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Abstract
This paper shows the kinematic analysis and the synthesis of the five-bar linkage with symmetrical structure and
singularity-free dexterous workspace. The type synthesis of the five-bar linkage shows that the number of sym-
metrical structures of five-bar linkage is limited to eight structures. This study deals with the forward and inverse
kinematic analysis and synthesis of the five-bar structure 5-RRRRR. The synthesis equations allow the analytical
computation of the link lengths of a symmetrical five-bar linkage using only revolute joints to avoid the singulari-
ties in an imposed dexterous workspace. A numerical example of the symmetrical five-bar linkage is analyzed and
synthetized theoretically and characterized by computing the performance indices. The tests on an experimental
model of the five-bar linkage 5-RRRRR confirm the singularity-free dexterous workspace.

1. Introduction
Five-bar linkages are simple mechanisms with 2 degrees of freedom (DoF), which allow the genera-
tion of planar paths for the characteristic point by correlation and control between the motions of the
two servomotors. Although the history of the five-bar linkages is complex, with a multitude of appli-
cations and fields of implementation, in the late years we could see that there are still unexplored and
undocumented uses that popped-up for niche applications. Some of these applications are prosthetics,
industrial machines, haptic devices, five-bar manipulators, 3D printers, and others. Tempea et al. pro-
posed a mechanism with five bars in general and a degenerative form as the acting solution of a SCARA
robot [1]. Tsetserukou et al. developed a device where the mechanism is used in an assembly for virtual
reality (further referred as VR) experience enhancement and as feedback from the VR world to the real
one. In this application, the authors used an inverted five-bar linkage with a set of electric motors to
build their device [2]. Marzouk et al. used a double crank five-bar linkage for a polycentric knee joint
with spring swing phase control [3]. Other applications in fields such as agriculture research also made
use of the five-bar linkage in the past years. As an example of this, Sun et al. [4] presented a possible
solution for an automatic transplanter device. Sengqi Jian in his master’s degree thesis [5] developed a
five-bar robot used for pressurized autosampling for recovery of enhanced oil.

Theingi et al. [6] describe the planar five-bar linkage as planar manipulator using coupled kine-
matics in order to overcome the singularities. Alici et al. [7] presented several interesting polynomial
approaches for solving the inverse kinematics (IK) equations of the five-bar linkage. Liu et al. [8] show
the singularities for two situations that we also considered as boundary conditions for our research. The
above-mentioned paper treated the singularity where the end-effectors of two neighboring elements are
collinear or folded (B1PB2 as referred in this paper) and the situation when the two consecutive elements
that neighbor the motor element in one direction (A1B1P or A2B2P as referred in this paper) are either
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collinear or in a folded position. Consequently, we have to consider a transmission angle in the design
between the elements of such a device to make sure that our mechanism will not get in a situation where
the angle between two adjacent elements is equal to 0◦ (folded position) or 180◦ (extended position). In
ref. [9], the same authors proposed a performance atlas to characterize the optimum design of the five-
bar symmetrical parallel mechanism considering global conditioning index (GCI), the global velocity
index, the global payload index, and the global stiffness index (GSI).

For a similar application as we intend to develop, Huang [10] analyzed the workspace of five-bar
linkages and underlined the importance of avoiding singularities while maintaining the end-effector
in the workspace area. The singularities are certain points in space where the mechanism becomes
uncontrollable due to multiple solutions to the equation that describes the movement of the mechanism’s
elements, which brings the end-effector in the desired position. To quantify the relationship between the
workspace and singularities, a dexterity index was defined. The optimum design was chosen between
the design optimization carried out by the method of parametric variations and by the simplex direct
search algorithm.

Campos [11] shows the development of a five-bar manipulator DexTAR with an optimized design
with defined singularity-free zone inside the theoretical workspace. The previous work is further devel-
oped by Joubair [12] with the kinematic calibration of a five-bar planar parallel robot including all
kinematic parameters and linearization of the model for each calibration configuration.

An interesting solution for motion between extreme points is demonstrated in the work done by
Nafees et al. [13] by using dyadic and triadic concepts. Kiper et al. [14, 15] studied the synthesis of a
planar five-bar mechanism by using the function generation synthesis with equal spacing and Chebyshev
approximation, respectively, by using least squares approximation. In order to develop mechanisms with
higher stiffness and low weight Kiper et al. [16] proposed, starting from a five-bar linkage, to develop
a calibration method for an overconstrained six-bar linkage with 2 DoF. Although that it is a different
application, Wang et al. [17] presented a solution to simplify a seven-bar linkage into a five-bar linkage
but when it comes to dealing with the singularities of the mechanism a similar solution has be taken into
account. One of the aspects that have to be connected with the singularities is the workspace and the
workspace optimization in accordance with the presence of certain singularities. Yao et al. presented
a paper where the workspace and orientation are studied, and singularities are considered so that the
capability of the mechanism to be at its optimum [18].

Other works including [19, 20] briefly study the singularity of a five-bar linkage or a mechanism that
can be transposed from a lower- or upper-class mechanism. Other research is oriented in the dimension-
ing of the DC motors of the five-bar linkage by Shengqi [21], in the development of control strategies
of the planar 2 DoF manipulator by Roskam and Luc [22] and by Can and Sen [23] in minimizing the
energy consumption through regenerative drives and optimally designed compliant elements.

The state of the art pointed out that an analytical synthesis for the five-bar linkage is missing from the
literature, especially regarding the assurance of a singularity-free dexterous workspace and the lack of
singularities inside of the total workspace. The current investigation proposes an analytical method for
sizing the length of the links of the five-bar linkage of type 5-RRRRR resulted from the synthesis. To
characterize the synthetized symmetrical five-bar structure, specific performance indices are computed
and discussed. An experimental investigation on a prototype of the five-bar linkage with the structure
5-RRRRR validated the proposed analytical synthesis method.

2. Type synthesis of the five-bar linkage
The planar five-bar linkage contains (as the name suggests) a number of five elements (n = 5) and takes
into account the relationship between the number of loops N :

N =
∑2

i=1
ei − n + 1, (1)
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Table I. Kinematic chains of the five-bar linkage.

5-RRRRR 5-RRRRR 5-RRRPP 5-RRPPP 5-RPPPP

5-RRPRP 5-RPRPP 5-PPPPP

where ei is the number of the kinematic pairs with DoF = i, i = {1, 2}. It results that for the number of
loops N = 1, the number of the kinematic pairs are 5.

By considering the number of the kinematic pairs with DoF = 2, e2 = 0, the mobility of the five-bar
linkage, M = 2, results from the condition of the constrained motion, according to Alt [24]:

2(e1 + e2/2) − 3n + 3 + M = 0. (2)

The number of elements of the five-bar linkage of different ranks can be computed from the
diophantine equations system:{

n = n2 + n3

2
∑2

i=1 ei = 2n2 + 3n3

→
{

5 = n2 + n3

10 = 2n2 + 3n3

. (3)

where n2, n3 are the numbers of binary and ternary elements. The higher rank elements were neglected.
The solution of the equations system gives the number of binary and ternary elements:

n2 = 4, n3 = 0. (4)

The possible kinematic chains of the five-bar linkage are shown in Table 1. Their number is 8.
As shown in Table 1, some combinations were excluded, because they are identical with the previous
ones.

By using the extended Franz von Reuleaux method, which consists of considering by turn one element
as frame, two elements as drive and a fourth one as driven element for each kinematic chain, result all
five-bar linkage configurations. The two elements jointed with the frame are chosen as the two drive
elements. The full development of these five-bar linkages is shown in Fig. 1.

The number of the symmetrical five-bar linkages is limited to 8: 5-RRRRR(a), 5-RRRRP(c),
5-RRRPP(e), 5-RRPPP(b), 5- RPPPP(d), 5-PPPPP(a), 5-RRPRP(b), and 5-RPRPP(e). The symmet-
rical five-bar linkage structure that we consider forward is the 5-RRRRR(a) linkage (the frame element
of the kinematic chain is written in the brackets). This structure is considered because the structure uses
only revolute joints, which are easily manufactured with high precision, the elements have a symmet-
rical displacement, and they use only links with constant length. The size of the extended and folded
5-RRRRR(a) linkage shows to be favorable for the structure using only revolute joints. The five-bar
linkages type 5-RRRRR(a) are actuated by two revolute servoactuators, which are fairly simple to con-
trol. The other symmetrical five-bar linkages use passive prismatic joints, which are more difficult to
manufacture and operate properly. The linear actuators as active prismatic joints have a limited stroke
and a large size in comparison with the revolute servo actuators.

3. Direct and IK of five-bar linkage 5-RRRRR(a)
The five-bar linkage 5-RRRRR(a) was chosen symmetrical to the vertical y-axis and the frame jointed
elements 2 and 5, respectively, and the driven elements 3 and 4 are chosen equal (l2 = l5, l3 = l4). The
drive elements are the elements 2 and 5, and the characteristic point M of the five-bar linkage is identical
with the rotational joint C.

The kinematic schema of the symmetrical five-bar linkage 5-RRRRR(a) is shown in Fig. 2. The
vectorial equations, written in complex numbers, for the two open loops OA0BM and OE0DM to the
characteristic point M are
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Figure 1. Variety of the five-bar linkages as results of kinematic type synthesis and frame element
selection.
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Figure 2. Kinematic schema of the symmetrical five-bar linkage.

M = − l1

2
+ l2ei·ϕ2 + l3ei·ϕ3 ,

M = l1

2
+ l5ei·ϕ5 + l4ei·ϕ4 ,

(5)

where:

• l1, l2, l3, l4 = l3 and l5 = l2 are the elements length of the five-bar linkage,
• ϕ2, ϕ3, ϕ4, and ϕ5 are the positional angles of the elements in the reference system.

3.1. Direct kinematic
The transmission equations based on the passive angles ϕ3 or ϕ4 with respect to the drive angles
ϕ2 and ϕ5 used for direct kinematic result in the form:

0 = A3(ϕ2, ϕ5) cos ϕ3 + B3(ϕ2, ϕ5) sin ϕ3 + C3(ϕ2, ϕ5),

0 = A4(ϕ2, ϕ5) cos ϕ4 + B4(ϕ2, ϕ5) sin ϕ4 + C4(ϕ2, ϕ5).
(6)

where:
A3(ϕ2, ϕ5) = −2l3[l1 + l2(cos ϕ5 − cos ϕ2)] , B3(ϕ2, ϕ5) = −2l2l3(sin ϕ5 − sin ϕ2),

C3(ϕ2, ϕ5) = l2
1 − 2l1l2(cos ϕ5 − cos ϕ2) − 2l2

2(1 + cos(ϕ5 − ϕ2)),

A4(ϕ2, ϕ5) = 2l3[l1 + l2(cos ϕ5 − cos ϕ2)] , B4(ϕ2, ϕ5) = 2l2l3(sin ϕ5 − sin ϕ2),

C4(ϕ2, ϕ5) = l2
1 − 2l1l2(cos ϕ5 − cos ϕ2) − 2l2

2(1 − cos(ϕ5 − ϕ2)),

(7)

The positional passive angles ϕ3 or ϕ4 are calculated with the relationship:

ϕi(ϕ2, ϕ5) = 2 · arctan
Bi(ϕ2, ϕ5) ∓ √

A2
i (ϕ2, ϕ5) + B2

i (ϕ2, ϕ5) − C2
i (ϕ2, ϕ5)

Ai(ϕ2, ϕ5) − Ci(ϕ2, ϕ5)
, i = 3, 4. (8)

The coordinates of the characteristic point M(xM,yM) result from the relationships (5) as follows:

xM = − l1
2

+ l2 · cos ϕ2 + l3 · cos ϕ3, yM = l2 · sin ϕ2 + l3 · sin ϕ3,

xM = + l1
2

+ l5 · cos ϕ5 + l4 · cos ϕ4, yM = l5 · sin ϕ5 + l4 · sin ϕ4.
(9)
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Figure 3. Dimensional conditions in order to avoid collinearity positions of elements 2 and 3.

3.2. Inverse kinematic
The transmission equations based on the drive angles ϕ2 and ϕ5 and the coordinates of the characteristic
point M(xM,yM) used for IK result in the form:

F2(xM, yM) = A2(xM,yM) cos ϕ2 + B2(xM,yM) sin ϕ2 + C2(xM,yM) = 0

F5(xM, yM) = A5(xM,yM) cos ϕ5 + B5(xM,yM) sin ϕ5 + C5(xM,yM) = 0
(10)

where the coefficients are

A2(xM, yM) = −l2(2xM + l1) B2(xM, yM) = −2l2yM

C2(xM, yM) = x2
M + y2

M + l2
1

4
+ l2

2 − l2
3 + l1xM (11)

A5(xM, yM) = −l5(2xM − l1) B5(xM, yM) = −2l5yM

C5(xM, yM) = x2
M + y2

M + l2
1

4
+ l2

5 − l2
4 − l1xM (12)

The positional angles of the drive elements are calculated according to the relationship:

ϕi(xM, yM) = 2 · arctan
Bi(xM, yM) ∓ √

A2
i (xM, yM) + B2

i (xM, yM) − C2
i (xM, yM)

Ai(xM, yM) − Ci(xM, yM)
, i = 2, 5 (13)

4. Synthesis of symmetrical five-bar linkage 5-RRRRR(a)
The synthesis of the symmetrical five-bar linkage 5-RRRRR(a) allows the computing of the length of
the elements so that the characteristic point M moves inside the dexterous workspace, which belongs
to the total workspace (see Fig. 2) and it should be singularity-free. The dexterous workspace is chosen
with a square or rectangular geometry, which is more appropriate for applications mentioned before.

For this condition, it is necessary to avoid the collinearity (folded or extended) of the mobile neigh-
boring links (see Figs. 3 and 4). The collinearity conditions are identical for both open loops OA0BM
and OE0DM, because of the symmetrical design. That means the drive element 2 and the driven
element 3, respectively the drive element 5 and the driven element 4, should avoid the folded and
extended positions. Between the drive and driven elements, there is an input transmission angle
corresponding to the collinearity position (μ23 and μ′

23).
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Figure 4. Dimensional conditions in order to avoid collinearity positions of elements 3 and 4.

The folded position can be avoided if the normal length from the drive joint A0 and the border of the
dexterous workspace is bigger than the difference of the lengths of the elements 2 and 3 (see Fig. 3).
The analytical condition is given by the relationship:

yM1 ≥ |l2 − l3|. (14)

The extended position can be avoided if the distance from the drive joint A0 to the farthest point M3

is lower than the sum of the length of the elements 2 and 3 (see Fig. 3). The analytical condition is given
by the relationship: √

(xM3 + l1/2)
2 + y2

M3 ≤ l2 + l3. (15)

The condition to avoid the extended position between the driven elements 3 and 4, which means also
to change the side of the characteristic point toward the frame joint line, consists in having the sum of
the frame and the drive length of the elements lower than the sum of the driven elements (see Fig. 4).
The analytical condition is given by the relationship:

l1 + 2l2 ≤ 2l3. (16)

If the three conditions given by the inequations (14), (15), and (16) are fulfilled, the dexterous
workspace is singularity-free. To have an analytical solution of the synthesis, each inequation from the
inequation system will be substituted through an equation, by imposing a coefficient k > 1. In this case,
the substituted equation system can be written in the form:

l2 + l3 = k
√

(xM3 + l1/2)
2 + y2

M3 (17)

k(l3 − l2) = yM1 (18)

kl1 + 2l2 = 2 · l3 (19)

The coefficient k multiplied with the lower side of each inequation ensures the avoidance of the
collinearity positions of the mobile neighboring elements. Also, that means the existence of an input
or an output transmission angle between the neighboring elements and, of course, a singularity-free
dexterous workspace.
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Table II. Coordinates of the corner points of the square
dexterous workspace.

Corner points xM [mm] yM [mm]
M1 −100 130
M2 100 130
M3 100 330
M4 −100 330

Table III. Computed elements length.

Number of the
element Symbol Length [mm]
1 l1 154
2 l2 194
3 l3 294
4 l4 294
5 l5 194

The solutions of the substituted equations system are the elements lengths, as follows:

l1 = 2yM1/k2, (20)

l2 = 1

2

(
k
√

(xM3 + l1/2)
2 + y2

M3 − 1

k
yM1

)
, (21)

l3 = 1

2

(
k
√

(xM3 + l1/2)
2 + y2

M3 + 1

k
yM1

)
. (22)

Considering the symmetry conditions, the length of the elements is

l4 = l3, l5 = l2. (23)

If a minimum input transmission angle μ23 min is required, the coefficient k can be computed from the
triangle A0B1M1 (see Fig. 3) with the relationship:

y2
M1 = l2

2 + l2
3 − 2l2l3cos μ23min, (24)

in the form:

k =

√√√√√√y2
M1 −

√
y4

M1 −
[(

xM3 + l1
2

)2 + y2
M3

]
y2

M1(1− (cos μ23min)2)[(
xM3 + l1

2

)2 + y2
M3

]
(1 − cos μ23min)

, (25)

5. Performances analysis of the symmetrical five-bar linkage 5-RRRRR(a)
The characterization of the kinematic performances of the symmetrical five-bar linkage is done for a
given square dexterous workspace and with the length of the elements computed with the analytical
relationships (20)–(22). The dexterous workspace is defined through the corner points M1, M2, M3, and
M4, given in Table 2.

For a required minimum transmission angle of μ23 min = 20◦, the computed coefficient with the rela-
tionship (25) is k = 1, 3 and the elements lengths computed with the relationships (20)–(23) are given
in Table 3.
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Figure 5. Kinematic schema with the synthetized five-bar linkage in the critical positions.

The kinematic schema shows the symmetrical five-bar linkage in the critical positions (see Fig. 5).
It is shown that in all critical positions, the transmission angle is μ1 min ≥ 20◦. All other positions inside
the dexterous workspace fulfill the condition imposed to the transmission angle.

5.1. Singularities of type I
The singularities of type I are positions of the characteristic point M in the dexterous workspace with the
property that by actuating the drive elements, the characteristic point does not move. The vector of input
parameters of the five-bar linkage is Q = [ϕ2ϕ5]T and the vector of the output parameters is X = [xMyM]T .
For this case, the singular positions can be determined by finding the zero values of Jacobian matrix
determinant det(Jq) [25–29]:

det
(
Jq

) =

∣∣∣∣∣∣∣∣
∂F2(X, Q)

∂ϕ2

∂F2(X, Q)

∂ϕ5

∂F5(X, Q)

∂ϕ2

∂F5(X, Q)

∂ϕ5

∣∣∣∣∣∣∣∣
= 0, (26)

where
∂F2(X, Q)

∂ϕ2

= −A2

(
xM,yM

)
sin ϕ2 + B2

(
xM,yM

)
cos ϕ2,

∂F2(X, Q)

∂ϕ5

= 0, (27)

∂F5(X, Q)

∂ϕ2

= 0,
∂F5(X, Q)

∂ϕ5

= −A5

(
xM,yM

)
sin ϕ5 + B5

(
xM,yM

)
cos ϕ5. (28)

Figure 6a shows that the singularities of type I are avoided in the whole dexterous workspace, while
any zero values of the Jacobian matrix determinant Jq are to be reported. The minimum value of det (Jq)
is −2.76 · 109 mm4.

5.2. Singularities of type II
The singularities of type II are positions of the characteristic point M in the dexterous workspace with
the property that by non-actuated drive elements the characteristic point allows an infinitesimal motion.
For this case, the singularity positions can be computed for zero values of Jacobian matrix determinant
det (Jx) [25–29]:
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Figure 6. Singularities of type I (a) and type II (b) analysis in the whole dexterous workspace.

det(Jx) =

∣∣∣∣∣∣∣∣
∂F2(X, Q)

∂xM

∂F2(X, Q)

∂yM

∂F5(X, Q)

∂xM

∂F5(X, Q)

∂yM

∣∣∣∣∣∣∣∣
= 0, (29)

where
∂F2(X, Q)

∂xM

= −2l2cos ϕ2 + 2xM + l1,
∂F2(X, Q)

∂yM

= −2l2sin ϕ2 + 2yM , (30)

∂F5(X, Q)

∂xM

= −2l5cos ϕ5 + 2xM − l1,
∂F5(X, Q)

∂yM

= −2l5sin ϕ5 + 2yM . (31)

Figure 6b shows that the Jacobian matrix determinant Jx is not equal to zero, which means the
dexterous workspace is free of singularities of type II. The minimum value of det (Jx) is 2.5 · 105 mm2.

5.3. Manipulability indices
The local manipulability index (LMI) is defined as absolute value of the determinant of the Jacobian
matrix J given by the relationship:

μ = |det J| = ∣∣det
(
JxJ

−1
q

)∣∣, (32)

mentioning that the relationship is valid for redundant manipulators [25–29].
The normalized values of the LMIs are determined as min-max feature scaling. The normalized

values of the LMIs are non-dimensional and in the same range [0.27, 1] (see Fig. 7).
The region of the dexterous workspace closer to the actuated joints has a higher manipulability value

than the furthest regions as shown in Fig. 7a and b.
The global measure of the manipulability global manipulability index (GMI) in the dexterous

workspace W can be computed with the relationship:

GMI =
∫

w
μdw∫

w
dw

, (33)

and the value for the considered dexterous workspace of the five-bar linkage is given in Table 4.
The value of GMI of 0.5742 shows that it is close to the best value of 1, which is the favorable measure

of manipulability.
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Table IV. Global manipulability index (GMI).

5-RRRRR(a) GMI 0.5742

Figure 7. The computed local manipulability indices (a) and normalized manipulability indices of the
five-bar linkage (b).

5.4. Condition number
The Jacobian condition number is a measure of dexterity and accuracy of a manipulator. It is defined as
the product between the norms of Jacobian matrix and inverse Jacobian matrix given by the relationship:

k = ||J||||J−1||. (34)

Because the Jacobian condition number takes values in the range [1, +∞], it is preferable to use
the inverse value of the condition number, which has values in the range [0, 1]. This inverse Jacobian
conditional number is known as local conditional index LCI and is given by the relationship [27–30]:

LCI = 1

k
. (35)

The values of the condition numbers are favorable because the most values are close to 1, only the
right-side corner shows not favorable values, but even this LCI values are higher than 0.3127 (see Fig. 8a
and b), which means the synthetized five-bar linkage has a high dexterity inside the dexterous workspace.

The GCI can be obtained by computing the local conditioning index over the dexterous workspace
with the relationship:

GCI =
∫

w
1
k
dw∫

w
dw

. (36)

The kinematic condition index (KCI) measures the performance of a manipulator given by the
relationship:

KCI = 1

kmin

· 100%. (37)

The computed values of the GMI and KCI are given in Table 5. The value of the GMI is closer
to 1, which means that small changes in input produce small changes in output and the Jacobian matrix
is well conditioned. The value of 99.05 % for the KCI is very favorable.
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Table V. Global conditioning index (GCI) and
kinematic condition index (KCI).

5-RRRRR(a) GCI 0.6423

5-RRRRR(a) KCI 99.05%

Figure 8. The computed condition number (a) and local condition index (b) of the five-bar linkage.

5.5. Stiffness index
The local stiffness index, which depends on multiple parameters (geometry, material, actuators,
mechanisms), is analytically defined as inverse of the conditional number of the stiffness matrix:

ηk = 1/
(‖K‖‖K−1‖), (38)

with the stiffness matrix given as product between the scalar value k ∈ [0, 1], which indicate the stiffness
of each actuator, the transposed Jacobian matrix, and the Jacobian matrix [28–29, 31]:

K = kJTJ, (39)

Figure 9 shows the map of the local stiffness indices with values in the range of [0.0098, 0.9811].
The most values of LSI are favorable, higher than 0.4, without the values of the right-side corner of the
map, which are in closer regions to the drive joints.

The GSI in the dexterous workspace is computed as mean value with the relationship:

GSI =
∫

w
ηkdw∫

w
dw

. (40)

The GSI of 0.4366 has a value closer to the middle value of the LSI range, meaning a good stiffness
of the five-bar linkage.

5.6. Power transmission indices
The transmission angle, which characterizes the efficiency of power transmission from the input to the
output link, gives three types of transmission indices [32–35]:

• Input transmission index (ITI):

ITI = min(|cos μ23|, |cos μ54|), (41)
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Figure 9. The computed local stiffness indices of the five-bar linkage.

where μ23, μ54 are the transmission angles between the input links (1) and (5) and the next connected
links (3), respectively (4).

• Output transmission index (OTI):

OTI = min(|cos μ34|), (42)

where μ34 is the transmission angle between the output mobile links (3) and (4).

• Local transmission index (LTI):

LTI = min(ITI, OTI) . (43)

The transmission angles μ23 and μ54 can be computed from the triangles A0BM and E0DM, where
C = M as (see Fig. 3):

μ23 = arccos
l2
2 + l2

3 − [
(xM + l1/2)

2 + y2
M

]
2l2l3

μ54 = arccos
l2
4 + l2

5 − [
(xM − l1/2)

2 + y2
M

]
2l4l5

(44)

and the transmission angle μ34 results from the triangles A0BM, E0DM, and A0ME0 as (see Fig. 4):

μ34 = ̂A0MB + ̂A0MB0 + ̂DME0, (45)

̂A0MB = arccos
l2
3 + [

(xM + l1/2)
2 + y2

M

] − l2
2

2l3

√[
(xM + l1/2)

2 + y2
M

] , (46)

̂A0MB0 = arccos

[
(xM + l1/2)

2 + y2
M

] + [
(xM − l1/2)

2 + y2
M

] − l2
1

2
√[

(xM + l1/2)
2 + y2

M

]√[
(xM − l1/2)

2 + y2
M

] , (47)

̂DME0 = arccos
l2
4 + [

(xM − l1/2)
2 + y2

M

] − l2
5

2l4

√[
(xM − l1/2)

2 + y2
M

] . (48)
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Figure 10. The computed input (a) and output (b) transmission indices of the five-bar linkage.

Figure 11. The computed local transmission index of the five-bar linkage.

Figure 10a shows the map of the ITI expressed in degrees. The values of ITI are in the range of
[19.62, 57.10]◦ or expressed in radians [0.3425, 09967] rad, with good efficiency of power transmission.
As expected, the minimum value of the transmission angle is 19.62◦, very close to the imposed value of
20◦. The ITIs are symmetrically distributed in respect of the y-axis of the dexterous workspace, with the
lower values close to the lower border of the workspace and the higher values close to the upper border.

Figure 10b shows the map of the OTI in 3D representations. The values of OTI are included in
the range of [41.34, 57.29]◦ or expressed in radians [0.7216, 09999] rad. The values of the OTI are
symmetrically distributed in respect of the y-axis of the dexterous workspace, with the lower values
situated in the origin of the cartesian axes system and the higher values on the upper side corners.

The local transmissibility index is identical with the ITI (see Fig. 11).
The global values of ITI, OTI, and LTI in the dexterous workspace can be computed with the

relationships (Tables 6 and 7):

GITI =
∫

w
ITI·dw∫
w

dw
. GOTI =

∫
w

OTI·dw∫
w

dw
. GLTI =

∫
w

LTI·dw∫
w

dw
. (49)
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Table VI. Global stiffness index (GSI).

5-RRRRR(a) GSI 0.4366

Table VII. Global input, output, and local transmissibility index GITI,
GOTI, and GLTI.

5-RRRRR(a) GITI 0.7575 rad 43.40◦

5-RRRRR(a) GOTI 0.8929 rad 51.16◦

5-RRRRR(a) GLTI 0.7575 rad 43.40◦

Figure 12. Experimental stand with planar five-bar linkage.

6. Applications of design solution for 3D printer design
The test stand consists of a frame built with square aluminum tubes and 3D printed parts. By means of
some 3D printed supports, onto the frame was fastened the stepper motors that actuate the drive elements
of the five-bar linkage. The linkage was designed to have 3D printed joints and carbon fiber round tubes
as cranks (Fig. 12).

To control the electronics, we used a combination of Arduino platform with IR distance sensors
(used to “Home” the mechanism into a known position) and a set of accelerometers to read the yaw
angles of the secondary linkage. The computer works as a programing interface for the microcontroller
that controls the linkage by means of the stepper motors and the accelerometers working as an encoder
to read out the angle values. This cycle repeats itself for a given number of times so the angle values are
known at every position.

The hardware chosen for the implementation of the control sequence and data aquation is as follows:
a development board based on the ATmega2560 microcontroller (Arduino Mega 2560), two A4988
stepper motor drivers, two HW201 IR proximity sensors, four HW526 rotation angle sensor modules,
an ADS1115 4 Channel 16-bit ADC, and a MicroSD card Adapter (Fig. 12).
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The architecture of the custom control software is developed based on the solution of the IK which
is used to compute the required angular position of the actuated links with respect to an imposed set
of cartesian coordinates for the characteristic point of the end-effector. In this manner, a function was
implemented in order to compute the previously mentioned angular positions.

Regarding the motion control algorithm, the chosen approach was to compute the linear trajectory
between an imposed cartesian coordinate set, representing the destination of the movement, and the
current cartesian position, followed by a division in smaller segments, along the linear trajectory.

Using the function for solving the driven links angles for each point along the imposed trajectory,
the required angular positions are obtained and by subtracting the values between each two consecutive
pair of points along the imposed trajectory, the required variation for each actuated link is obtained.

Computing the required number of steps of each stepper motor is achieved from the previously men-
tioned variance by transforming the angular value from radians to degrees and compensating for the step
angle of the stepper motor to reach each intermediate point along the imposed trajectory. The number
of steps required for the movement between each interval obtained as previously presented will most
likely represent non-integer numbers, thus resulting in a necessary rounding of the values. The error
generated by the rounding operation is saved and carried over to the next intervals of motion and is com-
pensated if it overcomes a step or if it becomes negative by adding or subtracting a step from the current
motion.

Regarding the actuation of the stepper motors, the previously computed step values are required to be
executed by both stepper motors in the same over-all time of motion. Given the fact that the microcon-
troller used is an ATmega2560, which is not able of multithreading, it is not possible to execute tasks
in parallel sequences; thus, the closest approach is to execute the pulses in a cross-pattern between each
stepper motor. This approach is not useful since the steps required for the movement of the two actu-
ated links have different values most of the time. To solve this issue, the number of divisions among the
imposed trajectory is increased to such an extent that the resulting number of pulses in each segment,
after rounding, becomes either 0 or 1. This approach is very inefficient performance-wise, resulting
in a limitation of the maximum speed of the end-effector. The maximum speed limitation with the
microcontroller used (ATmega2560) is approximately 0.3 m/s.

The control algorithm also requires an initialization sequence since the IKP solving function out-
puts absolute coordinates based on absolute cartesian coordinates of the end-effector. The initialization
sequence is implemented by moving the actuated link in an imposed direction until the two HW201 IR
proximity sensors are triggered, thus homing the mechanism and setting a fixed reference system for the
control algorithm.

After the successful implementation of the control sequence, it was desired to compare the exper-
imental results to the theoretic counterpart with regard to the over-all movement of the linkage; thus,
four HW526 rotation angle sensor modules were mounted on the drive and driven joints and the absolute
angle of the drive joints and the relative angle of the driven joints were determined by using an ADS1115
4 Channel 16-bit ADC and saved on a .txt file on a MicroSD memory card, followed by the comparison
to the theoretical results. The experimental test consists in the movement of the characteristic point of
the square border of the dexterous workspace, as shown in Fig. 13.

Figure 13 shows the experimental and theoretical path of the described dexterous workspace path of
the characteristic point M, and Fig. 14 describes the experimental and theoretical results of the drive,
driven, and transmission angles of the five-bar linkage. The experimental results confirm that the fol-
lowed path resembles the theoretical imposed one, with a maximum deviation of the characteristic point
of ε = 2 mm. The same behavior of the experimental angle values can be highlighted. By comparing the
experimental results and the theoretical counterpart, multiple issues can be observed. The behavior of the
control algorithm is observed, that resulted from the rounding required for the stepper motors actuation,
then, the presence of a certain level of misalignments or geometrical flaws is seen from the deflection of
the plotted profile, and the presence of inertia, from the deflection in the regions representing the change
in movement direction.
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Figure 13. Experimental and theoretical path of the described dexterous workspace of the characteristic
point M.

Figure 14. Experimental and theoretical results of the drive (a), driven (b), and transmission
angles.

7. Conclusions
This paper shows a study starting with the structural synthesis, forward and IK analysis, dimensional
synthesis, performance indices characterization, and experimental tests of the five-bar linkage.

The structural synthesis highlighted a number of eight useful five-bar linkage structures, which can
be considered as symmetrical structures. This paper focused on the five-bar linkage 5-RRRRR(a) and
proposed the direct and IK to compute further the performance indices and to use for the control of the
experimental stand.

https://doi.org/10.1017/S0263574723001042 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723001042


3378 Tivadar Demjen et al.

The main contribution of this paper was concentrated in the development of a dimensional synthesis
of the five-bar linkage to avoid the singularities in a dexterous workspace defined by the user. The method
allows the computing of all the elements length with analytical relationships by using a coefficient k. This
coefficient can be further computed by imposing a minimum transmission angle in the worst positions
of the workspace, which are the shorter distance between the frame joint and the lower border of the
dexterous workspace.

To confirm the theoretical synthesis results, the Jacobian matrix determinant Jq and Jx were com-
puted for a numerical example, confirming the nonexistence of zero values, which means the dexterous
workspace is singularity-free of type I and II. Further for the characterization of the five-bar linkage, the
local and global performance indices were computed such as manipulability index, conditional number
(dexterity index), local condition index, local stiffness index, respectively the ITI, OTI, and LTI. Several
characteristics of the performance indices were highlighted based on the considered numerical example.

For certifying the theoretical synthesis results, an experimental stand of the five-bar linkage was
developed, and the tests results showed that the characteristic point describes the square border of the
dexterous workspace, which means all other points inside of the dexterous workspace can be reached
without having any type of singularities. The experimental path described by the characteristic point
resembles the theoretical counterpart while the experimental values of the characteristic drive, driven,
and transmission angles are very close to the theoretical ones, even though some control and calibration
improvements are still required for the future research.
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