, we can view ¢ as a function of B by ¢(x) := ¢(x,1). Since CI(O) is pre-
cisely the set of orbits of B*\B*(A)/O* under BX,, any ¢ € M(0O) is completely
determined by its values on x;, . . ., x,. Consequently, My (0) ~ @ Vkr h

Note that viewing ¢ as a function of B* (which we do from now on except where
explicated), ¢ is invariant under F* = Z(B*), right O*-invariant, and transforms on
the left by py under B, since

(32 9(yx)=9(yx.1) = p(x,y™) = p(y)9(x.1) = pr(y)9(x), yeB".

Ifk = 0:= (0,0,...,0), then py is the trivial representation, so My (O) is simply
the set of functions ¢: CI(Q) — C. Here we define the Eisenstein subspace £ (0)
to be the space of ¢ € Mo(O) that factors through the reduced norm Ng/r. By the
assumption that h} =1, £¢(O) = CL, where 1 denotes the constant function on
Cl(O). (For general F, £4(0) is hf-dimensional.)

In this case, we can define a normalized inner product on Mg (O) to be

0 X
(3.3) CXDEDY ||;||<p(x,~)<p’(xi)-
Then we define the cuspidal subspace 8¢ (O) of My (O) to be the orthogonal comple-
ment of the Eisenstein subspace: Mo (O) = £¢(O) @ 80(0).
Ifk # 0, then nothing nonzero in My (Q) can factor through A%, so we put Ex(O) =
0 and 8k (0) = My (0).
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3.1 Hecke Operators

In this section, g € B* and we view elements of M (O) as functions on B* by (3.]).
Fix a Haar measure dg on B* that gives O* volume 1. For & € B¥, we associate the
Hecke operator T,: My (O) — My (0O) given by

(3.4) (Te)(x) = [ _ glxg)dg.

Writing 0% a0* = || j6X for some finite collection of §; € 0%, we can rewrite

as the finite sum
(Tap)(x) = 3 9(xB))-

For p a prime of F, let @, denote a umformlzer in Fy. Then for p + 91, identify By
with GL,(F,) and setar, = (% 7)€ Bj. For p|91, let E, be the unramified quadratlc

extension of Fy, write
X lD y .

and set a, = @p, = ((1) ‘DOP ) € B;. Here we used the notation @p, to indicate that this
element is a uniformizer for By,.

For any prime p, let T;, = T,,,, where we view a,, € B} as the element 8 = (), €
B* satisfying 8, = a, when v = p and f3, = 1, otherwise. When p + 91, this definition
agrees with the (suitably normalized) definition of unramified Hecke operators for
holomorphic Hilbert modular forms.

Suppose p|N. Since Oy, is the unique maximal order of By, it is fixed under con-
jugation by a, = @p,. (In fact, explicit calculation shows that conjugation by «;, in
B, acts as the canomcal involution of B,.) Consequently, Ok ap 0*=a B, Ok ,and the
definition of the Hecke operator means

(3.5) (Typ)(x) = p(x@p,), poM.

Hence, for ramified primes, since a)f;p = @, € Z(B*), we have (Tp9)(x) = p(x@,) =
¢(x);i.e., T, acts on My (O) with order 2.

In this paper, we say that ¢ € My (0) is an eigenform if it is an eigenfunction of all
Ty’s. Then M (O) has a basis of eigenforms as (T, ), is a commuting family of diag-
onalizable operators. Recall that this is not quite true for Hilbert (or elliptic) modular
forms; rather, one either needs to restrict the definition of eigenforms to be eigen-
functions of the unramified Hecke operators or restrict to a subspace of newforms. In
our quaternionic situation, all eigenforms are “new”, because we are working with a
maximal order. The diagonalizability of the ramified Hecke operators T}, p|91, follows
from the fact that they are involutions.

Any eigenform ¢ € My (0) lies in an irreducible cuspidal automorphic represen-
tation 77 of B*(A) with trivial central character. (Our definition of cusp forms does
not exactly match up with the usual notion of cuspidal automorphic representations;
the eigenform 1 € Mg (O) is not a cusp form, and it generates the trivial automor-
phic representation, which is a cuspidal representation of B*(A) using the standard
definition. However, it will not correspond to a cuspidal representation of GL,(A),
which is why we do not call the form 1 a cusp form.) At a ramified prime p, the
local representation 7, is I-dimensional and factors through the reduced norm map
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N, /F,- Because we are working with trivial central character, either 7y is the trivial
representation 1, or the reduced norm map composed with the unramified quadratic
character 77, of F;. Since T, = n(@p, )@, we see that T}, acts on ¢ by +1 (resp., 1)
if my = 1, (resp., 1p © N, /F,)-

3.2 The Jacquet-Langlands Correspondence

The Jacquet-Langlands correspondence, proved in the setting of automorphic repre-
sentations, gives an isomorphism:

8k(0) = Sii3 (M),

where 2 := (2,...,2) € N?. This isomorphism respects the action of T}, for p + 9%;
i.e., it is an isomorphism of modules for the unramified Hecke algebra. (To get the
right normalization of Hecke operators, we take the convention of viewing the space
of Hilbert modular forms My (1) adelically and defining the Hecke operators analo-
gously to (3.4).)

Let St,, denote the Steinberg representation of GL, (F, ). For p|91, the Atkin-Lehner
operator W, acts on an eigenform f e Sp¢% (1) with eigenvalue -1 (resp. +1) if the
associated local representation 75 , is St, (resp. St, ® #,). In fact, we can take this
to be the definition of the Atkin-Lehner operator on the space of Hilbert modular
newforms of squarefree level. (See 9] for a more classical approach to Atkin-Lehner
operators for Hilbert modular forms.) A standard computation shows that the (nor-
malized) ramified Hecke eigenvalue a, (f) = —wy,(f), i.e., T, = =W, for p|91.

Since the local Jacquet-Langlands correspondence associates 1, with St, and #,, o
Ng, /r, With St, ® n,, we see that the action of the ramified Hecke operators Ty
on 8 (0O) corresponds to the action of T, = =W, on 8¢ (1) under the Jacquet-
Langlands correspondence. This can be viewed as a representation-theoretic gener-
alization of the relationship between the Fricke involution on the space of weight 2
elliptic cusp forms and quaternionic theta series given by Pizer [8].

While the Jacquet-Langlands correspondence is technically only a correspondence
of cusp forms (or rather, cuspidal representations that are not 1-dimensional), we can
extend the above Hecke module isomorphism to include all of My (0O).

Namely, it suffices to assume k = 0, so My (O) is just the space of C-valued func-
tions on Cl(O). Then £¢(0) = CL, and the p-th eigenvalue of 1 € £¢(O) is simply
the degree of Ty, i.e., 1+ N(p) if p + Nor Lif p | M. There is an Eisenstein series
Ez ;€ M,(91) with these same Hecke eigenvalues for all p. When F = Q, we can take
Ey N = Ygy #(d)dE2(dz), where E, is the quasimodular weight 2 Eisenstein series
for SL,(Z) and p is the Mobius function. Thus, when k = 0, we can extend the above
Hecke module isomorphism of cuspidal spaces to a Hecke module isomorphism

Mo(O) ~ (CEz)m ® S;ew(‘ﬂ).

We take wy (Ez,m) = —ap(Ez,m) = —1for all p|1.

We remark that for general h7, the reduced norm map from B to F induces a sur-
jective map Np/p: CI(O) — CI"(0F), and a basis of eigenforms for £¢(0) is just the
collection of maps A o N/ where A ranges over characters of Cl" (o). We can still
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extend the Jacquet-Langlands correspondence to all of Mg (O) by associating Ao N
with E,m® A

3.3 Relation with Quaternionic S-ideal Classes

Let 9 be an integral ideal dividing 91, which we just write as M when F = Q. By a
sign pattern y = yon for 91, we mean a collection of signs y, € {+1} for all prime
ideals p|90t. If y, = +1 (resp. —1) for all p|2N, we denote the sign pattern by +9y (resp.
—m). Also, if y is a sign pattern for 9, denote by —y the sign pattern given by signs
—xp for all p|91.

Consider the subspace of My (O) with this collection of Hecke signs:

ME(O) = (¢ € M(0O) is an eigenform : T, ¢ = x, ¢ for all p|T).
Similarly we define 8§ (0) = M{(O) n 8k (0O). Note that M} (0) = 8§f(0) ® C1 if
k = 0 and y = +9y; otherwise M} (0) = 8}(0).
To keep notation consistent with [6] when F = Q, we denote the space of Hilbert
newforms with fixed Atkin-Lehner (rather than Hecke) signs by

S E(M) = (f € Sk(MN) is anewform : W, f = ¢, f for all p|M),
for a sign pattern ¢ for 9. The description of the Jacquet-Langlands correspondence

above tells us we have Hecke module isomorphisms:

81(0) = S5 (M),

and
E new,-yx fk: _ ,
(3.6) N (0) = | CEam @S2 ik = 0and = o
Skr2 () else.

If ¢ € M{(0), then it is right B-invariant (i.e., p(xa) = ¢(x) for all ay, € B})
if and only if x, = +1. This implies that we can view forms in M; ™ (0) as certain
functions on Clyy (O). In particular, for weight zero we see that

(3.7) M (0) = {@: Clon (O) - C}.
Hence,
(3.8) hpon = dim M;”‘ (0) =1+ dim S‘;ew"f’” (M).

We remark that when F = Q and N = p, we have hp , = t, so yields tp =
1+85°""*(p), which was already known to Deuring. More generally, but still with F =
Q, a relation between type numbers and the full (not new) space of cusp forms with
given Atkin-Lehner eigenvalues was given by Hasegawa and Hashimoto [2], which
is similar to, but slightly different from, (3.8). Note they do not restrict to square-
free level, and their approach is essentially to use explicit formulas for type numbers
and dimensions, rather than looking through the lens of the Jacquet-Langlands cor-
respondence as we do here.

When F = Q, a formula for dim S;°">*(N) was given in [6], This translates into
an explicit formula for the S-ideal class numbers hp g by (3.8). The general case is
somewhat complicated, so here we just explain the formula in a simple case that will
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arise for us later: when S = {p}, we have hg , = 1hp = 1 (1 + dim S§¥(N)) if (and
only if) p satisfies condition (i), (ii), or (iii) of Proposition

In the next section, we will generalize to treat spaces M (O) of higher weight
and other sign patterns y.

4 Action of Local Involutions

Keep the notation of the previous section. Here, for a prime p at which B is ramified,
we will study the action of @p, on CI(O). This will give a “local involution” o, on
the global space C1(O), which by will tell us about the action of ramified Hecke
operators on My (0O). This will result in an algebro-combinatorial description of the
spaces M () for prescribed sign patterns y.

4.1 Action on Ideal Classes

Let p be a prime at which B ramifies. For S = {p}, we also write Cls(0O) as Cl,(0).
Now we have a surjective map

(4.1) Cl(0) - Cl,(0)

given by quotienting out on the right by B;. Since B}, = F, (O, u @5, 0y), given any
x € BX, the associated {p}-ideal class [x],, := BXxGXB; is either [x] or [x] U [x®@3, ],
where [x] := B*xO*. Thus, the map has fibers of size 1 or 2.

Put another way, right multiplication by @3, induces an involution, i.e., a permu-
tation of order 2, on Cl(Q), and the orbits of this involution are precisely the fibers of
([4.1). Denote this involution by g, so 0, ([x]) = [x@p, ] for any x € B*.

It will be useful to know certain objects associated with ideal classes are invariant
under 0.

For a right ideal J of O, let O;(J) = {« € B : aJ c J} denote the left order of J.
If J corresponds to x, we also write the left order as O;(x). Note that xOx™'n Bis
a maximal order of B since it is locally. Since it preserves xO by left multiplication,
we have 9;(x) = xOx™' n B. From this it is easy to see that O;(x) = O;(x) for
x" € [x], so we can unambiguously call this the left order O;([x]) of the ideal class
[x]. Similarly, since T'(x) = O;(x)*, this group only depends on [x], and we can also
write it as T'([x]).

Lemma 4.1 For x € B, O;([x]) = O;(0,([x])) and T([x]) = T(ap([x])).

Proof It suffices to prove the statement about left orders. By the above adelic de-
scription of left orders, it suffices to show 0* = @3, Oxwgi. Clearly, these groups
are the same away from p, and they are the same at p since By, has a unique maximal
order. ]

In this subsection, we needed to distinguish between x, [x], and [x],, for x € B*,
but below this is less crucial, so we will use x; for an both element of CI(O) and a
representative in B* as in Section
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4.2 Action on Quaternionic Modular Forms

Fix a set of representatives x, . .., x5 for CI(O) and let p|2t. Then we can view o}, as
a permutation on {xi,...,xp}. Writing o, (x;) = yx;@p, u for some y € B*, u € 0%;
then by (3.2) we see

‘P(Up(xi)) = ¢(yxi@p,) = pr(y)@(xi@p, ).

Note that y~' € T (x;) = x;@p, 00, (x;) ™' n B*. Thus the ramified Hecke action
in (3.5) can be rewritten as

(42)  (Ty9)(xi) = px(y)¢(0y(x;)), forsomey eI’ (x;), foralll1<i< h.

We remark that for any fixed yo € T'? (x;), we can write any y € ['? (x;) as y = yoy’
where y" € I'(0,(x;)). Hence if the equation in holds for a fixed i and some
y € T (x;), it holds for all such y for that i by (3.1).

Now let y be a sign pattern for some N, and let y; , € [ (x;) foreach1<i < h,
p|90. Then for ¢ € My (0O), we see that ¢ € M (0) if and only if

(4.3) ¢(xi) = xppx(yip)@(0p(xi)), forl<i<h, p/o.
In the case k = 0 so py is trivial, simply becomes
(4.4) o(xi) = xpo(0p(xi)), forl<i<h,p/Im.

If o (x;) = x;, put V](ri’xp = {v e VQ: pu(yip)v = xpv}. Note that in this case
yip € Z(B*), s0 y;,p acts as an involution, and we have V;' ~ Vkr"’+p ® Vlf"_". If x;
is not fixed by g, put Vkr"”“’ =

Lemma 4.2 Fix y, a sign for some p|MN. Order xy, ..., xy so that xy, ..., x; is a set of
representatives for Cl, (O), where t = hg,,. Then we have an isomorphism

M (0) ~ {go:Clp(O) -] Vkr"’xp | (x;) € Vkr"’)(p forl<i< t}.

Proof Let ¢ be an element of the set on the right, which we temporarily denote by
A(xp)- Then we extend ¢ to CI(O) as follows: for t < j < h, write x;j = 0, (x;) for some

1<i <t and put 9(x;) = xppx(yjp)@(xi). Note that ¢(x;) € Vkri by Lemma
This defines an embedding of A(x,) into M} (O). We will show surjectivity by a
dimension argument.

For1<i <t let A;(y,) be the subspace of A()y,) consisting of elements ¢ such

that ¢(x;) = 0if i # j, 1 < j < t. If o, fixes x;, then V| =~ Vl(ri’+’° ® Vkr"’_” implies
dim A;(+y) + dimA;(-p) = dim V;". Otherwise, 0,(x;) = x; for some j > ¢, and
dimA;(+y) = dimA;(~y) = dim V;'' = dim Vl(rj. Hence,
h
dim A(+,) + dim A(—p) = Y. dim V' = dim My (0),
i=1

and thus our embedding of A( ;) into M;* (O) must be surjective. [ |
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There are two situations where the above description of M} (O) becomes sim-
pler. First, if o, has no fixed points, then we can identify this space of forms with the
functions ¢ on Cl,(0) such that ¢(x;) € V;' for each 1 < i < t. Second, ifk = 0,
then we can identify this space with functions ¢:Cl,(O) — C such that ¢(x;) = 0 if
op(x;) = x;and y, = -1.

4.3 Actions Without Fixed Points

Let s, denote the number of orbits of size 2 for 0y, so h — 2s,, is the number of fixed
points of g,,. For ¢ € Mg(0), note the equation T, ¢ = ¢ imposes s, linear constraints
on ¢: ¢(x;) = ¢(0p(x;)) for x; in any orbit of size 2. On the other hand, T, = —¢
forces ¢(x;) = 0 for any x; fixed by o, and ¢(x;) = —¢(0,(x;)) for x; in an orbit of
size 2. Hence, for a sign pattern y, for p, we have

h=s, xp=+1

(4.5) dim M (0) =
Sp Xp =L

Consequently, we can compute s, from a dimension formula for S, ** (91) and
(3.6). In particular, oy, acts without fixed points if and only if

dim $;"" (M) = dim ;777 (N) + 1.

Now we assume F = QQ and will use a trace formula for the Atkin-Lehner operator
W, on S5¥(N) from [6] to give necessary and sufficient criteria for o, to act on
Cl(0O) without fixed points, which is equivalent to s, = h/2.

Lemma 4.3  Let p|N.

(i) Forp>2s,="2ifand only zf(%) = 1 for some odd prime q|N or if N is even
and p =7 mod8.

(i) Forp =25, = % if and only if N is divisible by a prime that is 1 mod 4 and
(_72) =1 for some prime q|N.

Proof By ([@.5),s, = % if and only if dim S;ew’ﬂ’ =1+dim S;ew’f", i.e., if and only if
trgnew () W) = 1. This trace is computed in [6, Prop 1.4].

Let N' = N/p. For m € N, let moaq = 2720m) 11 be the odd part of m. We define a
constant b(p, N”) by the following table:

b(p,N") | b(p,N)
p mod8 | for N’ odd | for N’ even
1,2,56 1 -1
3 4 -2
7 2 0

If p > 3, the trace of interest is

trgen Wy =1- 31 U@V T ((F) -1).

qIN]
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This is 1 if and only if the second term on the right is 0, which gives part (i) when
p > 3. If p = 3, this trace is

’ -3
trsgew(N) W3 =1- (—l)vz(N ) H — ) -1).
MEE
This finishes (i).
If p = 2, this trace is

a1 A 1((2) )+ () 1)

q|N’ q|N’

This gives (ii). [ |

We remark that knowing the traces of the Atkin-Lehner operator W, on 3¢V (N)
is the same as knowing the S-ideal class numbers hp , together with & (see and
[6]), so one can view the above result as an application of formulas for S-ideal class
numbers, i.e., an application of the refined dimension formulas for $;“**(N).

4.4 Weight Zero Spaces

To study the spaces J\/[]f (O) in more detail, we need to understand how the involutions
o, interact for the various primes p|9t. It will be convenient to describe this in terms
of a graph. The general case is somewhat complicated, so here we treat weight zero
before discussing higher weights.

Fix an integral ideal 90t|97 and a sign pattern y for 91. We associate with x a (signed
multi)graph X, as follows. Let the vertex set of X, be CI(O) = {xi,..., x }. For p|O,
let E(xp ) denote the set of signed edges { x;, - (xi, 0, (x;)) } where x; runs over a com-
plete set of representatives for the orbits of 0,. (By signed edges, we mean weighted
edges, where the weights are 1 according to whether y, = £1.) Then we let the edge
set of £, be the disjoint union of the E(x,)’s. In other words, to construct our graph
2, 0onCl(0O),forall1 < i< j< handp/IN, we add an (undirected) edge between x;
and x; with sign y,, if and only if x; = 0, (x;). Note that £, may have loops as well as
multiple edges with the same or opposite signs.

Let Xi,..., X; denote the (vertex sets of the) connected components of ,. We
note that Xj, ..., X do not depend upon y; the sign pattern only affects the signs of
the edges in X ,. Moreover, x; lies in the connected component of x; if and only if it
lies in the orbit of x; under the permutation group generated by {0, : p|M}. By the
description of g, in terms of (4.1), this is equivalent to x; lying in the same S-ideal
class as x;, where S = {p : p|9M}. Hence, viewing the S-ideal classes as subsets of
ClI(0), we can write Clg(0) = {Xj, ..., X}, and we see that ¢ = hp .

Let E; be the edge set for X; in X and partition E; = E] U E;, where E} denotes
the subset of edges with sign +1. We say that X; is y-admissible if there is a partition
X; = X{ u X; such that the set of edges in E; which connect a vertex in X} with a
vertex in X is precisely E; . In this case, we call the partition X} U X; y-admissible.
Note that if y = +9y, then X] = X; and X; = & is always a y-admissible partition
of X,’.

Denote the set of y-admissible X; € Clg(O) by Clg(OQ)*~2dm,
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Proposition 4.4  Let y be a sign pattern for MM, S = {p : p|9N}, and write Cls(O) =
{Xi, ..., X+}. Then we have an isomorphism

Mg(0) = {g: Cls(0)* " > C}.
Note that when y = +9y, every class in Clg(O) is y-admissible, so this gives (3.7).

Proof Order x;,...,x) so that x; € X; for1 < i < t. Let ¢ € M (0). By (&4), if x},
are x;, are vertices in X; connected by an edge with sign =1, then ¢ € M (O) means
¢(xj,) = +¢(xj,). Hence, the value of ¢(x;) is determined by ¢(x;) (namely, is
+¢(x;)) whenever x; € X;. This gives a map from M (0) into the space of functions
on Clg(0)*~2dm by restricting ¢ to be a function on the elements x;, 1 < i < t, such
that X; is y-admissible.

To show that this map is a bijection, it suffices to show that for 1 < i < t there exists
@ € ME(0O) such that ¢(x;) # 0 if and only if X; is y-admissible. If ¢ € M (O) with
@(x;) # 0, then the partition of X; into the two sets X; = {x; € X; : ¢(x;) = ¢(x;)}
and X; = {xj € X; : ¢(x;) = —¢(x;)} is a y-admissible partition of X;. Conversely, if
X;uX; isa y-admissible partition of X;, then we can define an element of ¢ € M (0)
by setting ¢(x;) = +1if xj € X; and ¢(x;) = 0if x;j ¢ X;. [ |

Thus, dim Mg (O) is the number of y-admissible classes in Cls(0O), which gener-
alizes (3.8)). For congruences applications, we want to know more about which X; are
admissible. Clearly we have the following corollary.

Corollary 4.5 All X; € Clg(0O) are y-admissible if and only if
dim M (0) = dim My (0).

It does not seem easy to say exactly what X, looks like in general; however, we
can get some information from considering how the edge sets E( x,) can interact for
various p.

Lemma 4.6 If M = pMy and X € Cloy, (O), then there exists X' € Clon, (O) such
that x; € X implies op(x;) € X'.

Proof The projection Clyy, (O) — Clop(0O) has fibers of size 1 or 2. If the fiber
containing X has size 1, the lemma is true with X’ = X. Otherwise, let X’ be the
other element in the fiber containing X. Then there exists x; € X such that o, (x;) €
X', ie, x;@p, € X'. One easily sees that this implies x;@p, € X' forall x; € X =
Bxx,-OX qumo B: |

Thus, if we think of building X, in stages by adding the edge sets E( x;, ) one prime
at a time, we see that at each stage each connected component comprises exactly one
or two connected components from the previous stage. Furthermore, if a connected
component is obtained by linking two connected components X and X’ from the
previous stage, then involution o}, linking X and X" must be a bijection between the
set of right O-ideal classes in X and those in X'.
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Consequently, each connected component X; € X, has cardinality 2™ for some
0<m <290,

4.5 Admissibility in Higher Weight

Now we return to arbitrary weight k € (2Z)“.

As before, let |9 and put S = {p|M}. Write Clg(O) = {Xi,..., X;} and Cl(O) =
{x1,...,x,} with x; € X; for1 < i < t. For a sign pattern x for 9, we say X; is
x-admissible in weight k if for any v € VkF  there exists ¢ € M} (0O) such that ¢(x;) = v.
By the proof of Proposition [4.4} being y-admissible in weight 0 is just the notion of
x-admissible from the previous section.

If every X; is y-admissible in weight k, then similar to previous sections to we get
an isomorphism

(4.6) M(0) = { ¢:Cls(0) > LIV [ p(x:) € Vi for 1< i < t]

by simply restricting ¢ € M} (O) to x1,. .., x;. Without the admissibility condition,
there is always an injection from the set on the left to the set on the right, and we see
that dim M} (0) = ¥}, dim Vkr "if and only if each X; is y-admissible in weight k.

Lemma 4.7  Suppose dimM(O) = dim Mf,(’(O) for any choices of sign patterns
x> X' for M. Then for any K, sign pattern y for M and X; € Cls(O), we have that X;
is x-admissible in weight k. Moreover, for fixed k, the spaces M} (O) have the same
dimension for all y.

Proof We prove this by induction on 9. It is vacuously true for 9t = o, so suppose
M = poMy and assume the lemma is true for MNy. Write Clg(O) = {X;, ..., X;} and
order x1,...,xp, 80 x; € X; for1 < i < t. Put Sg = {p|M}. The hypothesis in the
lemma with y, x’ taken to be the two sign patterns for 91 that restrict to +gn, for
My implies Cls(O) = 1 Cls, (O) by (3:8). Then for any X; € Cls(0O), we can write
X; = Y; uY], where Y;, Y/ € Cls,(0). By Lemma[4.1} the I;’s are the same for all

1

Xj € X;.
Fix a sign pattern y for 9t and let yo be the restriction of y to So. Let y be the
extension of o to S such that y), = —xp,. On one hand, we have

dim M (0) = ZZdim Vi

i=1
On the other hand, we have
dim M (0) = dim ME(O) + dim MY (0).

But each of the dimensions on the right is at most i dim Vk , S0 our previous equa-
tion means in fact dim M} (O) = dim MX (0) = ©2t_; dim V" This implies both the
admissibility and dlmenswn assertions. ]

Corollary 4.8 Suppose F = Q and M|N such that for each divisor d|M with d # 1,

there exists an odd p|% such that (_Td) = 1. If M is even, we further assume % is
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divisible by a prime p =1 mod4. Then each X; € Clpy(O) is x-admissible in weight k
for all weights k and sign patterns y for M.

Proof By the lemma, we want to know that the sign patterns for M are perfectly
equidistributed in the space Mo (0), i.e., that dim §3**(N) = dim S, (N)+1for
all sign patterns ¢ for M with € # — ;. This is immediate from [6, Thm 3.3] (which also
immediately implies the sign patterns for M are perfectly equidistributed in higher
weight). ]

Remark 4.9 If M is prime which is 7 mod 8 and N is even, then the conclusion of
the corollary also holds by Lemmal4.3]

5 Congruences

Now we prove a congruence result under admissibility hypotheses. In particular, we
will find that equidistribution of sign patterns in weight 0 implies sign patterns are in
some sense equidistributed in congruence classes in all weights.

Let F, B, O, be as above. Fix a set of representatives xy, . .., x; for C1(O).

5.1 Integrality

First we describe some notions and properties of integrality.

Recall 74, ..., 74 are the embeddings of F into C. Let E/F be a totally imaginary
quadratic extension that splits B. Then we can fix an embedding of B into M,(E) so
that O maps into M, (og). If v; is the place of F associated with 7;, the embedding of B
into M, (E) induces an embedding 77: B,, > M, (C) such that O maps into M, (o, ),
where E; the image of E under an extension of 7;. We take these embeddings in our
definition of (px, Vi ). In particular, py, (y) € Mk, +1(0g,) for y € O.

Let R c C be a ring such that 72(0) c M,(R) for all 1 < i < d. Realizing Vi = C",
let Vi(R) = R" be the subspace of “R-integral vectors” We say that ¢ € My (O) is
R-integral (with respect to x1, ..., xp) if ¢(x;) € Vi(R) for1< i < h. Let My (O;R)
be the R-submodule of R-integral forms in My (O) (with respect to xy, ..., xp).

Recall for any Hecke operator T' = T, there exists a finite collection of §; ¢ B~
such that for any ¢ € My (0),

(Tg)(x) = 22 ¢(xB;)-

Forany1< i < h, wecan write x;j = z;jyijXm,uij for somez;; € Z(B*),yij € BnO,
1< m;j < h,and u;; € O*. Then

(To)(xi) = Y pr(yij)9(Xm,;), 1<i<h.

By our integrality condition on y;; and assumptions on R, T¢ is R-integral when ¢ is.

Moreover, viewing ¢ as a vector in C"" formed by concatenating the vectors
¢(x;) € C" for1 < i < h, we can think of T as given by a nh x nh Brandt matrix
with entries in R (in fact in Zs, when k = 0).
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Since there exists a Hecke operator T' = T, with distinct eigenvalues, a basis of
eigenforms of M(O) can be described as a complete set of eigenvectors for some R-
integral matrix T. Thus, M(O) has a basis consisting of R-integral eigenforms for
some integer ring R.

For integral ¢, ¢’ € My (O; R) and an ideal € of R, we write ¢ = ¢’ mod ¢ if the
vectors ¢(x;) and ¢’(x;) are coordinate-wise congruent mod ¢ for all i.

5.2 Congruences Under Admissibility
Let MM and S = {p|71}.

Theorem 5.1 Let ¢ € My(O) be an eigenform, y a sign pattern for MM, and €2 a
prime of Q. Suppose each X € Clg(0O) is y-admissible in weight k. Then there exists an
eigenform ¢' € MY (O) such that a,(¢) = a,(¢’) mod € for all primes p of F.

Proof Let K be sufficiently large number field. Namely, assume K contains the ra-
tionality fields for all eigenforms in My (O) and 72(0) ¢ M, (o) forall1 < i < d.
We can assume ¢ is og-integral with respect to xy, ..., x.

Let J be a prime ideal of 0x under ¢, and R the localization of o atJ. A priori, if J is
not principal, it may not be possible to scale the values of ¢ so that ¢ is R-integral and
¢ # 0 modJ, but we can pass to a finite extension of K (i.e., enlarge K if necessary)
that principalizes J to assume this.

Let ¢ be the sign pattern for 9t such that ¢ € M} (O). Write Cls(0) = {X;,..., X,
and order x;,...,x;, so that x; € X; for1 < i < t. For each p/fMand1 < i
h, let y;p € T%(x;). Then ¢ is determined by ¢(x1),...,¢(x¢) and ¢(x;)
&ppi(yi,p)p(op(xi)) forall i, p.

We define a function ¢’ on Cl(O) as follows. For1 < i < t, let ¢'(x;) = o(x;).
Extend ¢’ to CI(O) by requiring ¢(x;) = xppx(yi,p)@(0p(x;)) for all i, p. Then ¢ €
ME(O) by (&6), and ¢'(x;) = £¢(x;) for 1 < i < h. Thus, ¢’ = ¢ mod 2 with respect
to x1, . .., x,. However, this ¢’ need not be an eigenform.

Take a basis of M (O) consisting of eigenforms ¢y, ..., ¢, € My (O; K) such that
@1 = Ag for some A € K*. Since ¢’ € My (O; R) we have that ¢’ = 3 c;¢; for some ¢; €
K. By rescaling our basis vectors if necessary, we may assume ¢’ and ¢ are R-linear
combinations of ¢y,..., Q.

Let M be the R-module generated by ¢, ..., ¢, and let MX be the submodule
generated by the collection of ¢;’s that lie in M} (O). Then ¢’ € M.

Then the integrality property of Hecke operators implies each Hecke operator T,
acts on M as well as M/IM. Now ¢’ = ¢ modJ, so the image of ¢’ in MX/IMX is
a (nonzero) mod J eigenvector of each T,. The Deligne-Serre lifting lemma [1, Lem
6.11] now tells us there is an eigenform ¢" € M¥, i.e., some ¢;, which has the same
mod J Hecke eigenvalues as ¢’, and thus ¢. (Note the Deligne-Serre lemma does not
tell us that we may take ¢” = ¢ modJ; cf. [5} (3.3)].) [ |

1A =~

Let SV (M) be the space Sp¥(N) if k # 2 and S3*¥(N) @ CE i ifk = 2.
Similarly, for a sign pattern ¢ for O, let SP°™(9)* be S () unless k = 2 and
€ = —gy, in which case it is 3™ (N) & CE, .
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Corollary 5.2 Let MM|MN. Suppose all sign patterns € for MM are equidistributed in
the space S5 (M)*, i.e., dim S3™*(N)* is independent of e. Letk € (2N)?, f an
eigenform in SP¥ (MN)* and € a prime of Q above 2. Then for any sign pattern ¢ for M,
there exists an eigenform g € S.°(N)* such that a, (f) = ap(g) mod € for all primes

p. In particular, there are at least 2™ eigenforms in SR (N)* that are congruent to

f mod €.

Proof Use the Jacquet-Langlands correspondence, Lemma [4.7] and the above the-
orem. u

By Corollary[4.8} this gives Theorem L] when F = Q excepting the assertion that
we can take g € S7°"" 7™ (N) when the weight k = 2, ¢ = —p; and N is not an even
product of three primes. We handle this below.

Since, in weight 0, all quaternionic S-ideal classes are +9n-admissible, the above
theorem also gives the following corollary.

Corollary 5.3 Let f € S3(M) be a newform and € a prime of Q above 2. Then there
exists an eigenform g € S,(MN) ® CE, i, such that a,(f) = a,(g) mod € for all p and
ap(g) = +1for all p|N.

This gives Theorem .3 when F = Q excepting the assertion about when we may
take g to be cuspidal.

5.3 Eisenstein and Non-Eisenstein Congruences

Here we will refine the latter corollary to show that when F = Q, we can take g «
S;¥" ™™ (N) if N is not an even product of three primes, which will finish the proof
of both Theorem [L1land Theorem[L3]

First we refine the main theorem of [5] in the setting € = 2 and h}, = 1. (The proof
is also similar.)

Proposition 5.4  Suppose the numerator of 2'~¢|Cp(=1)|[N(N) [Tym (1 - N(p) ™) is
even and the type number tg > 1. Then there exists a newform g € S(N) such that
wp(g) = -1for all p|N and a,(g) = ap(Ez,m) mod2 for all p.

Proof Consider the graph X, described above when  is the sign pattern +s; for 91
with components Xy, ..., X;. Let nj = |Xj| for 1 < j < t. Recall t = tp, and t > 1 means
85 (0) #0. By Lemma for a fixed X the coefficients |o%|/|T;| appearing in
are identical for all i with x; € X;. Let c; be this number for X;. Then

t

_ Zc}ln]’.

03] _
1~ &

h
(L1)=3
i=1
This number is the mass m(0O) of O studied by Eichler and equals

27 (-DINO) TT(1-N®)™)

pIM

(see, e.g, [5]).
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Let us define ¢’ € My™ (0) by ¢'(x;) = a; for all x; € X;, where a; € 27 + 1 for
1< j<t. Then ¢’ = 1 mod2, and the argument with the Deligne-Serre lemma above
will give our proposition if we can choose ¢’ € 8;” (0). By (3.3), this means we want
to show there is a solution to Z§=1 c;la jnj = 0in the a;’s. We can scale the quantities

% by some A € Q* so that m; :A:—j €Zforl<j<tandged(my,...,my) =1
The hypothesis that m(0) is even means )’ m; also is. Writing a; = 2b; + 1 for
all j, our desired (scaled) linear equation is that 3’ m;2b; = = m;, i.e, Y mjb; =

—1 % mj, which has a solution as ged(my, ..., m;) = 1.

Hence, if the hypotheses of this proposition are satisfied, we can take g to be a
newform in $,(91) in Corollary[5.3}

From now on, assume F = QQ.

Then the mass m(0Q) is just @, where ¢(N) = [T, n(p - 1), s0 Proposition
tells us we can take g to be a cusp form if 8|¢(N) and 5 > 1. Recall that t > 27*(N)
and hp > m(0O), so tz > 1 whenever o(N) > 12 - 2¢(¥), This is automatic if N has
at least 5 prime divisors, in which case we also have 8|¢(N). Hence, if w(N) > 3, we
can take g to be a cusp form in Theorem [.3]

Suppose N = p1p,ps with 2 < p; < p, < ps. Automatically, 8|¢(N). Also, if p; > 5
or p1 =3, pp 27,0r p; =3, p =5, p3 > 17 then the above reasoning shows tz > 1.
The remaining possibilities are N =3-5-7, N =3-5-11or N = 3-5-13, and in fact
one checks that t5 > 1in these three cases as well. Hence, if N is an odd product of 3
primes, we can take g to be a cusp form in Theorem |13}

To finish the theorems in the introduction, it thus remains treat N prime.

Proposition 5.5 Let f € S, *(N) be a newform. Suppose there exists p|N such that
wy(f) = +1 but p does not satisfy any of the following conditions:

(i) p=7mod8andN is even;

(i) p#2and (%) =1 for some odd prime g|N;

(iii) p =2, N is divisible by a prime that is 1 mod 4 as well a (not necessarily different)
prime q such that (’72) =1

Then there exists a newform g € S5~ (N) such that f = g mod 2.

Proof Let ¢ be an associated integral newform to f. By Lemma the hy-
pothesis on p implies o), has at least one fixed point x; € CI(O). The condition
Tp¢ = —¢ then implies ¢(x;) = 0. Now the construction of ¢’ € Mg (O) in Theo-
rem 5.1/ Corollary[5.3|with ¢’ = ¢ mod 2 also means ¢'(x;) = 0.

Write ¢’ = ¥ a;¢; as a sum of eigenforms. Note that a; = 0 unless ¢; € M;¥(0),
since ¢’ € M (O). While we used the Deligne-Serre lemma above to get an eigen-
form ¢" with the same Hecke eigenvalues as ¢’ mod 2, we gave a different argument
for this type of result in the proof of [5, Theorem 2.1]. That argument tells us that (pos-
sibly upon replacing ¢’ with a different form in M" (O) that is congruent to ¢’ mod
2) the Hecke eigenvalues of ¢; are congruent to the Hecke eigenvalues of ¢’ mod 2
for all j such that a; # 0. Say ¢,, = 1 is the constant function generating &,(0).
Since ¢'(x;) = 0 # ¢1(x;), it is not possible that a; = 0 for all j # m. This gives
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(at least one) ¢; € S;¥(O) congruent to ¢ mod 2, which gives our desired g by the
Jacquet-Langlands correspondence. ]

Let us finish by explicating additional conditions when F = Q and k = 2 where we
can take g to be a cusp form in Theorem([L.3] Assume that N = 2p; p, with 2 < p; < p,.

First note that 8|¢(N) if p; or p, is1 mod 4. Here tg > 1if p; > 1l or p; =7, p, > 19
or p1 =5, pa =29 or p; = 3, p > 53. Thus, tg > 1if N > 294 by this reasoning, and
exact calculation of class numbers shows in fact tg > 1if N > 258. Hence, if N > 258
is an even product of 3 primes, at least one of which is 1 mod 4, then we can take g to
be a cusp form in Theorem [L.3|by Proposition 5.4}

On the other hand, suppose p; = p, = 3 mod4. Then p = 2 never satisfies (i),
(ii), or (iii) of Proposition Now p1, p» never satisfy (iii), and satisfy (i) if and only
if they are 7 mod 8. By quadratic reciprocity, (_Tf:l) = (—1)(_71’22), so Theorem ii)
will be satisfied for exactly one of p = p; and p = p,. Hence, Proposition [5.5|cannot
be used to guarantee g is a cusp form in the remaining cases of N = 2p; p, for f with
arbitrary signs. However, it can be used to say we can take g to be a cusp form if
Wp, (f) = wp,(f) = +1(or just w,, (f) = +1 for whichever p; does not satisfy (ii)) and
p1= p2 =3 mod8.
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