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Abstract

In two-dimensional bow-like flows past a semi-infinite body, one must in general expect a
free-surface discontinuity, in the form of a splash or spray jet. However, there is
numerical evidence that special body shapes do exist for which this splash is absent. In
this study, we first establish conditions on the geometry of the bow in order that it should
be splash-free at zero gravity, by solving the mathematical problem exactly. We then
obtain solutions for finite non-zero gravity, by solving a non-linear integral equation
numerically. A class of splashless body geometries with a downward directed segment at
the extreme of the bow, to which the free surface attaches tangentially, is demonstrated in
detail.

1. Introduction

The free streamline problem associated with the flow at the bow of a ship was
treated within the framework of steady two-dimensional potential flow by
Vanden-Broeck and Tuck [7], and by Vanden-Broeck, Schwartz and Tuck [8].

These authors constructed models for near-stern and near-bow flows, emphasiz-
ing that elimination of waves from a stern flow is equivalent to elimination of
splashes from a bow flow. That is, if one has been able to construct a waveless
stern flow, since there is no radiation condition for that flow, it can be reversed in
direction to yield a splashless bow flow. Their scheme worked very well for stern
flows, but they did not succeed in finding continuous solutions without waves.
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Although the above research was restricted to bow shapes consisting of a plane
lower surface and an oblique plane front, it suggested that, for a given bow shape,
splash-free solutions may not exist. However the possibility still exists that, by
considering more-complicated families of bow-shape geometries, one might be
able to identify a special member of such a family having the splash-free property.
This possibility is also strongly suggested by more recent work of the same
authors [9], and by Schmidt [5]. In particular, Tuck and Vanden-Broeck [6] have
demonstrated numerically the existence of such bow shapes, and further sug-
gested that those bow flows in which the splash drag component can be eliminated
are of a bulbous character.

In the present study, we establish conditions on the geometry of the bow, in
order that it should be splash-free at zero gravity, i.e. for infinite Froude number.
That is, we set g = 0, and solve the corresponding mathematical problem exactly
by a hodograph method. This zero-gravity solution necessarily has either infinite
or (exceptionally) zero draught, and we select those special solutions that have
zero draught for further attention. Our numerical evidence then indicates that
wave-free stern flows, or equivalently splash-free bow flows, exist for a finite
range of gravity, i.e. for 0 < g < gm, where gm is an upper bound which depends
on the family of bow shapes considered. A numerical scheme which determines
only such splashless solutions is employed to investigate the deformation of the
original bow shape, as gravity increases from zero. This task is achieved by
allowing the numerical scheme to adjust one of the parameters determining the
geometry of the bow.

2. Formulation

Consider the steady two-dimensional irrotational flow of an inviscid incom-
pressible infinitely-deep fluid past a semi-infinite body, whose bottom surface is
the plane y = -D, for x < 0. A finite non-planar termination to the body lies in
x > 0, and there is tangential free-surface attachment at the point where the body
ends. The flow underneath the body is assumed to approach a uniform stream of
unit magnitude as x -» - oo. The level y = 0 corresponds to the level of the free
surface at which the velocity is equal to 1 when x > 0. In general, we expect a
mean free-surface level y = 0 as x -» +00, and can interpret D as the "draught"
of the body.

Let the potential function be <f>, and the stream function be \p. Choose <j> = 0 at
the point of detachment of the free streamline and the body, and \p = 0 on the
free surface and on the surface of the body. Let the value of <j> at x = 0, y = -D
be - 1 ; thus the body is curved only in -1 < <f> < 0. The complex velocity u — iv
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is an analytic function of the complex potential / = <j> + />//, where u,v are the
velocity components in the x and y directions respectively. The function T — id
defined by

— = u — iv = exp( T — id) (2.1)

is an analytic function of / in the half plane i// < 0, and tends to zero as
| / | -> oo, \p < 0. Therefore, on \p = 0, its real part is the Hilbert transform of its
imaginary part, and we have

9
dip, (2.2)

where r(<f>) and #(</>) denote respectively T(<J>, 0_) and ^(</>,0_). The integral in
(2.2) is to be interpreted in the Cauchy principal-value sense. The kinematic
condition on the body yields

= 0,

e = = o , - l < <t> < o .

(2.3)

(2.4)

Here the function ®(<j>) defines the shape of the body. An important special case
is a polygonal body where 0(</>) is a step function, as sketched in Figure 1.
Bernoulli's equation and the condition of constant pressure on the free surface
yield

where y is given by

gv + k 2 = 2-,

dy/d(j> = e Tsin0.

(2.5)

(2.6)

Free surface

0=-1

FIGURE 1. Sketch of a flow past a semi-infinite body (polygonal) with a smooth detachment.
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Differentiating (2.5) with respect to </>, using (2.6), and integrating gives

ie 3 T = | , (2.7)

where the limits y -> 0 and r -* 0 as <j> -» oo have been enforced. Substituting
(2.3), (2.4) and (2.7) into (2.2), we get

•'o <P - </>

where

- 3g(*$in8d<p] for </> > 0, (2.8)

7\<J>) is a known function, for a given bow-shape function ©(<#>).
For given ®(<t>), -1 < </> < 0, the problem reduces to finding a function

satisfying the nonlinear integral equation (2.8) for <f> > 0. The exact solution to
equation (2.8) in the absence of gravity is described in the next section. If g > 0,
equation (2.8) must be solved numerically.

3. Zero gravity

As g -* 0, equation (2.7) indicates that r -* 0 on the free streamline; i.e. the
fluid velocity is of constant (unit) magnitude. Potential flow past a curved
obstacle with a constant-speed free boundary has been long recognized as an
interesting mathematical problem, and questions of construction, calculation,
existence, and uniqueness have intrigued many outstanding hydrodynamicists and
mathematicians, see Gilbarg [2], Birkhoff & Zarantonello [1]. For simple config-
urations, such as flat plates, symmetric wedges, and other polygonal shapes, the
direct problem immediately admits a unique explicit solution by the hodograph
method, see Wu [10], Milne-Thomson [4], Gilbarg [3].

Consider the potential function / ( z ) given by integration of

df (Q @'(s), ( fj+ f^\
u - v = -j- = exp / — ^ - l o g -*T= 1= ds. (3.1)

This could be derived as a limiting case of the Schwartz-Christoffel transforma-
tion in the hodograph plane, by allowing all the straightline segments in Figure 1
to form a smooth curve. It can be shown that (3.1) defines the complex velocity
u — iv as an analytic function of the complex potential <j> + i\p, and satisfies the
required conditions for yp = 0. That is

(1) u — iv is real on \p = 0, </><-!,
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(2) u- iv = R(<t,)e-'ew for -1 < $ < 0, $ = 0,

for some real function R(<t>),

(3) | u - iv | = 1 for <}> > 0, 4/ = 0,

(4) u — iv -* 1 as <f> -» ± oo.

Hence (3.1) satisfies (2.8)-(2.9) when g = 0. Furthermore, (3.1) holds for bodies
with discontinuous as well as continuous slope.

From (3.1) we can extract the free streamline slope as

0(<J>) = — ( ®'(s) arctan ^ ds. (3.2)
irJ-i \ s + <t> j

As <#> -• oo, 6(<j>) has the following form:

/ 2 ) - (3-3)

The corresponding asymptotic form of the free streamline at a large distance
downstream can be written as

y =.yo+ Mill Q'Wfeds] + O(x-1/2logx), (3.4)

where y0 is a constant. The drag force F is given by

T (3.5)

where p is the fluid density.
In general, the free streamline is parabolic at a large distance downstream, and

the draught is infinite. However, there is a special case when this is not so, and it
is clear that the free streamline asymptotes to a line parallel to the x axis if the
zero-drag condition,

f° &'(s)yTJ ds = 0, (3.6)

is satisfied by the specified body shape. Furthermore, we can verify that y0 = 0 in
this g = 0 case, by using (3.1), (3.6) and the Cauchy residue theorem in the
complex plane. Thus the draught is zero in this special case; finite non-zero
draught is impossible.

It should be emphasized that (3.6) is a necessary but not a sufficient condition
for a physically acceptable shape of zero draught, since some profiles may cut
themselves even though they satisfy (3.6). For bodies with discontinuous slopes
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(as in Figure 1), condition (3.6) should be written in the form

0, (3.7)[
- l

where the discontinuity at <f> = -a.j has the contribution Ja^(0j+l - #,). Under
the zero-drag (consequently zero-draught) condition, equations (3.3) and (3.6)
show that 8 behaves like </r3/2 as <f> -» oo.

4. Numerical scheme for g # 0

To solve the integral equation (2.8) in the presence of gravity, we introduce the
N mesh points defining the free surface by

«p, = /2A2, i = 0 , 1 , 2 , 3 , . . . , A T - 1 . (4.1)

The quantity A2 is a small parameter that controls the size of the intervals of
discretization. Also, we introduce N corresponding unknowns 0,, by the definition

, i = 0 , l , 2 , . . . , ( A / - l ) . (4.2)

The unknown 60 has the special property that it is the slope of the body at
<p = 0_ as well as that of the free surface at <p = 0 + . Thus we are assuming that
the free-surface joins the body smoothly and tangentially at <p = 0, and in
particular are excluding the possibility that this point is a stagnation point.

We enforce the finite draught (and wave-free) requirement by assuming an
asymptotic <p~3/2 decay at infinity, by analogy with (3.3) subject to (3.6). Thus we
set

(4.3)

Now T(<f>) is computed at intermediate meshpoints

* - ( ! ' : » ' * ":*u («)
if / =

i.e. we evaluate

T, = T ( < J > , ) , i = 1,2,3,..., N, (4.5)

in terms of 0,, by applying the trapezoidal rule to the integral (2.8), with the mesh
points <p,. The contribution to (2.8) for «p > <pA,_1 is estimated by the use of (4.3).
N equations are obtained from (4.5) to evaluate 0, = 0,(<p,), i = 0,1,2,.. .,(N -
1), for any given function &(<t>).
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When g = 0, (2.8) reduces to a system of linear equations, the solution of
which agrees with the exact values to within 99% or better accuracy when N = 50
and A2 = goo a n d t n e s e values of N and A2 were used for all calculations. Using
the solution at g = 0 as an initial guess, Newton's method seemed to converge
very efficiently for a moderate value of gravity, g = 1.0 (say). This solution is
now used as an initial guess to obtain the next solution, which corresponds to a
higher gravity, g = 2.0, etc. This process of increasing gravity can be continued
up to a certain upper limit gm (say), as discussed in the next section. The profiles
of the ship bow and of the free surface were obtained by numerically integrating
(2.6) and

3x/3<#> = e-Tcos0. (4.6)
Some numerical results are given in Tables 1, 2 and 3.

Table 1 Corresponds to Figure 2

a0 = .25, 6X = w/6

g

0

0.03

0.05

0.07

1.0

2.0

5.0

12.0
20.0

*o

-0.5300

-0.5120

-0.5004

-0.4905

-0.2710

-0.1746

-0.0715

-0.0273
-0.0160

D

0.000

0.054

0 068

0.079

0.230

0.283

0.341

0.369
0.377

Table 2. Corresponds to Figure 3

a0 = -25, #i = ir/2

g

0

0.05

0.09

0.3

1.0

1.3

1.4
1.5

"o
-1.590

-1.500

-1.440

-1.196

-0.555

-0.250

-0.080
-0.010

D

0.000

0.371

0.481

0.850

0.872

0.896

0.930
0.968
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5. Discussion of results

449

Consider first a polygonal body defined by

= 60, - a 0 < <J>< 0 ,

-a0,

= 82, -a2

= Bn, -a
n_v

Suppose first that g = 0. Substitute into the condition (3.7) to get

which can be rewritten as

-eofo = en(\ - f^;

(5.1)

(5.2)

0-
(5.3)

Now it is clear that, for all the body shapes which have 0, > 0, /' = 1, 2 , . . . , n, the
value of 80 must be negative. These geometries have the property that the bow lies
completely above its flat bottom level. When g > 0 the adopted numerical
procedure determines the value of 60 for given dx,..., 0n, a0, a 1 ; . . . , an_l, such
that the corresponding bow flow is splashless.

On running the scheme for many different values of a0, o , , . . . , ^ . , , and
01,...,0n(0i > 0), it was observed that, as g increases from zero to some upper
limit gm, 0O increases from the negative value given by (5.3) to some non-zero
negative value 8m (say), where 80 < 0m < 0 for this particular class. As g

Table 3. Corresponds to Figure 4

k = -25w/12

g

0

0.05

0.1

0.2

0.500

1.000

1.600
1.694

Oo

-1.324

-1.284

-1.255

-1.204

-1.076

-0.890

-0.609
-0.495

D

0.000

0.102

0.142

0.194

0.305

0.443

0.610
0.664
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1.0
0.5 1.0 1.5 2.0

0.5

-0.5

FIGURE 2. Bow with a plane oblique front and a downward angled end segment.

1.0
0.5 1.0 1.5 2.0

0.5

-0.5

.9 = 1.0

-g = 1

FIGURE 3. Bow with a plane vertical front and a downward angled end segment.
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0.5 -

-0.5 -

FIGURE 4. Smooth bow e(<j>) = 90 + (80 + k)<t> + k$2 at k = -25ir/U.

approached gm, Newton's method needed more iterations to converge to a
solution, and finally it failed beyond g = gm. Figures 2 and 3 show some simple
polygonal profiles of this class. The upper bound gm itself is not easy to estimate,
but the largest values shown in Tables 1 and 2 are close to gm.

Figure 4 corresponds to the smooth bow-shape function ©(<» = do + (60 +
k)<j> + k<$>2 in the same class, where k is a negative constant and 0(0) = 60 is
determined by the numerical scheme in order to yield a splashless solution for
g > 0. At g = 0, by substituting 0(<f>) into (3.6), we get the initial value
0Q = k/5, which is negative. Further, this function has the following properties:

(i) 0(<J>) > 0 for -1 < <t> < -

(ii) 6(*) < 0 for -
00+

2k
< </> < 0.

It is clear that the section (ii) with ©(<?>) < 0 describes a downward-directed
rudder-like segment, analogous to the last straightline segment in the case of
polygonal bodies. At k = — 15m/Yl, it was observed that gm = 1.694 was the
upper bound for splashless solutions, and d0 increased from -1.32 at g = 0 to
-0.495 at g = gm. Smaller values of k produced higher values for the upper limit
gm. In Tables 1 and 2, exact upper bounds are not given, due to the fact that a
very large number of computations is required to approach this number.
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6. Concluding remarks

The bow shapes considered in this research have the special property that they
lie entirely above the plane lower surface and the flow separates tangentially from
the bow. The numerical evidence strongly suggests that this class will have no
splash-free solutions without a downward-angled rudder-like segment at the
extreme of the bow. The possibility still exists of having a solution in which the
flow rises up the front face of the body to a stagnation point, at which separation
occurs. This is being explored.

Unequally spaced grid points in (4.1) and the selection of intermediate points
in (4.4) increased the accuracy considerably when compared to trial runs using
uniform grid. Models were tested for many different values of N and A but
N = 50 and A = ^ gave adequate accuracy. It should be emphasized that the
suggested upper bound gm for gravity varies according to the parameters that
determine the bow geometry. In Figure 1, higher values of gm are obtainable by
lowering the oblique flat front.
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