H. Heilbronn and P. Scherk

(received February 15, 1969)

Let A, B denote two non-void finite complexes (= subsets) of the torsion free abelian group G,

 $A + B = \{a + b \mid a \in A, b \in B\}$.

Let $d(A), \ldots$ denote the maximum number of linearly independent elements of A,... and let n = n(A, B) denote the number of elements of A + B whose representation in the form a + b is unique. In the preceding paper, Tarwater and Entringer [1] proved that $n \ge d(A)$. We wish to show by an entirely different and perhaps simpler method that $n > d = d(A \cup B)$.

Given A and B, we may replace G by the subgroup generated by $A \cup B$. Then G may be interpreted as a d-dimensional vector lattice over the ring of the integers. Imbed G into a d-dimensional real vector space and construct its affine d-space R.

Let C denote the set of those points of R whose radius vectors belong to A + B. Since $d(A + B) = d(A \cup B) = d$, we have dim C = d - 1 or d. The convex closure H(C) of C is a convex polytope in R.

If ξ is an extremal point of $\mathfrak{L}(\mathbb{C})$, ξ is not the barycenter of other points of $\mathfrak{L}(\mathbb{C})$, in particular of \mathbb{C} . Hence $\xi \in \mathbb{C}$.

Suppose the radius vector x of the point ξ has two distinct representations x = a + b = a' + b' where $\{a, a'\} \subset A$, $\{b, b'\} \subset B$. The points with the radius vector a + b' and a' + b would lie in C and ξ would be the centre of the connecting segment. In particular, ξ could not be an extremal point. Thus every extremal point of $\Re(\mathbf{C})$ has a radius vector in A + B with a unique representation a + b.

Since $\sharp(C)$ is a convex polytope of dimension $\geq d - 1$ and since every convex polytope is the convex closure of the set of its extremal points, $\sharp(C)$ has not less than d extremal points. This proves n > d.

Canad. Math. Bull. vol. 12, no. 4, 1969

479

<u>Remark.</u> If B contains at least two elements, $H(\mathbb{C})$ has not less than 2(d(A) - 1) extremal points. We then have n > 2(d(A) - 1).

REFERENCE

 J.D. Tarwater and R.C. Entringer, Sums of complexes in torsion free abelian groups. Canad. Math. Bull. 12 (1969) 475-478.

University of Toronto

480