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Abstract. We invented the pseudoparticle multipole method (P2M?),
a method to express multipole expansion by a distribution of pseudopar-
ticles. We can use this distribution of particles to calculate high order
terms in both the Barnes-Hut treecode and FMM. The primary advan-
tage of P2M? is that it works on GRAPE. Although the treecode has been
implemented on GRAPE, we could handle terms only up to dipole, since
GRAPE can calculate forces from point-mass particles only. Thus the cal-
culation cost grows quickly when high accuracy is required. With P?2M?2,
the multipole expansion is expressed by particles, and thus GRAPE can
calculate high order terms. Using P2M?2, we realized arbitrary-order
treecode on MDGRAPE-2. Timing result shows MDGRAPE-2 acceler-
ates the calculation by a factor between 20 (for low accuracy) to 150 (for
high accuracy). We parallelized the code so that it runs on MDGRAPE-2
cluster. The calculation speed of the code shows close-to-linear scaling
up to 16 processors for N > 108.

1. Introduction

The calculation of the gravitational force is the most expensive part of almost all
N-body simulations. The Barnes-Hut treecode (Barnes & Hut 1986) is a widely
used algorithm to reduce the cost of the force calculation. In the treecode,
forces on a particles from distant particles are replaced by multipole expansions
of groups of particles. More distant particles are organized into larger groups,
so that the truncation error of the expansion is similar everywhere. Hierarchical
tree structure is used to form grouping efficiently. The calculation cost is reduced
from O(N?) to O(N log N).

Even with the treecode, the cost of force calculation is still high, and it
dominates the total calculation cost. In order to accelerate the treecode further,
we can use GRAPE (Sugimoto et al 1990; Makino & Taiji 1998). GRAPE is
a special-purpose hardware for the calculation of gravitational force between
particles. It works in cooperation with a general-purpose computer (host com-
puter). The host computer does everything except for the force calculation. The
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application of GRAPE to the treecode is introduced by Makino (1991), who im-
plemented Barnes’ (1990) modified algorithm on GRAPE-1A (Fukushige et al.
1991). Athanassoula et al. (1998) and Kawai et al. (2000) reported its per-
formance on GRAPE-3 and GRAPE-5, respectively. The speedup factor they
obtained is in the range of 30 to 50.

Although GRAPE can significantly accelerate the treecode, its application
has been limited to simulations where the requirement for the accuracy is mod-
est. Since GRAPE can only calculate forces from point mass particles, we have
not been able to handle terms of the multipole expansion higher than dipole.
Thus, the calculation cost grows quickly when high accuracy is required.

We have developed the pseudoparticle multipole method (P?M?) which
makes it possible to evaluate higher-order expansions on GRAPE. Using P?M?,
multipole expansions are represented by a small number of pseudoparticles. The
masses and positions of pseudoparticles are determined so that they have the
same expansion coefficients as the corresponding physical particles up to the
specified order. With the P2M2, we can use GRAPE to evaluate high order
terms, since they are expressed by particles. Thus, for high accuracy the ad-
vantage of our method over dipole code with GRAPE is large. The crossover is
achieved at rather low accuracy (around 0.5% for relative force error). So our
method is useful for a wide range of applications.

In the following, we first describe the procedure to express multipole ex-
pansion using pseudo particles (§ 2). Then we give the result of numerical tests
on MDGRAPE-2 (§ 3), and summarize this proceeding (§ 4).

2. The Pseudoparticle Multipole Method

In P2M2, we distribute the pseudoparticles so that they exactly reproduce the
coefficients of the multipole expansion of real (physical) particles up to a given
order. Conceptually, in order to obtain such a distribution, first we calculate
the expansion coeflicients from the distribution of physical particles. We then
solve the inverse problem to obtain the masses and positions of pseudoparticles.
In § 2.1, we describe a practical procedure to obtain the distribution of the
pseudoparticles which can be used up to quadrupole. In § 2.2, we describe a
procedure to obtain the distribution for higher order.

2.1. Quadrupole Moment with Pseudoparticles

In Cartesian coordinates, the multipole expansion up to quadrupole of the po-
tential due to N particles is expressed as

N
1 »rr; 173 1
O(r) = ;mi {; + 731 + 5 [Q(rri)2 - 57‘27',-2] } . (1)

The mass M; and the position R; of pseudoparticles must be determined so
that they give the same ® up to a given order p. In general, the expansion up
to the p-th order has (p + 1)? independent terms. Since each pseudoparticle
has four degrees of freedom (one for mass and three for position), theoretically
we can reproduce the expansion using Kmin(p) = [(p + 1)2/ 4] pseudoparticles.
Here [z] denotes the minimum integer not smaller than z.
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In order to express multipole expansion of order p = 0, we need Kp,in(0) = 1
pseudoparticle. We must put the particle so that M; and R reproduce the first
term (monopole term) of the right hand side of equation (1). For this purpose
we can set the mass M; = M, where M is the total mass of physical particles.
At least formally, the position of the pseudoparticle can be anywhere. In figure
1 we place them at the origin as example. In practice, we would never use zeroth
order expansion since we can achieve the first order accuracy with one particle,
as we will see below.

(@) |z (b) |Z

T0

Figure 1.  The positions of pseudoparticles which reproduce the mul-
tipole expansion up to monopole (left), dipole (middle), and quadrupole
(right).

For p = 1, M; and R; must reproduce the first and the second term (dipole
term) of the right hand side of equation (1). We can satisfy this condition by
placing a single pseudoparticle with mass M at the center of mass of physical
particles, r¢y (see figure 1b), as is done with the original Barnes-Hut treecode.

For p = 2, the minimum number of pseudoparticles necessary is Kmin(2) =
3. In the following, we’ll see whether we can actually construct the distribu-
tion of three pseudoparticles which reproduces the multipole expansion up to
quadrupole.

In order to reproduce the first and the second terms, the total mass of the
pseudoparticles should be M, and their center of mass should be located at rcp,.
This is achieved by making their total mass M and center of mass to be the
same as that of physical particles. In the following, we use a coordinate system
shifted so that r¢m = 0.

Pseudoparticles should have the same quadrupole tensor

TiTi TiY; Tiz;

3 1
,4=§§:mi YiTi YiYi iz -§§:mw? @)
=1 i=1

T ZYi  ZiZi

as physical particles to reproduce the third term in equation (1).
By definition, A is symmetric and traceless. Therefore we can choose the co-
ordinate axe so that A is diagonalized. In this coordinate system, A is expressed

al 0 0
0 as 0
0 0 - (a1 + az)

A= 3)
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We can choose a; and ag, so that the relation
a1 > a2 > —(a1 +az) (4)

is satisfied.

Obviously, all three pseudoparticles should be on the x-y plane. Now our
problem is reduced to determining the masses and positions of three particles
on the x-y plane so that they give the quadrupole moment tensor of the form

(3).

There are a variety of ways to satisfy this requirement. Here we give just
one example.

We still have three extra degrees of freedom, since we can change masses
and positions of two particles on the x-y plane freely, and we have only three
constraint. In our procedure, we set the masses as M7 = My = M3 = M/3.
These masses reproduce the first term of the equation (1). Now we have only
one extra degree of freedom left. We use it by setting  component of R; to 0.
Now we can determine the position vectors as follows:

0 a -
R1=!2ﬂ],R2=[—ﬁ],R3=[—ﬂ]y (5)
0 0 0

where a and 3 are defined as

a=/(201 +az)/M, B=1/(ar+2a5)/(3M). (6)

Note that both o and 3 are guaranteed to be real numbers. As we have already
mentioned, this solution is not unique. For example, if we set y, instead of z,
component of R; to 0, we obtain another solution that attains the same order
of accuracy.

2.2. Higher Order Generalization

Here we describe the generalization of P2M? for multipole expansion of higher
order. The procedure we described in the previous section depends closely on the
nature of quadrupole-moment tensor, and it is difficult to extend this procedure
to higher orders.

Makino (1999) proposed a different approach based on the orthogonality of
spherical harmonics. His approach gives a systematic procedure to obtain the
distribution for an arbitrary order.

The key idea of Makino’s approach is to fix the positions of pseudoparticles.
To obtain the distribution of pseudoparticles, we need to invert the multipole
expansion formula. Direct inversion is not easy for high order expansion, since
the formula is nonlinear for the positions of pseudoparticles. However, if we
fix the positions, the equation becomes linear, since the formula is linear for
the masses of pseudoparticles. In this case we can invert the formula relatively
easily. On the other hand, the necessary number of pseudoparticles increases,
since we can adjust only the masses, and the degree of freedom assigned to
each particle is reduced from four to one. Because of the rather large number
of pseudoparticles, his procedure is not efficient when the required accuracy is
modest. But it may be useful for calculations that require very high accuracy.
For the formulation detail of the generalized P2M?, see Makino (1999).
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3. Numerical Tests

Using P?M?, we implemented an arbitrary-order treecode (hereafter referred to
as P2M? treecode) on GRAPE and a UNIX workstation. Also we parallelized
the code on a distributed memory system consists of workstations and GRAPE
processor boards attached to each of them. The parallelization scheme we used
are basically the same as Warren & Salmon’s (1993) Hashed Oct-Tree algorithm.
The source code for both serial and parallel implementations are available upon
request.

In the following we show the results of numerical tests. In § 3.1 and § 3.2,
we show the accuracy of instantaneous force calculation and that of dynamical
simulation, respectively. For these measurement we used the serial code on one
MDGRAPE-2 (Narumi et al. 2000) processor board (192 Gflops). The host
computer for MDGRAPE-2 is a COMPAQ DS20E with Alpha 21264 processor,
running at 667 MHz. In § 3.3, we show the the calculation speed of the parallel
code. For this measurement we used an MDGRAPE-2 cluster, which consists of
16 processor boards of MDGRAPE-2 and 16 DS20Es connected via Myrinet.

3.1. Speed and Accuracy of Force Calculation

Here we show the accuracy and the speed of instantaneous force calculation.

We uniformly distributed 262144 equal-mass particles within a unit sphere.
Then we calculated the force on each particle with P2M? treecode, and measured
relative error e and calculation time T for various values of the opening angle 6.
The error e is defined as r.m.s. relative difference from the exact force. As the
exact force, we used the force calculated with direct summation algorithm on
the host computer using IEEE-754 standard 64-bit arithmetic. Barnes’ (1990)
vectorization parameter, nci;y = 8000 and 1 are used for runs with and without
MDGRAPE-2, respectively. These values are close to optimal for our hardware
configuration.

Figures 2 and 3, and table 1 show the results. In figure 2, the errors for
P2M? treecode of orders p = 1 through 4 are plotted as functions of §. We can
see that the error roughly scales as §P*1-5. This behavior agrees well with the
theoretical estimate given by Makino (1990). The saturation of the accuracy at
e ~ 1078 is due to the hardware limitation of MDGRAPE-2.

In figure 3, the force error e is plotted as functions of the calculation time T'.
We can see that P2M? treecode of order p = 2 is the fastest for a wide range of
accuracy (1076 < e < 1073). For low accuracy (e > 1073), the treecode of order
p =1 is the fastest. For extremely high accuracy (e < 1077), P2M? treecode of
order p = 4 is the fastest. We performed the same test without MDGRAPE-2,
and found that MDGRAPE-2 accelerates the calculation by a factor of 20 (for
e =~ 1072) to 150 (for e ~ 1076). We performed the same test also on GRAPE-5
to confirm that our method works well on low-accuracy hardwares. The results
are similar to those on MDGRAPE-2, except that the accuracy saturate around
e~ 4 x 1074 due to the hardware limitation.

In table 1, the breakdown of calculation time are given for P2M? treecode
of order p = 2 (quadrupole) and the treecode of order p = 1 (dipole). We can
see that the force calculation using GRAPE is the most time-consuming part.
The time to set up the pseudoparticles is about 10% of the total time.
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When we compare the timings for p = 1 and 2, we can see that the calcu-
lation time is only 30% longer for p = 2, though each node in p = 2 calculation
consists of 3 pseudoparticles. This is because we used the algorithm optimized
for GRAPE, in which the forces from nearby particles are calculated directly
Barnes (1990). Since this part dominates the total cost, the increase in the cal-
culation cost of the forces from nodes has rather small effect on the calculation
cost.

Table 1. BREAKDOWN OF COMPUTATION TIME (N =
262144, 6 = 0.5)

p=1 p=2

(s/step) (s/step)

Host Computer
Tree Construction 0.27 0.20
Pseudoparticles Set up 0.20 0.36
Interaction List Construction 0.55 0.62
MDGRAPE-2 0.63 0.92
Data Transfer 0.64 0.90
Total 2.29 3.00

3.2. An Example of Simulation

Here we discuss the overall accuracy of the simulation. We have already seen our
code attains high accuracy in calculation of instantaneous force, but this high
accuracy does not necessarily guarantee the accuracy of the total simulation.
For example, if the force errors in consecutive timesteps are strongly correlated,
they accumulate. As a result, overall accuracy of the orbits of stars might be
worse, compared to the case with weaker correlation.

We performed a simulation of a collision of two identical galaxies. We chose
the system of units so that the total mass of each galaxy and the gravitational
constant are both unity and the total energy of each galaxy is —1/4. Galaxy
model we used is the Hernquist model Hernquist (1990) with 65536 equal-mass
particles. We cut off the distribution at radius 20. We place the galaxies at
initial separation 3.0, and gave initial velocities so that they would follow a
parabolic head on collision. We integrated this system up to ¢ = 16 with time
step At = 1/200 and softening parameter ¢ = 1/100. We performed the same
simulation using three different codes, namely, P2M? treecode of order p = 2,
the treecode of order p = 1, and the direct summation algorithm. For treecode
simulations, we used the opening angle § = 0.5.

Figure 4 shows the results of simulations. The relative error of the total
energy, dE(t)/E(0), is plotted as a function of time ¢. For all runs, we can
see three bumps around ¢t = 2,7, and 8, which correspond to close encounters
of the two galaxies. These bumps comes from the time-integration error, since
they can be seen in the result of the direct summation algorithm with highly
accurate force calculation. We can regard the deviation from the result of the
direct summation as being caused by the error of the force calculated with the
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Figure 2. Ther.m.s. relative force error e plotted against the opening
angle 0. Curves with crosses, filled squares, open squares, and circles
are results for treecodes with p = 1,2,3 and 4, respectively.
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Figure 3.  The r.m.s. relative force error e plotted against the calcu-

lation time 7. Meaning of the symbols are the same as those in figure
2.
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treecodes. For the treecode with p = 2, the maximum deviation from the direct
summation is 5 x 107°, while for p = 1 it is 4 x 1074, This a factor of 10
difference is consistent with the difference of the accuracy of the instantaneous
force shown in figure 2. The simulations took 1.7 and 2.4 hours for p = 1
and p = 2, respectively. Thus we can conclude that the high accuracy in the
instantaneous force offered by our new P2M? does improve the overall accuracy
of the time integration, with modest increase of calculation time.
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Figure 4.  The relative error of the total energy plotted as a function
of time. Solid, long-dashed and short-dashed curves are for treecodes
with p = 1, p = 2, and direct summation algorithm, respectively.

3.3. Scalability of the Parallel Code

Here we show the calculation speed of our parallelized P?M? treecode.

We uniformly distributed various numbers of equal-mass particles within a
unit sphere, and measured the calculation time using different numbers of work-
stations (processor elements). Each processor element used one MDGRAPE-2
processor board. The opening angle used was 6 = 0.5.

Figure 5 and 6 show the results. In figure 5, the calculation time T measured
with the parallel code of order p = 1 and p = 2 are plotted as functions of
the number of processor elements, Np.. The number of particles used for this
measurement was N = 4 x 105. We can see that the calculation time T scales
almost linearly, for both p =1 and p = 2.

In figure 6, the calculation time T measured with the code of order p = 1
and p = 2 are plotted as functions of the number of particles, N. The number
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of processor elements used for this measurement was Npe = 16. As theoretically
expected, the calculation time 7" roughly scales as N log N, except for rather
small N (N g 108),
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Figure 5.  The calculation time T of the parallel code plotted against
the number of processor elements Npe. The results are for number of
particles N = 4 x 10%. Meaning of the symbols are the same as those
in figure 2.

4. Summary

We proposed P2M?, a method to express multipole expansion by a distribution of
pseudoparticles. Using this method, we implemented an arbitrary-order treecode
on MDGRAPE-2. With this code MDGRAPE-2 accelerates the calculation by
a factor between 20 (for e ~ 1072) to 150 (for for e ~ 107%). We performed a
dynamical simulation using this code and confirmed that it improves not only
the instantaneous force calculation but the ove.all accuracy of the simulation.
We parallelized the code and implemented it on an MDGRAPE-2 cluster, and
found that the performance of our parallel code shows good scalability. We
can conclude that the combination of GRAPE and the P?M? treecode is an
attractive choice for large N, high-accuracy simulations.
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