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If L is a pseudocomplemented distributive lattice which is generated by a
finite set X, then we will show that there exists a subset G of L which is associated
with X in a natural way such that | G | g | X | + 2'*' and whose structure as a
partially ordered set characterizes the structure of L to a great extent. We first
prove in Section 2 as a basic fact that each element of L can be obtained by forming
sums (joins) and products (meets) of elements of G only. Thus, L considered as a
distributive lattice with 0,1 (the operation of pseudocomplementation deleted),
is generated by G. We apply this to characterize for example, the maximal homo-
morphic images of L in each of the equational subclasses of the class Bm of pseudo-
complemented distributive lattices, and also to find the conditions which have
to be satisfied by G in order that X freely generates L.

In Section 3 we investigate the pseudocomplemented meet semilattice G
which is generated by G for the case that L is freely generated by X. It is shown
that G ~ {0} is exactly the set of join-irreducibles of L (Urquhart (to appear)).
Furthermore we show that G is the pseudocomplemented meet-semilattice which
is freely generated by X (cf. Balbes (1973)) and that L is isomorphic to the algebra
freely generated by G over the class of distributive lattices, where G is considered
as a partial lattice.

It follows from the basic result in Section 2 mentioned above, that L con-
sidered as a distributive lattice with 0,1, is a lattice homomorphic image of the
distributive lattice with 0,1 which is freely generated by a set of cardinality | G |.
It is a natural question to ask whether | G J is minimal with this property. This
question is answered in Section 4 in the affirmative.

In Section 5 we generalize some of the results obtained in the previous
sections to the case that L is infinite.

1. Preliminaries

For the notions of algebra, subalgebra, partial algebra, relative (partial)
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algebra, homomorphism between partial algebras, principal congruence re-
lation, maximal homomorphic image, etc. we refer the reader to Gratzer (1968).
We will often denote a (partial) algebra (A, F} by the symbol A only. If A and B
are (partial) algebras of the same similarity type then [4,5] will denote the set
of homomorphisms from A to B. It will often be useful, if we deal with a class
V of (partial) algebras of a certain similarity type and if A and BeV, to write
[/1,B]K instead of [A, B~\. If Fis an equational class of algebras and AeV,T^A,
then [T]K will denote the subalgebra of A generated by T. If T = {xu---,x^,
then we will write [*i, •••,xB]v instead of [_{xu •••,xn}]K. If V is an equational
class of algebras then FV(X) denotes the free algebra over V on a free generating
set X. If | X | = a, then we also use the symbol FV(pc). Again, if V is an equational
class and A is a partial algebra of the same similarity type then FV(A) denotes
the algebra freely generated by A over V. Thus FV(A)eV and there exists
an isomorphism / between A and a relative subalgebra A' of FV(A) such that
[A']v = FV(A) and for each ge[A,B], there exists an he[FV(A),B~] with
h-f = g.

Of particular interest in this paper are the equational classes of algebras:
D: distributive lattices with operations • and + .
Dol: distributive lattices with 0,1 and operations +, •, 0, 1.
Bm: pseudocomplemented distributive lattices with operations + , - , * , 0.
M: pseudocomplemented (meet) semilattices with operations •, *, 0.

The operation * in Bm and M is defined by xx* = 0 and if xy = 0, then
y ^ x*. For the properties of these classes see Gratzer (1968), Frink (1962) and
Balbes (1973) Recall that for LeBa or LEM we have for x,yeL.

1.1 (i) x ^ y implies x* 3; y*
(ii) x ^ x**
(in) x* = x***

The two element Boolean algebra is denoted by 2 and 2m © 1, m ^ 0 stands for
the algebra obtained from 2m by adjoining another one element. Note 2m © 1 e Ba

for m ^ 0. For LeB^, we let S{L) = {x* \xeL}. It is well known that S(L) is
a Boolean algebra under the partial ordering of L. It is known that besides Bm

the only equational subclasess of Bm are the classes Bm, m = - 1,0,1, ••• and
where B_t is the trivial class and where for m ^ 0 Bm is the class generated by
T © 1 (Lakser (1971), Lee(1970)). If LeBa, then L e B f f l , m ^ l , is equivalent
to either of the following conditions (Gratzer (1971)).

1.2. For zo,zu---,zmeL:

(i) (z1z2-zm)* + (z1*z2-zj* + - + ( z 1 z 2 - z : ) * = l
(ii) if z,zj = 0 for all i ± j , then zj + z?+ ••• + z* = 1.

Finally, for notational convenience, if X is a set, T £ X means T is a finite
non-void subset of X.
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2. Lattice theoretic generation of Bw algebras

It is well known that the congruence relation ~ on L e Bw defined by x ~ y
if and only if x* = y* is such that S{L) ̂  L/ ~ . In the following lemma we give
an alternate characterization of this congruence relation for the case that L is
finite. This result will be used to characterize the * operation of L, L finite, in
terms of the atoms of L.

2.1 LEMMA. Let LeBm, L finite. For x,yeL, define x = y if and only if
{aeL\a is an atom of L, a ^ x} = {aeh\a is an atom of L, a g y). Then
x = y if and only if x* = y*.

PROOF. L e t x e L . Let >> = S { a e L | a is an atom, a ^ x}. Let z = 2 { w e L |
w = y}. Then by distributivity z = y. Hence xz = 0. Moreover, suppose xu = 0
for some ueL. It must be that {aeL\a is an atom, a g u} £ {aeL \a is an
atom, a ^ y}. So u ^ z. Hence z = x*. The lemma now follows.

2.2 NOTATION. Let LeBm with L = [xu---,x^\Ea. Define x° = x, and
x* = xf. For 1 ^j ^ 2", let a3 = x['• • • xe

n", with ( e ^ - . - ^ J e i O , ! } " . Define
bj = a/. For 1 g i ^ n and 1 g j" g 2" let (a,.),. = {b})t = et. Also let
X = {xi,---,xn}, A = {alt-,a2n}, B = {bu-,b2n} and G = X\JB. In the
sequel, the sets G and B will be of particular interest. In this section we will show
that the partial order structure of G and B determine the algebraic structure
of L.

2.3 LEMMA. Let LeBa with L = [xl,-",xn]Bio. Then each ateA is an
atom or 0. Moreover, every atom in L is equal to some atfor exactly one i.

PROOF. Clearly Xj • at e {0, a,} for all Xj-. Let y,zeLbe such that yat e {0, a j
and za(6{0, a,}. Certainly (yz)at e {0, a,} and by distributivity ( j + z)af e {0, a,}.
If yat = 0, then at ^ y*. Thus 3>*af = at If yat = at, then y ^ at. So by 1.1,
y* ^ at*, so y*at = 0. SinceL = [_Xi,"-,xtt']Ba this completes the proof of the first
claim. Next observe that s = £{a ; 11 ̂  i ^ 2"} = (xt + x^) ••• (xn + x*). Hence
s* = 1*, so by 2.1 every atom is equal to some a;. If at = aj in L, for i ^ 7,
then there exists k for which (at)k ^ (flj)*. So at ^ xtx* = 0.

From 2.1 it follows that if a is an atom of L, then a* is a dual atom of S(L).
So from 2.3 it follows that each bx e B is either 1 or a dual atom in the Boolean
algebra S(L). Moreover, every dual atom of S(L) is equal to exactly one bt. Thus,
S(L) is generated by B under the formation of products. (Note n $ = 1). Indeed,
let z*eS(L). Form T = {bt\ at ^ z}. It is easily seen that z* = IIT.

2.4 THEOREM. Let LeBa, L = [X]Bm, AT yznite. T/ien L = [G]Doi.

PROOF. Since L = [-X^JB^ and X £ G, only applications of * need be con-
sidered. By the remarks following 2.3, any application of * is equivalent to
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forming ITT for some T £ B £ G. Indeed, if zeL, then z = UTt H— + IITr

for some family of sets Tt £ G, 1 :g i ^ r.

2.6 THEOREM. Let LeB^, L = [xi,">x,,]Baj. Then LeBm, m ^ 1, if and
only if for all I £ {1,2, ••-,2"} such that \l\ ^ m + 1, the equality £ , e / b , = 1
holds.

PROOF. By 2.3, a^j = 0 for i # j . So by 1.2 2 ,• e / fe,- = 1. Conversely, suppose
{yo,y»-,ym} £ L and y,y,- = 0 for i * j . Note y;* = n{bk\ak g y j = n r ( .
Hence T) n 7} = 0 or {1}. So E7=oj>? = lT.0(nr,) = ( Z f i J - d G , ) where
each Qj c o n t a i n s t h e e l e m e n t l o r m + 1 6^. H e n c e T.Qi = 1 for a l l i.

2.7 THEOREM. Let L = [,xu---,xn]Ba. Define um = I I{ES|S £ B, \s\
= m + 1}. Lei 0(t<m, 1) be the principal Bm congruence relation generated by
{um, 1}. Define Lm = LI0{um, 1). Then all of the following hold:

0 LmeBm

ii) Lm is a maximal homomorphic image of L in Bm

iii) Lm is isomorphic to the interval [0, um] £ L.

PROOF. By 2.6, Lm e Bm. If L/0 = L1eBm then again by 2.6 1 = wm(0).
Hence, 0 ^ 0(«m, 1), so (ii) holds. Observe that since 8(um, 1) is determined by a
principal filter, x = y (0(wm, 1)) if and only if xum = jum(Lakser (1973)). So every
congruence class of Lm contains exactly one element in [0, um]. Hence (iii) follows.

We now specialize to the case where L is free in Ba.

2.8 THEOREM. Let G = X U B £ FB^X) with X = {xu---,xn}. For
S,T £• G . I I S ^ E T if and only if at least one of the following hold:

(i) s n T # 0.
(ii) There exist I ^ j ^ 2" and 1 ^ i ^ n with bjeT and (&,); = 1 for

some xt e S.
(iii) B = {ft,| bjeS}U {i, | (bj)t = 1, x,eS}.

For FBm{X) the following condition may be added to the list:

(iv) | T O B | > m.

PROOF. <= (i) suffices in any lattice. For (ii) observe that (bj)t = 1 implies
x f *^ a,. So by 1.1 xf ^ x ;**^ fej-sT. If (iii) holds then US ^ UB = 0. In the
case of FBm(X), if | T n B | > m, then ET = 1 by 2.6. => Suppose in FBm(Ar)
n S ^ S T and neither (i), (ii) nor (iii) hold. Note that since the Boolean algebra
22"is a Ba homomorphic image of FBJin), each of the bh 1 ^ i ^ 2", are distinct
in FBJ^ri). Let [ T n £ | = f. If t = 0, by the negation of (iii) a fe7- may be adjoined
to T for which conditions (i) (ii) nor (iii) will still not hold. So assume \T n B\
= t ^ 1. There exists / e [FBm(X), 2 ' ]B such that f(at) is an atom of 2' for all i,
bt e T, f(at) = 0 otherwise. Adjoin a new maximal element 1' to 2' to obtain
L = 2' © 1'. Thus LeBa, 0* = 1' and 1' is join-irreducible. Assume x f e S for
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1 S i ^k, Xi$S, i> k. Define y: X -* L by y(xt) = 1' for 1 g i ^ Jfc, y(xt)
= /(x.) otherwise. Let g e [FBJn), L]B m extend y. If x, e T, then by the negation of
(0, g(xd < 1'. If bjST, then by the negation of (ii) g(aj) ^f(aj) so 1'>/(&,)
^ g(bj). Thus #(E T) < 1'. If x; e S or bjeS with (ft,),- = 1 for some 1 g i g fc,
then #(x;) = g(bj) = 1'. So suppose bjeS, a} = Xj ••• xtx/k**'J1-" xB"". Let
C = {a,|(ay),. = (a,)r for all r > k}. Then 0 = Z/(C) = / ( x £ V - O
fif(xt*+V ••• x°"). Thus g(bj) = 1' also. So #(nS) = 1'. This contradicts the assump-
tion US ^ Z T. For the case of FBm(X), note that if (iv) does not hold, then
t = | T C\B\ g m. But 2 ' © l ' e B m for i ^ m. So the above contradiction can
be obtained.

2.9 THEOREM. The lattice FBJji) contains for each m < co an ideal which
is lattice isomorphic to FBm(n). Moreover, these ideals form a chain when
ordered by inclusion.

PROOF. Since Bm s Bm, FBJji) is a homomorphic image of FBJji). Let
0m be a congruence on FBJji) such that FBm{ri)jQ ~ FBJjn). Apply 2.7 to show
6m = 6(um, 1). So by 2.7 (iii) the ideal [0, Mm] is lattice isomorphic to FBm(n).
Finally, note ux ^ u2 ^ ••• um ^ ••• in FBJji).

Next, independence conditions are obtained for Bro and Bm. See Marczewski
(1958) of Gratzer (1968) for a general discussion of independence.

2.10 THEOREM. Let LeBa, L = [x1; •••,xn]Bo). L ~ FBJn) if and only if
whenever S,T £• G and IIS <; I T , f/ien one or more of 2.8 (i), 0 0 or (iii) hold.
Moreover, if LeBm, then L ~ FBJji) if and only if the additional condition
of 2.8 (iv) is included.

PROOF. => Use 2.8. <= Let X = {x^ ••-,xn}. Define y.X^L by y(x;) = x(.

Then y extends to a £„, homomorphism ^ from FBJn) (FBJn)) onto LeBa

(L e Bm). A standard argument shows that conditions (i) (ii) (iii) (and (iv)) guaran-
tee that g is also one-to-one.

2.11 COROLLARY (Gratzer, Lakser (1971; page 190)), For k ^ 2", FBJn)
- FBk(n).

PROOF. For k ^ 2", since \B\ ^ 2 " , condition 2.8 (iv) cannot hold.

3. The semilattice generated by G

3.1 NOTATION. Consider LeBa,L = [X]Bco with X finite. Let G be as in 2.2.
Form G = {TIT \ T £ G}. Thus, G is the closure of G under the formation of
products. Observe U<j> = 1 e G and from the remarks following 2.3, S(L) c G.
Also, 2.4 implies that the set of join-irreducible elements of L is contained in G.

3.2 NOTATION. Let G be as in 3.1 with zeG. Let J?(z) = {£>;eB|b,. ^ z}
and x(z) = { * J G X | X , ^ z}. Then z = (njS(z))(nZ(z)).
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In the remainder of this section we will be concerned with the set G £ FBJX)
or G £ FBm(X) for | X | = n, n finite.

3.3 THEOREM. The join-irreducible elements of FBm{n) are precisely
those zeG, Z =£ 0, for which 2" > |/?(z)| ji 2" - m. In particular, the set of
join-irreducibles of FBJX) is G\{0}.

PROOF. If zeG and if ]j8(z)| = 2", then z = 0. If | j?(z)| < 2" - m, then

there exist, say bo,---,bme B, with £>( ^ z for 0 g i ^ m. Thus in FBm(n) we have

z = z • \ = z(b0 + ••• +bm) = zb0+ ••• +zbm. Finally, suppose 2" > | /?(z) | ^ 2 " - m.

Let z = IITi + ••• + n r r , with T; £ G. If IIT; # z for all i, then for each i

there exist f, e Tf such that /f ^ z.

Thus

0 * z =

Since | {*!,••-,*,.} O fi| ^ m, 2.8 gives a contradiction. So z is join-irreducible.
The second part of the theorem follows from 2.11.

For an alternate characterization of the join-irreducibles of FBm(n) and
FBjfn) see Urquhart (to appear).

We now determine the number of join-irreducible elements in FBm(n) and
FBa(n). This, of course, gives the lengths of these lattices. Compare Balbes (1973).

3.4 THEOREM. Define p(s,t) = Z ' = 1 (]*)• Then the number of join-
irreducible elements of FBJn) is ££=0 (*) pin — k, m). In particular, for
FBJji) this is equal to Z t = 0 © (22" - 1).

PROOF. If z = (n£(z))(nx(z)) with | x(z) | = k, then B\p(z) is contained
in a set of cardinality 2"~\ Since B\fl(z) ^ 0 , there are p(n — k,m) choices for
P(z). Hence, (1) p(n — k, m) possible choices for z. Finally observe that if m ^ 2",
then p(n — k, m) = 22" — 1 for all k. Apply 2.11 to complete the proof.

3.5 REMARK. Note that G is closed with respect to • and *. If G is considered
as a relative partial Ba subalgebra of FBJn), then for y, z e G, y + z is defined
if and only if y + z e G. So by 3.3, y + z is denned if and only if y and z are
comparable elements of FBJn).

3.6 THEOREM. Let G £ FBJX), \x\ finite, be as in 3.1. Consider G as a
partial lattice where x + y is defined if and only if x and y are comparable.
Then FBJX) is the distributive lattice freely generated over D by the partial
lattice G.

PROOF. By 3.5 G is a relative partial lattice and by 2.4 [G]D = FBJX).
Let L e D and fe [G, L]D. Since Lt = [ / (G)]D is finite, Ly e Ba. So the function /
restricted to X has an extension to g e [FBJX),^^. But since G £ [Z]D and /
is a partial homomorphism, g extends / as well. So g e [FBJX), L]D.
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The next lemma gives an embedding of an arbitrary pseudocomplemented
semilattice in a pseudocomplemented lattice. See also Balbes (1969) and Dyson
(1965).

3.7 LEMMA. Let SeM, S arbitrary. There exists LeBm such that the
reduct L' = <L, • , * , 0> of L has a subalgebra S' which is M-isomorphic to S.
Moreover, [S']D = L.

PROOF. For aeS let (a] = {zeS\0 ^ z ^ a}. Form S' = {(a]|aeS}.
Let L be the ring of sets generated by S'. It is easily verified that S' is a pseudo-
complemented semilattice with zero element (0], with n for product and with
(a]* = (a*]- To complete the proof it remains to show LeBm. Let TeL. So
there exist tu---,tpeS such that T = ( t j U ... U (f j . Omit all tt for which
t- < t • for some; ^ i. Then this is a unique representation for T. For, if otherwise,
T~= Oi] U ••• U 0p] = ( r j U ••• U ( r j . So for any i, f, ^ r, for some ./.
Similarly r,- ^ f*. Thus (f g tk so f, = r, = tk. Thus {*!,-,*,} = {rl,-,rq}.
Define T* = ((?] U ••• u ((*]. By the above, T* is well defined and easily seen
to be the pseudocomplement of T in L.

3.8 COROLLARY. Let SeM be an arbitrary pseudocomplemented semi-
lattice. Consider S as a partial Ba lattice where x + y is defined if and only if
x and y are comparable. Then the Bm lattice L constructed from S in 3.7 is
isomorphic to the Bo lattice freely generated by the partial Bm algebra S.

PROOF. It is easily seen that the set S'\(0] consists only of join-irreducibles
in L. So S' is a relative partial Ba subalgebra of L. Using the uniqueness of the
representation of elements of L as union of principal ideals in S, the mapping
extension property can be verified.

3.9 THEOREM. Let G S FBJn), n finite. Then G is M-isomorphic to FM(n).

PROOF. Let X = {xlf •••,*„} and Y = {ylt-,yH}. Consider arbitrary
SeM, S = [y]M- Suppose FBJri) = [*].„. Construct S' and L as in 3.7.
Identify S with S' £ L. Observe [Y]Bm = L. Let y(xf) = yt and extend y to
ge[FBJn),L\B<a. Then g{G) is closed under • and * and contains 0 and Y. Hence
S = g(G). So g e [G, S]M and g extends y as desired.

For an alternate characterization of FM(n), see Balbes (1973).

4. Minimality

It follows from 2.4 that FBJji) is a Dol homomorphic image of FD01(n + 2").
A natural question is whether the number n + 2" is minimal with this property.
Or equivalents, does there exist a subset S <= FBJn), \ S \ < n + 2", for which
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4.1 LEMMA. Every element of B £ FBw(n) is both meet-irreducible and
join-irreducible.

PROOF. Let bj e B. By 2.8 b} is join-irreducible. Suppose b3 = pq. By 2.4
we may write p = (I,S1)--('LSk) and q = ( S 7 \ ) - ( l T , ) , with S,, 7] c G.
Use 2.8 and an argument similar to that in 3.3 to show that for some i, bj ^ ESj
or fc,^ 17].

4.2 THEOREM. / / FBJn) = \Y~\Dol, then \ Y | ^ n + 2".

PROOF. By 4.1 B £ Y. Each x;, 1 ^ i g n, in the free generating set for
Ftf^n) is join-irreducible. So xt = Y\Sh S; £ Y. Define 7] = {y e y | j ; e S(, y ̂  B}.
By 2.8, T; ^ 0 f o r each j . Let bt eB be such that (fcj),- = 0 for all i, 1 g j ^ n.
If for some i, rf = n ^ j T j , then S,- £ (U./**?}) u (B\{M)- Hence x,-
^ (rij^jXjOCriCBXIftJ)). This violates 2.8. So each 7) contains, say, yt for
which y^B and y; f§ T̂- for j ^ i. Thus | Y \ ^ n + 2".

It is interesting to note that 4.2 is not true for FBm(n), m arbitrary.

5. The infinite case

In this final section we generalize some of the results of the previous sections
to FBJX), where X is an infinite set of arbitrary cardinality.

5.1 DEFINITION. For Y £• X, define B(Y) s FBm(X) by

B(Y) = {[(n s*xn(( y\s))]* | s s Y}.

Let B = U {B(Y) | Y £• X}. Form G = X\JB.

5.2 THEOREM. FBJJC) = [G]D o i . Moreover, if a is any infinite cardinal,
FBm(a) is a D01 homomorphic image of FD0l(cc).

PROOF. For z e FBa(X), z may be obtained from a finite subset y £ X by
a finite series of applications of + , • and *. Apply 2.4 to show [y]B , ,
= [ y u B ( y ) ] D o i . The second claim follows from the fact that \G\ = |.Y|,
whenever X is infinite.

5.3 REMARK. If zu••-,zkeFBa>(X), then there exists some set Y £ X
such that Zi ,-" ,z*e[y]B < u . Observe [ y ] B > = F B j y ) . Thus, the results of
sections 2 and 3 apply to zu •••,zk. In particular, for X infinite and G as in 5.1,
define G = {TIT\T z G,T finite}. It can be seen that the set of join-irreducible
elements of FBm{X) is G\{0}. Thus G is a relative partial sublattice of FBJX):
y + z is defined only in the case that y and z are comparable. Arguments similar
to those in Section 3 give the following:

5.4 THEOREM. FBa(X) is the distributive lattice freely generated in D by
the partial lattice G.
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5.5 THEOREM. The pseudocomplemented semilattice G is M isomorphic
to FM(X).

Recall that for Le i ) , a subset F g L is a prime filter if and only if there
exists he\L,{Q, 1}]D, h onto such that fr~ *(1) = F. Observe that every proper
filter in the partial lattice G is a prime. Apply 5.4 to obtain

5.6 THEOREM. The partially ordered set of prime filters of FBa(X) is
isomorphic to the partially ordered set of proper filters of G.
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