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On the Number of Divisors
of the Quadratic Form m2 + n2

Gang Yu

Abstract. For an integer n, let d(n) denote the ordinary divisor function. This paper studies the asymptotic
behavior of the sum

S(x) :=
∑

m≤x,n≤x

d(m2 + n2).

It is proved in the paper that, as x →∞,

S(x) := A1x2 log x + A2x2 + Oε(x
3
2 +ε),

where A1 and A2 are certain constants and ε is any fixed positive real number.
The result corrects a false formula given in a paper of Gafurov concerning the same problem, and improves

the error O
(

x
5
3 (log x)9

)
claimed by Gafurov.

1 Introduction

For an integer n, let d(n) denote value of the ordinary divisor function, i.e. the number of
positive divisors of n. It is our interest here to study the asymptotic behavior, as x→∞, of
the sum

S(x) :=
∑

m≤x,n≤x

d(m2 + n2).

Gafurov is the first person who studied this problem, and he claimed in [4] that

S(x) := A1x2 log x + A2x2 + O
(
x

5
3 (log X)9

)
,

where A1 and A2 are certain constants.
Unfortunately, Gafurov’s paper contains a critical mistake in its initial decomposition,

and thus his computation for A2 is not correct. The purpose of this paper is to give the cor-
rect asymptotic main term for S(x) and an error term sharper than what Gafurov claimed
for his estimation.

Since there is a certain regularity in the distribution of the roots of the congruence

ν2 + 1 ≡ 0 (mod k)

for variable k, an exponential sum involving the ratio ν/k can be well estimated. We shall
combine some results of Gafurov [4] with estimates of exponential sums to give the correct
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asymptotic formula with an error term O(x
3
2 +ε), for any positive ε. Exactly, we shall prove

the following theorem.

Theorem 1 For x ≥ 1, we have

S(x) = A1x2 log x + A2x2 + Oε(x3/2+ε),

where ε is any positive number and A1 and A2 are the constants given by

A1 =
π

2L(2, χ)
,

and

A2 = 4

∫ ∞
1

E(t)

t3
dt +

π2 − 4π + 2π log 2

8L(2, χ)
,

where χ is the nontrivial character modulo 4 and function E(t) is given in Lemma 3.

Remark 1 It should be noted that, because the sum S2 in formula (4) of [4] is larger than
the correct one, the value of A2 Gafurov got is π(π−2)

8L(2,χ) smaller than ours.
We shall decompose S(x) into three sums in Section 4, and give different treatments

for the sums in the following three sections. We shall relate one of the three sums to the
classic circle problem and make use of existing results about the circle problem to give
an asymptotic formula for this sum with an error term O(x1+α+ε), where α < 1/3 is any
exponent for the error term involved in the circle problem. For example, by appealing to
the work of Iwaniec and Mozzochi [6], we have an error O(x

29
22 +ε) in this case.

One may naturally ask for the asymptotic formula of the sum

W (x) :=
∑

m2+n2≤x

d(m2 + n2).

Note that

W (x) =
∑
n≤x

d(n)
(1

4
r2(n)
)
−
∑

n≤
√

x

d(n2),

where r2(n) is the usual representation function of n as a sum of two integral squares,
namely the number of lattice points (u, v) satisfying u2 +v2 = n, we are concerned with two
sums of multiplicative functions. Thus the sum W (x) is much nicer than S(x). Without
proof, we state the asymptotic formula for W (x) with an error O(x

1
2 +ε) as follows. This

theorem, which can be easily proved via Perron’s formula, is hardly the best that can be
obtained for W (x).

Theorem 2 For sufficiently large x, we have

W (x) = B1x log x + B2x + O(x
1
2 +ε),

where

B1 =
π2

16L(2, χ)
,

and

B2 =
π

16L(2, χ)

(
2γπ − π + 8L ′(1, χ)− 2π

L ′

L
(2, χ)

)
,

where γ = 0.577 · · · is the Euler constant.
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2 Notation and Conventions

Throughout the paper, [t] denotes the integral part of the real number t and {t} denotes
its fractional part. As usual, ψ(t) = {t} − 1/2 and ‖t‖ = min{{t}, 1 − {t}}. We use e(t)
as an abbreviation for exp(2πit). For integers m and n, we shall use (m, n) to denote the
great common factor of m and n. Landau’s symbol O and Vinogradov’s symbol
 are often
used.

For a complex valued function f and a real, positive valued function g, f = O(g) or
f 
 g means there exists a positive constant c such that | f | ≤ cg. With n ∼ N we mean
there are positive constants c1, c2 such that c1N < n ≤ c2N , and the notation is only used
at where the values of c1 and c2 are not important.

By ε we shall always mean a small fixed constant, not necessarily the same on each oc-
currence. A simple notation u (mod d) means u runs over the residue classes modulo d,
and u (mod d)∗ means u runs over the reduced residue classes modulo d With ρk,l(d) we
define the arithmetic function

ρk,l(d) =
∑

v (mod d)
v2+l2≡ 0 (mod d)

e(vk/d).

Thus ρl(d) := ρ0,l(d) defines the number of solutions of the congruence v2 +l2 ≡ 0 (mod d)
for fixed l. We use another notation ρ(d) to define the number of solutions of the congru-
ence u2 + v2 ≡ 0 (mod d) subject to 0 < u, v ≤ d. We have φ(m) the Euler function; µ(m)
the Möbius function; and χ(m) the non-trivial character mod 4. By r(n) we denote the
number of representations of n as the sum of two squares, with the order being important.
For example, r(3) = 0, r(2) = 1 and r(5) = 2. One should be notified that r(n) here differs
from r2(n) defined in the introduction.

3 Lemmas

In this section, we list some lemmas which are needed in the proof of the theorem.

Lemma 1 Suppose α is a real number, a and q > 0 are two coprime integers such that

∣∣∣α− a

q

∣∣∣ ≤ 1

q2
.

Then

∑
t≤T

min

(
N

t
,

1

‖αt‖

)

 (Nq−1 + T + q) log(2qT).(3.1)

Proof This estimate is most classic. One may refer to [1, pp. 143–144], for example.

Lemma 2 Let

S(D,H,N) :=
∑
d∼D

∑
ν (mod d)

ν2+1≡ 0 (mod d)

∑
h≤H

1

h

∣∣∣∑
n≤N

e
(hnν

d

)∣∣∣.
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Then for D sufficiently large, H,N > 3, we have

S(D,H,N)
ε (DNH)ε(D + N)
√

D.(3.2)

for any ε > 0.

Proof First by summing the geometric progression, we have

S(D,H,N)

∑
d∼D

∑
ν (mod d)

ν2+1≡ 0 (mod d)

∑
h≤H

1

h
min

(
N,

1

‖hν/d‖

)
.(3.3)

Note for each d which makes a positive contribution, there exist some primitive represen-
tation of d as the sum of two squares,

d = r2 + s2 with (r, s) = 1 and − s < r ≤ s.

There is a one-to-one correspondence between solutions ν (mod d) to ν2 + 1 ≡ 0 (mod d)
and representations of d as r2 + s2, where (r, s) = 1 and −s < r ≤ s. Given r, s, we can take
for the corresponding ν (mod d) the residue class rs̄ (mod d), where 0 ≤ s̄ < d is the only
solution of the congruence sx ≡ 1 (mod d). Thus we may write sν and rν instead of s and r
respectively to indicate the corresponding ν. From the relation above, Iwaniec found that

ν

d
≡

rν
sνd
−

rν
sν

(mod 1),

where rνrν ≡ 1 (mod sν) and 0 ≤ rν < sν . Note now we have

∣∣∣∣νd +
rν + α(ν, d)sν

sν

∣∣∣∣= |rν |sνd
≤

1

2sν2
,

where α(ν, d) is−1, 0 or 1. Thus after (3.3), by appealing to Lemma 1, we have

S(D,H,N)
 log H max
J	H

J−1
∑
d∼D

∑
ν (mod d)

ν2+1≡ (mod d)

∑
h∼ J

min

(
N J

h
,

1

‖hν/d‖

)


 (DNH)ε max
J	H

J−1
∑
d∼D

∑
ν (mod d)

ν2+1≡ (mod d)

(N Jsν
−1 + J + sν)


 (DNH)ε
∑
d∼D

∑
ν (mod d)

ν2+1≡ 0 (mod d)

(Nd−
1
2 + 1 + d−

1
2 )


 (DNH)ε(D + N)
√

D,

by noting sν �
√

d. This is what we wanted.
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Remark 2 Lemma 2 will be used in estimating errors of R(x) and T(x). From the context,
it turns out to be the dominant factor for the exponent “3/2”. Some similar sums have
been discussed in [2], [3]. With the large sieve, essentially the same bounds as Lemma 2 are
proved there. However, because of the problem arising from the coefficients, their results
can not be directly applied in our case. The two formally different methods give the same
result because both of them basically rely on the spacing property of ratios ν

k .

Lemma 3 Suppose y ≥ 3. We have

∑
d≤y

ρ(d) = Ay2 + O
(

y4/3(log y)2
)
;

∑
d≤y

ρ(d)

d
= 2Ay + O

(
y1/3(log y)2

)
;

∑
d≤y

ρ(d)

d2
= 2A log y + 2

∫ ∞
1

E(t)

t3
dt + A + O

(
y−2/3(log y)2

)
;

where
E(t) =

∑
d≤t

ρ(d)− At2 
 t4/3(log t)2,

and
A =

π

8L(2, χ)

with

L(2, χ) =
∞∑
1

χ(n)

n2
.

Proof This comes from Lemmas 4, 6 and 7 of Gafurov [4].

Lemma 4 (Kusmin-Landau) If f is continuously differentiable, f ′ is monotonic, and ‖ f ′‖ ≥
λ > 0 on I then ∑

n∈I

e
(

f (n)
)

 λ−1,

where the implied constant is absolute.

Fourier expansion of function ψ(t) will be needed. A truncated form given by Vaaler [7]
has proved to be useful in applications. For each positive integer H, there is a trigonometric
polynomial ψ∗H of degree H which satisfies

|ψ(t)− ψ∗H(t)| ≤
1

2H + 2

∑
|h|≤H

(
1−

|h|

H + 1

)
e(ht),

where
ψ∗H(t) =

∑
1≤|h|≤H

g(h)e(ht)

with the complex coefficients g(h) satisfying g(h) < |h|−1.
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4 Transformation of the Sum

Note we have

S(x) =
∑

m≤x,n≤x
m2+n2=kl

1.

For such a sum, with the classic method as used to the Dirichlet divisor problem, we first
sum over the one of k and l which is≤

√
2x and then subtract the repeated part that raises

from both k and l being≤
√

2x. Thus we can split S(x) into three sums as follows.

S(x) = 2
∑

k≤
√

2x

∑
m≤x,n≤x

m2+n2 ≡ 0 (mod k)

1−
∑

k≤x/
√

2

∑
m2+n2≤kx

√
2

m2+n2≡ 0 (mod k)

1−
∑

x/
√

2<k≤x
√

2

∑
m≤x,n≤x

m2+n2≤kx
√

2
m2+n2≡ 0 (mod k)

1

= 2R(x)− Q(x)− T(x), say,(4.1)

where we have written the subtracting part as the sum of Q(x) and T(x). And one should
be noted that, for Q(x), the conditions m ≤ x, n ≤ x have naturally been satisfied.

In [4], Gafurov decomposed S(x) into two sums in the similar way. He got

S(x) = 2S1(x)− S2(x)

where S1(x) is exactly the R(x) in (4.1), and

S2(x) =
∑

k≤
√

2x

∑
m2+n2≡ 0 (mod k)

1≤m,n≤
√√

2kx−1

1.

The ranges for m and n involved in S2(x) are obviously not correct. S2(x) is over counted
and thus is greater than Q(x) + T(x).

Among all of the three sums, Q(x) is especially easy. We shall transform it into a sum
involving the numbers of lattice points in circles and take advantage of the existing results
of the circle problem to give the asymptotic formula with an error better than those we get
for R(x) and T(x). For R(x) and T(x), we shall directly divide them into main terms and
error terms, and estimate certain exponential sums to give upper bounds for the errors.

5 Treatment of R(x)

Suppose m2 + n2 ≡ 0 (mod k) and (n2, k) = ab2, where a is squarefree. Then we have
ab | (m, n). Thus we can rewrite R(x) as

R(x) =
∑

ab2d≤
√

2x
(d,a)=1

µ2(a)
∑

m≤x/ab
(m,d)=1

∑
n≤x/ab

m2+n2≡ 0 (mod d)

1.(5.1)
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Therefore,

R(x) =
∑

ab2d≤
√

2x
(d,a)=1

µ2(a)
∑

m≤x/ab
(m,d)=1

∑
ν (mod d)

m2+ν2 ≡ 0 (mod d)

∑
n≤x/ab

n≡ ν (mod d)

1(5.2)

=
∑
a,b,d

µ2(a)
∑

m≤x/ab
(m,d)=1

∑
ν (mod d)

ν2+1≡ 0 (mod d)

∑
n≤x/ab
n≡m

ν (mod d)

1

=
∑
a,b,d

µ2(a)
∑

m≤x/ab
(m,d)=1

∑
ν (mod d)

ν2+1≡ 0 (mod d)

([x/ab−mν

d

]
−
[−mν

d

])

= x
∑
a,b,d

ρ1(d)µ2(a)

abd

∑
m≤x/ab
(m,d)=1

1

+
∑
a,b,d

µ2(a)
∑

m≤x/ab
(m,d)=1

∑
ν (mod d)

ν2+1≡ 0 (mod d)

(
ψ
(−mν

d

)
− ψ
(x/ab−mν

d

))

= R0(x) + ER(x), say.

From the Fourier approximation of ψ(t) given in Section 3, for any integer H =
H(a, b, x) ≥ 1, we have

∑
d

∑
m≤x/ab
(m,d)=1

∑
ν (mod d)

ν2+1≡ 0 (mod d)

(
ψ
(−mν

d

)
− ψ
(x/ab−mν

d

))

=
∑

d

∑
m≤x/ab
(m,d)=1

∑
ν (mod d)

ν2+1≡ 0 (mod d)

(
ψ∗H

(−mν

d

)
− ψ∗H

(x/ab−mν

d

))
(5.3)

+ O

(∣∣∣∑
d

∑
m≤x/ab
(m,d)=1

∑
ν (mod d)

ν2+1≡ 0 (mod d)

∑
1≤|h|≤H

g(h, d)e
(−hmν

d

)∣∣∣+ x2+ε

Ha2b3

)
,

where

g(h, d) =
1

H

(
1−

|h|

H + 1

)(
1 + e
( hx

abd

))
.

Thus, from the series representation of ψ∗H(t) given in Section 3, we are concerned with
the sum ∑

d

∑
m≤x/ab
(m,d)=1

∑
ν (mod d)

ν2+1≡ 0 (mod d)

∑
1≤|h|≤H

g ′(h, d)e
(−hmν

d

)
,
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where g ′(h, d) = g(h, d) or g(h)
(

1 − e(hx/abd)
)

with g(h) given in Section 3. Since

|g ′(h, d)| ≤ 2|h|−1, from Lemma 2, such a sum is




∣∣∣∣
∑

rl≤
√

2x/ab2

(rl,a)=1

µ(l)ρ1(rl)

ρ1(r)

∑
n≤x/abl

∑
ν (mod r)

ν2+1≡ 0 (mod r)

∑
1≤|h|≤H

g ′(h, rl)e
(−hnν

r

)∣∣∣∣


 xε
∑

l≤x/ab2

∑
r≤x/ab2l

∑
ν

∑
h

1

|h|

∣∣∣ ∑
n≤x/abl

e
(−hnν

r

)∣∣∣(5.4)


 xε
∑

l

( x

abl
+

x

ab2l

)√ x

ab2l



x3/2+ε

a
3
2 b2

.

Thus, by choosing H = 1 +

[
√

x
ab2

]
, we have

ER(x)

∑

ab2≤
√

2x

x3/2+ε

a
3
2 b2

+ x
3
2 +ε 
 x

3
2 +ε.(5.5)

Note from the simple formula

∑
m≤x/ab
(m,d)=1

1 =
φ(d)x

abd
+ O(dε),

we have

R0(x) = x2
∑

ab2d≤
√

2x
(d,a)=1

ρ1(d)φ(d)µ2(a)

(abd)2
+ O(x1+ε).(5.6)

By considering the great common factor of µ2 and k in the equation µ2 + ν2 ≡ 0 (mod k),
one can easily deduce that

ρ(k) =
∑

ab2d=k
(a,d)=1

µ2(a)b2ρ1(d)φ(d),

∑
k≤
√

2x

ρ(k)

k2
=
∑

ab2d≤
√

2x
(d,a)=1

ρ1(d)φ(d)µ2(a)

(abd)2
.(5.7)

Thus, combining this with Lemma 3 and (5.6), and from (5.2) and (5.5), we get

R(x) = x2

(
2A log x + 2

∫ ∞
1

E(t)

t3
dt + A(log 2 + 1)

)
+O(x

3
2 +ε),(5.8)

where the constant A and function E(t) are given in Lemma 3.
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6 Treatment of Q(x)

It’s well known that if n is not a perfect square, then

r(n) =
∑
d|n

χ(d).

Thus we have

Q(x) =
∑

k≤x/
√

2

∑
n≤
√

2x

r(nk)

=
∑

k≤x/
√

2

∑
n≤
√

2x

∑
d|nk

χ(d) + O(x1+ε)(6.1)

=
∑
d≤x2

χ(d)
∑

k≤x/
√

2

∑
n≤
√

2x
nk≡ 0 (mod d)

1 + O(x1+ε).

Let (n, d) = d1, and write d = d1d2, n = d1l, then we have

Q(x) =
∑

d1≤
√

2x

χ(d1)
∑

d2≤x/
√

2

χ(d2)
∑

l≤
√

2x/d1

(l,d2)=1

∑
k≤x/

√
2

d2|k

1 + O(x1+ε)(6.2)

=
∑

d2≤x/
√

2

χ(d2)
[ x
√

2d2

] ∑
l≤
√

2x
(l,d2)=1

∑
d1≤
√

2x/l

χ(d1) + O(x1+ε).

We eliminate the restriction (l, d2) = 1 and, letting d2 = ms, l = mt , we get

Q(x) =
∑

m≤x/
√

2

µ(m)χ(m)
∑

s≤x/
√

2m

χ(s)
[ x
√

2ms

] ∑
t≤
√

2x/m

∑
d1≤
√

2x/mt

χ(d1) + O(x1+ε).

(6.3)

For the inner double sum we have∑
t≤
√

2x/m

∑
d1≤
√

2x/mt

χ(d1) =
∑

n≤
√

2x/m

∑
d|n

χ(d) =
1

4

∑
n≤
√

2x/m

r2(n)(6.4)

=
1

4

∑
i2+ j2≤

√
2x/m

(i, j)∈Z2

1 =

√
2πx

4m
+ O

(( x

m

)α+ε
)
,

where α < 1/3. The same argument shows that
∑

s≤x/
√

2m

χ(s)
[ x
√

2ms

]
=
∑

s≤x/
√

2m

χ(s)
∑

r≤x/
√

2ms

1 =
1

4

∑
n≤x/

√
2m

r2(n)(6.5)

=
1

4

∑
i2+ j2≤x/

√
2m

(i, j)∈Z2

1 =
πx

4
√

2m
+ O

(( x

m

)α+ε
)
.
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Therefore, from (6.3)–(6.5) we have

Q(x) =
π2x2

16

∑
m≤x/

√
2

µ(m)χ(m)

m2
+ O(x1+α+ε)(6.6)

=
π2x2

16L(2, χ)
+ O(x1+α+ε).

7 Treatment of T(x)

First we have

T(x) =
∑

x√
2
<k≤

√
2x

∑
m≤x

∑
n≤x

m2+n2≡ 0 (mod k)

1−
∑

x√
2
<k≤

√
2x

∑
√√

2kx−x2<m≤x

∑
√√

2kx−m2<n≤x
m2+n2≡ 0 (mod k)

1(7.1)

= T1(x)− T2(x), say.

Since T1(x) is in the same shape of R(x), we can deal with it in the same way as that for
R(x); we will just give the result in the end of this section.

By writing (m2, k) = ab2 with a squarefree, we can rewrite T2(x) as

T2(x) =
∑

x√
2
<ab2d≤

√
2x

(d,a)=1

µ2(a)
∑

√√
2ab2 dx−x2/ab<m≤ x

/
ab

(m,d)=1

∑
√√

2 dx/a−m2<n≤xab
(n,d)=1

m2+n2≡ 0 (mod d)

1

(7.2)

=
∑

x√
2
<ab2d≤

√
2x

(d,a)=1

µ2(a)
∑

m

∑
ν (mod d)

m2+ν2 ≡ 0 (mod d)

∑
n≡ ν (mod d)

1

=
∑

x√
2
<ab2d≤

√
2x

(d,a)=1

µ2(a)
∑

m

∑
ν (mod d)

m2+ν2 ≡ 0 (mod d)

([x/ab− ν

d

]
−

[√√2 dx/a−m2 − ν

d

])

=
∑
a,b,d

µ2(a)

d

∑
m,ν

( x

ab
−
√√

2 dx/a−m2
)

+
∑
a,b,d

µ2(a)
∑

m

∑
ν

ψ

(√√2 dx/a−m2 − ν

d

)

−
∑
a,b,d

µ2(a)
∑

m

∑
ν

ψ
(x/ab− ν

d

)

= T21(x) + T22(x)− T23(x), say.
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We shall show that T21(x) gives the main term of T2(x) and the others turn out to be
remainders. We are going to give detailed estimation for T22(x). Estimation for T23(x) is
easier, and is similar to that for ER(x), thus we shall just point out how it goes after we finish
estimating T22(x). Note the main contribution for T22(x) comes from the terms when ab2

is small: we suppose ab2 ≤ x1/2−ε and the discarded terms contribute O(x
3
2 +ε). We write

T22(x) =
∑
a,b

T22(a, b, x).(7.3)

Similar to the detailed discussion concerning the Fourier approximation of ER(x) given in
Section 5, for some parameter H1 = H1(a, b) which satisfies xε 
 H1 
 x

1
2−ε and will be

fixed later, we have

T22(a, b, x)


∣∣∣∣
∑

d

∑
m

∑
ν

∑
|h1|≤H1

g̃(h1)e

(h1

√√
2 dx/a−m2 − h1ν

d

)∣∣∣∣

+
∑

d

∑
m

∑
ν

log H1

H1
(7.4)

= |T ′22(a, b,H1, x)| + O
( x2+ε

a2b3H1

)
, say,

where g̃(h1) is certain complex number satisfying |g̃(h1)| 
 1/|h1|. We further have

T ′22(a, b,H1, x)

(7.5)

=
∑

d

∑
h1

g̃(h1)
∑

µ,ν (mod d)∗

d|(µ2+ν2)

e
(−h1ν

d

) ∑
m≡ µ (mod d)

e

(h1

√√
2 dx/a−m2

d

)

=
∑

d

1

d

∑
−d/2<h2≤d/2

∑
h1

g̃(h1)
∑

µ,ν (mod d)∗

d|(µ2+ν2)

e
(h2µ− h1ν

d

)∑
m

e

(h1

√√
2 dx/a−m2 − h2m

d

)

=
∑

d

1

d

∑
h2

∑
h1

g̃(h1)
∑

ν (mod d)
ν2+1≡ 0 (mod d)

R(h2 − h1ν; d)
∑

m

e

(h1

√√
2 dx/a−m2 − h2m

d

)
,

where R(w; d) is the Ramanujan sum

R(w; d) :=
∑

0<u≤d
(u,d)=1

e
(wu

d

)
=
∑

s|(w,d)

sµ(d/s).(7.6)
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Note we may shorten the range for d to (x +
√

x)/
√

2 < ab2d ≤
√

2x, and this gives us
an error O(x

3
2 +ε/(ab)2). We use (7.6) for the Ramanujan sum R(h2 − h1ν; d), and thus the

contribution from those h2’s satisfying |h2| ≤ H1xε is



x

ab

∑
d

1

d

∑
|h2|≤H1xε

∑
h1

1

|h1|

∑
ν

|R(h2 − h1ν; d)|



x

ab

∑
d

1

d

∑
|h2|≤H1xε

∑
h1

1

|h1|

∑
ν

∑
s|(d,h2−h1ν)

s.

Since ν2 + 1 ≡ 0 (mod s), from s|(h2 − h1ν) we have s | (h1
2 + h2

2), thus this is



x

ab

∑
d

1

d

∑
|h2|≤H1xε

∑
h1

1

|h1|

∑
s|(d,h1

2+h2
2)

s

=
x

ab

∑
h1

1

|h1|

∑
|h2|≤H1xε

∑
s|(h1

2+h2
2)

s≤
√

2x
ab2

∑
l∼ x

ab2 s

1

l



x1+εH1

ab
.

Hence we have

T ′22(a, b,H1, x)
xε
∑

d

1

d
max

H ′1	H1

H1xε	H2≤
d
4

1

H ′1

∑
h1∼H ′1

∑
H2<|h2|≤2H2

∑
ν

|R(h2 − h1ν; d)|(7.7)

·

∣∣∣∣
∑

m

e

(h1

√√
2 dx/a−m2 − h2m

d

)∣∣∣∣+ x1+εH1

ab
.

Note for fixed H ′1, H2 and d, we can divide the range of m into two parts, sayΩ1 andΩ2,
such that ∥∥∥∥

h1m√√
2 dx/a−m2

+ h2

d

∥∥∥∥< H1

d
ifm ∈ Ω1,

and otherwise if m ∈ Ω2. It’s clear that Ω1 and Ω2 are respectively consist of at most
O(1 + H ′1x1/4/d) continuous segments, by noting that when d > (x +

√
x)/
√

2ab2 we

have
√√

2 dx/a−m2 > x3/4/ab. For the subsum over each segment contained in Ω2,

Lemma 4 provides the estimate O(d/H1), and thus the summation over Ω2 is bounded by
O(x

1
4 + d/H1).

Since H1xε 
 2|h2| ≤ d and h1 is positive, we have

Ω1 =
⋃

0≤ j	H ′1 x
1
4

Ω1 j ,
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whereΩ1 j are pairwise disjoint segments such that m ∈ Ω1 j if and only if

∣∣∣∣
h1m√√

2 dx/a−m2
+ h2

d
− j

∣∣∣∣< H1

d
.(7.8)

It can be seen that (7.8) is equivalent to

√
2 dx

a

(
1 +

h1
2

( jd − h2 −H1)2

)−1

< m2 <

√
2 dx

a

(
1 +

h1
2

( jd − h2 + H1)2

)−1

(7.9)

Note d ≥ 2|h2| � H1xε, thus from (7.9), the length of Ω1 j is


 h1
2

√
dx

a

(
1

( jd− h2 −H1)2
−

1

( jd− h2 + H1)2

)




√
dx

a
·

H1h1
2

| jd − h2|
3 .

So the total length of Ω1 is O(
√

dx
a

H1H ′1
2

H2
3 ), and it should be noted that Ω10 makes the main

contribution. Combining this with the estimate over Ω2, we get

∑
m

e

(h1

√√
2 dx/a−m2 − h2m

d

)



√
dx

a

H1H ′1
2

H2
3 + x

1
4 +

d

H1
.(7.10)

Now from (7.6), (7.7) and (7.10) we have

T ′22(a, b,H1, x)

(7.11)


 xε
∑

d

1

d
max

H ′1	H1

H1xε	H2≤
d
4

(√
dx

a

H1H ′1
H2

3 +
x

1
4

H ′1
+

d

H1H ′1

)∑
ν

∑
h1

∑
h2

∑
s|(d,h2−h1ν)

s +
x1+εH1

ab


 xε max
H ′1	H1

H1xε	H2	 x
ab2

∑
d

1

d

(xH1H ′1
abH2

3 +
x

1
4

H ′1
+

x

ab2H1H ′1

)∑
h1

∑
h2

∑
s|(d,h1

2+h2
2)

s +
x1+εH1

ab


 xε max
H ′1	H1

H1xε	H2	
x

ab2

(xH1H ′1
abH2

3 +
x

1
4

H ′1
+

x

ab2H1H ′1

)∑
h1

∑
h2

∑
s|(h1

2+h2
2)

∑
l∼ x

ab2 s

1

l
+

x1+εH1

ab


 xε max
H ′1 ,H2

(xH1H ′1
2

abH2
2 + x

1
4 H2 +

xH2

ab2H1

)
+

x1+εH1

ab



x

3
2 +ε

ab
+

x2+ε

ab2H1
+

x1+εH1

ab
.
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Let H1 = x
1
2 /b, then we have, from (7.4) and (7.11), that

T22(a, b, x)

x

3
2 +ε

ab
.(7.12)

So from (7.3) we have proved that

T22(x)
 x
3
2 +ε.(7.13)

For T23(x), we are concerned with a sum of form

∑
a,b,d

∑
ν2+1≡0 (mod d)

∑
h

a(h)
∑

m

e
(hx/ab− hmν

d

)
.

This is of the same shape as the sum involved in ER(x). By using Lemma 3, as what we have
done for ER(x), one can prove that

T23(x)
 x
3
2 +ε.(7.14)

Now we turn to the main term of T2(x), namely T21(x). For brevity, we write

f (a, b, d,m) =
x

ab
−
√√

2 dx/a−m2.

Then we have

T21(x) =
∑

x√
2
<ab2d≤

√
2x

(d,a)=1

µ2(a)

d

∑
µ,ν∈(Z/dZ)∗

µ2+ν2≡0 (mod d)

∑
√√

2ab2 dx−x2/ab<m≤x/ab
m≡ µ (mod d)

f (a, b, d,m)

(7.15)

=
∑
a,b,d

µ2(a)

d2

∑
µ,ν

∑
−d/2<h≤d/2

e
(−hµ

d

) ∑
√√

2ab2 dx−x2/ab<m≤x/ab

f (a, b, d,m)e

(
hm

d

)

=
∑
a,b,d

µ2(a)ρ1(d)φ(d)

d2

∑
m

f (a, b, d,m)

+
∑
a,b,d

µ2(a)ρ1(d)

d2

∑
h �=0

R(−h; d)
∑

m

f (a, b, d,m)e
(hm

d

)

= T21
(1)(x) + T21

(2)(x), say.
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Since for 0 < |h| ≤ d/2, ∑
m≤t

e
(hm

d

)



d

|h|
,

using the Abel summation formula, we get

∑
m

f (a, b, d,m)e
(hm

d

)



dx

ab|h|
.

Hence with (7.6) we have

T21
(2)(x)
 x1+ε

∑
a,b,d

1

abd

∑
h≤d/2

1

h

∑
s|(d,h)

s


 x1+ε
∑
a,b

1

ab

∑
s≤ x

ab2

1

s

∑
l∼ x

ab2 s

1

l

∑
h ′≤l/2

1

h ′
(7.16)


 x1+ε.

Therefore, from (7.2), (7.13)–(7.16), we have

T2(x) =
∑

x√
2
<ab2d≤

√
2x

(d,a)=1

µ2(a)ρ1(d)φ(d)

d2

∑
√√

2ab2 dx−x2/ab<m≤x/ab

f (a, b, d,m) + O(x
3
2 +ε)

(7.17)

=
∑
a,b,d

µ2(a)ρ1(d)φ(d)

d2
#
{

m ≤
x

ab
, n ≤

x

ab
: m2 + n2 >

√
2 dx

a

}
+ O(x

3
2 +ε).

With the same method as we used to deal with R(x), we have

T1(x) = x2
∑

x√
2
<ab2d≤

√
2x

(d,a)=1

µ2(a)ρ1(d)φ(d)

a2b2d2
+ O(x

3
2 +ε).(7.18)

Thus, (7.1), (7.17) and (7.18) imply that

T(x) =
∑

x√
2
<ab2d≤

√
2x

(d,a)=1

µ2(a)ρ1(d)φ(d)

d2
#

{
m ≤

x

ab
, n ≤

x

ab
: m2 + n2 ≤

√
2 dx

a

}
+ O(x

3
2 +ε)

(7.19)
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=
∑

x√
2
<ab2d≤

√
2x

(d,a)=1

µ2(a)ρ1(d)φ(d)

(abd)2
#{m ≤ x, n ≤ x : m2 + n2 ≤

√
2ab2 dx}

+ O

(
x
∑
a,b,d

µ2(a)ρ1(d)φ(d)

abd2

)
+ O(x

3
2 +ε)

=
∑

x
√

2<k≤
√

2x

ρ(k)

k2
#{m ≤ x, n ≤ x : m2 + n2 ≤

√
2kx} + O(x

3
2 +ε),

where the last equality holds because of (5.7).
By counting the number of lattice points, we get

#{m ≤ x,n ≤ x : m2 + n2 ≤
√

2kx}(7.20)

=
kx
√

2
arccos

√
2x

k

(√
2−

x

k

)
+ x

√√
2kx − x2 + O(x).

And from Lemma 3 we have

∑
x
√

2<k≤
√

2x

ρ(k)

k2
·

kx
√

2
arccos

√
2x

k

(√
2−

x

k

)
(7.21)

=
x
√

2

∫ √2x

x/
√

2
arccos

√
2x

t

(√
2−

x

t

)
d

(∑
k≤t

ρ(k)

k

)

=
x
√

2

(∑
k≤t

ρ(k)

k

)
arccos

√
2x

t

(√
2−

x

t

) ∣∣∣
√

2x

x/
√

2

−
x
√

2

∫ √2x

x/
√

2

(∑
k≤t

ρ(k)

k

)
−
√

2xt−2 + 2x2t−3√
1− 2

√
2xt−1 + 2x2t−2

√
2
√

2xt−1 − 2x2t−2
dt

= −
πx

2
√

2

∑
k≤x/

√
2

ρ(k)

k
+
√

2Ax

∫ √2x

x/
√

2

√
2xt−1√

2
√

2xt−1 − 2x2t−2
dt + O(x

4
3 +ε)

= −
Aπx2

2
+
√

2Ax ·
x
√

2

∫ 2

1

2u−1

√
4u−1 − 4u−2

du + O(x
4
3 +ε)

= −
Aπx2

2
+ Ax2

∫ 2

1

1
√

u− 1
du + O(x

4
3 +ε)

= A
(

2−
π

2

)
x2 + O(x

4
3 +ε).
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Also from Lemma 3 we have

∑
x
√

2<k≤
√

2x

ρ(k)

k2
·

√√
2kx − x2

(7.22)

=

√√
2tx − x2

∑
k≤t

ρ(k)

k2

∣∣∣
√

2x

x/
√

2
−

x
√

2

∫ √2x

x/
√

2
(
√

2tx − x2)−
1
2

∑
k≤t

ρ(k)

k2
dt

= (2A log
√

2x + B)x −
x
√

2

∫ √2x

x/
√

2
(
√

2tx − x2)−
1
2 (2A log t + B) dt + O(x

1
3 +ε)

= (2A log
√

2x + B)x − x

∫ 2

1

A log xu√
2

+ B/2
√

u− 1
du + O(x

1
3 +ε)

= (2A log 2)x − Ax

∫ 1

0

log(1 + u)
√

u
du + O(x

1
3 +ε)

= (4− π)Ax + O(x
1
3 +ε)

where

B = A + 2

∫ ∞
1

E(t)

t3
dt

as in Lemma 3.
Now from (7.19)–(7.22) we conclude that

T(x) =
(

6−
3π

2

)
Ax2 + O(x

3
2 +ε).(7.23)

8 Completion of Proof of Theorem 1

From (4.1), (5.8), (6.6) and (7.23), we have proved that

S(x) = 4Ax2 log x +

(
4

∫ ∞
1

E(t)

t3
dt + 2A + 2A log 2− 6A +

3Aπ

2
−

π2

16L(2, χ)

)
x2

+ O(x
3
2 +ε)

=
π

2L(2, χ)
x2 log x +

(
4

∫ ∞
1

E(t)

t3
dt +

π2 − 4π + 2π log 2

8L(2, χ)

)
x2 + O(x

3
2 +ε),

which proves the theorem.

9 A Further Remark

For any given primitive binary quadratic form f (u, v) = au2 + buv + cv2 of discriminant D,
an interesting problem is to study the asymptotic behavior of the sum

S f (Ωx) :=
∑

(m,n)∈Ωx

d
(

f (m, n)
)
,
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where Ωx is a bounded area of dimension 2 with a linear parameter x. (A typical case is a
square with side length x). When D is not a perfect square, it is reasonable to guess that an
asymptotic formula of form

S f (Ωx) = A(D)|Ωx| log x + B(D)|Ωx| + o(|Ωx|)(9.1)

holds (uniformly ifΩ is regular). A possible proof for such a result could essentially depend
on the study of the uniform distribution of the ratios ν/k in the variable k, where ν runs
over the primitive roots of the quadratic polynomial f (x, 1) modulo k. In [5], Hooley deals
with such a problem and he has gotten the “uniformity” with certain error term. Thus,
except for some minor technical problems, including the computation of the main terms,
one could expect a complete proof for (9.1) with a good error estimate.
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