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Power Series Rings Over Priifer
v-multiplication Domains. I

Gyu Whan Chang

Abstract. Let D be an integral domain, X' (D) be the set of height-one prime ideals of D, {X} and
{Xq} be two disjoint nonempty sets of indeterminates over D, D[{Xp}] be the polynomial ring
over D, and D[{ X} ][[{ X« } ]I1 be the first type power series ring over D[{Xg}]. Assume that Disa
Priifer v-multiplication domain (PvMD) in which each proper integral t-ideal has only finitely many
minimal prime ideals (e.g., -SFT PvMDs, valuation domains, rings of Krull type). Among other
things, we show that if X' (D) = @ or Dp isa DVR for all P € X' (D), then D[{Xg}[{Xa}T1p—{0}
is a Krull domain. We also prove that if D is a t-SFT PvMD, then the complete integral closure of D
is a Krull domain and ht(M[{X3}][[{Xq}]l1) =1 for every height-one maximal ¢-ideal M of D.

1 Introduction

Let D be an integral domain with quotient field K. Let {X,} be a nonempty set of
indeterminates over D, D[{X,}] be the polynomial ring over D, and D[[{X,} ]
be the first type power series ring over D; ie, D[[{Xa}]1 = UD[Xs, ..., Xu]l,
where {Xj, ..., X, } runs over all finite subsets of {X, }, so D[[{X4}]]1 = D[[{X4«}]]
if and only if {Xa}] < oo (cf [19, Section 1] for the power series ring). Let A be
an ideal of D. Then AD[[{X4}]]: is the ideal of D[[{X,}]]: generated by A and

Al{Xo 1 = { f € D[{Xa}li | c(f) € A}, where c(f) is the ideal of D generated by
the coefﬁc1ents of f,50 A[[{X,}]]1 is an ideal of D[[{X¢ } ]| such that AD[[{X4 }]]; S
A[[{Xa}]i- Also, AD[[{ X4} 1 = A[[{ X« }]]1 if and only if A is finitely generated, and
A is a prime ideal if and only if A[[{X,}]]: is a prime ideal.

Let X'(D) be the set of height-one prime ideals of D. A Krull domain D is an
integral domain in which (i) D = Npex1(py Dp, (ii) Dp is a rank-one discrete valu-
ation ring (DVR) for all P € X'(D), and (iii) the intersection D = Npexi(p) Dp is
locally finite; i.e., each nonzero element of D lies in only a finite number of prime
ideals in X'(D). It is clear that D is a Krull domain with X'(D) = @ if and only
if D is a field. Krull domains are very important because of, among other things,
the following well-known results that D is a Dedekind domain if and only if D is a
Krull domain of (Krull) dimension at most one; if D is a Krull domain, then Div(D),
the monoid of v-ideals of D under I * J = (I]),, is a free abelian group on X'(D)
and CI(D) = Div(D)/ Prin(D), where Prin(D) is the subgroup of nonzero principal
fractional ideals of D, is the divisor class group of D; for every abelian group G, there
is a Dedekind domain D with CI(D) = G; D is a UFD if and only if D is a Krull
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domain with CI(D) = {0}; the integral closure of a Noetherian domain is a Krull
domain; and D is a Krull domain if and only if D[{X,}] is a Krull domain, if and
only if D[[{X,} )1 is @ Krull domain (see, for example, [16]).

Clearly, D[{ X4 }]p-{o} = K[{X4}], and hence D[{X, } | p—{o isa UFD (so a Krull
domain), while the next example shows that D[[{ X, }]lip-{o} need not be a Krull
domain.

Example 1.1 Let V be arank-one nondiscrete valuation domain with maximal ideal
M, and let V[[{X4}]]: be the first type power series ring over V. Note that if X €
{ X4}, then MV[[X]] is a prime ideal of V[ X]] such that V[[ X ]]yvx] is a rank-one
valuation domain,

VIIXTmvxy 0 VIX Dy oy = VIXD),
and
VIH{Xa} hy oy naf (VIXT) = VIIXTly 0y
where qf (V[ X]]) is the quotient field of V[[X]]. Hence, if V[[{Xq}]l1y_q) is a Krull
domain, then V[[X]],_,, is also a Krull domain, and thus V[[X]] is a generalized
Krull domain. (See Section 2 for the definition of a generalized Krull domain.) But,

in this case, V must be a rank-one DVR [28, Theorem 2.5]. Thus, V[[{Xa}[l1y_ ¢y is
not a Krull domain.

However, in [3, Theorem 3.7], it was shown that if D is an SFT Priifer domain,
then D[[{Xa}]l1p_{y is a Krull domain. This was generalized in [8, Theorem 9(3)]
to ¢t-SFT Priifer v-multiplication domains (PvMDs) as follows: If D is a t-SFT PvMD,
then D[[{Xa}]lip_g) is a Krull domain. Let {Xp} and {X,} be two disjoint non-
empty sets of indeterminates over D and D[{Xj}] be the polynomial ring over D. If
D is a t-SFT PvMD, then Dy := D[{Xp}] is a t-SFT PvMD [8, Theorem 11]. Hence,
Do[[{Xa}l1p, -0y is @ Krull domain for which it is natural to ask if Do [[{Xa } [l1p_ o)
is a Krull domain.

Let D be a PvMD such that each proper integral t-ideal of D has a finite number
of minimal prime ideals (e.g., t-SFT PyvMDs, valuation domains, rings of Krull type).
In this paper, we modify the proof of [8, Lemma 8] (hence that of [5, Lemma 3.3]) to
prove that if X*(D) = @ or Dp is a DVR for all P € X'(D), then both the complete
integral closure of D and D[[{Xa }[i ,_oy are Krull domains. This also gives another
proof of [3, Theorem 3.7] that if D is an SFT Priifer domain, then D[[{Xa}]ip_(o}
is a Krull domain. We then use this result to show that D[{Xg}][{Xa}]]
Krull domain. Hence, if D is a t-SFT PyMD, then

DI{Xa}Thpgo; and DHXI{Xe} (o)
are both Krull domains. As a corollary, we have that if D is a valuation domain
such that either X'(D) = @ or D has a height-one prime ideal P with P> # P, then
D[{Xp}][{Xa }]]ID—{O} is a Krull domain. We finally prove that if M is a height-one
maximal t-ideal of a t-SFT PvMD, then ht(M[{Xg}][[{Xa}]]1) = 1. Although some
of the proofs are similar to the proof of [8, Lemma 8], we include them for complete-
ness.

1p_{o} 182
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We first review definitions related to the t-operation. A fractional ideal I of D
is a D-submodule of K such that dI ¢ D for some 0 # d € D. Let F(D) be the
set of nonzero fractional ideals of D. For I € F(D),let I"! = {x € K | xI € D};
then I™! € F(D). The v-operation is defined by I, = (I"*)™! and the t-operation by
I; = U{J, | ] € F(D), ] is finitely generated, and J ¢ I}. Clearly, if I ¢ F(D), then
I c I, c I,, and if I is finitely generated, then I; = I,. If * = v or ¢, then I is called a
*-ideal if I = I, and a *-ideal of finite type if I = B, for some finitely generated ideal
B € F(D). A *-ideal of D is called a maximal -ideal if it is maximal among proper
integral *-ideals of D. Let * -Max(D) be the set of all maximal *-ideals of D. While
v-Max(D) can be empty as in the case of a rank-one nondiscrete valuation domain D,
it is well known that -Max(D) # @& when D is not a field; a prime ideal minimal over
a t-ideal is a t-ideal; each proper integral t-ideal is contained in a maximal ¢-ideal;
each maximal ¢-ideal is a prime ideal; and D = Mpe;-max(p) Dp. An overring of D
means a ring between D and K. We say that an overring R of D is t-linked over D if
I, = D implies (IR), = R for all finitely generated ideals I € F(D). It is easy to see
that R is t-linked over D if and only if (Q n D); ¢ D for each prime ¢-ideal Q of R
(11, Proposition 2.1]. An I € F(D) is said to be t-invertible if (I""); = D, and we say
that D is a Priifer v-multiplication domain (PvMD) if each nonzero finitely generated
ideal of D is t-invertible. It is well known that D is a PvMD if and only if Dp is a
valuation domain for each maximal t-ideal P of D [20, Theorem 5]. For more on
basic properties of the v- and t-operations, see [19, Sections 32 and 34].

A nonzero ideal I of D is called an SFT-ideal (an ideal of strong finite type) (resp.,
a t-SFT-ideal) if there exist a finitely generated ideal J € I and an integer k > 1 such
that a* € J for all a € I (resp., a* € J, for all a € I;). The ring D is called an SFT-ring
(resp., a t-SFT-ring) if each nonzero ideal of D is an SFT-ideal (resp., a t-SFT-ideal).
It is known that D is an SFT-ring (resp., a t-SFT-ring) if and only if each prime ideal
(resp., prime t-ideal) of D is an SFT-ideal (resp., a t-SFT-ideal) [4, Proposition 2.2]
(resp., [24, Proposition 2.1]). Note that D is a Priifer domain if and only if D is a
PvMD whose maximal ideals are ¢-ideals, and each nonzero ideal of a Priifer domain
is a t-ideal. Hence, SFT Priifer domains < ¢-SFT Priifer domains = ¢-SFT PyMDs.
It is known that D is a Krull domain if and only if D is a ¢-SFT PyvMD in which each
prime t-ideal is a maximal ¢-ideal [8, Theorem 9(2)].

2 SFT Priifer Domains, t-SFT PvMDs, and Rings of Krull Type

A valuation domain V is said to be strongly discrete if each nonzero prime ideal P
of V is not idempotent, i.e., P> # P. A strongly discrete Priifer domain is an integral
domain D in which D)y is a strongly discrete valuation domain for all maximal ideals
M of D. We say that D is a generalized Dedekind domain if (i) D is a strongly discrete
Priifer domain and (ii) each prime ideal of D is the radical of a finitely generated ideal.
The notion of generalized Dedekind domains was introduced by Popescu [29]. It is
easy to see that D is a Dedekind domain if and only if D is a generalized Dedekind
domain of dimension at most one. For more on generalized Dedekind domains, see
[15, Chapter 5] or [17]. In [23, Theorem 2.4], Kang and Park showed the following
lemma.
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Lemma 2.1 The concepts “SFT Priifer domain” and “generalized Dedekind domain”
are the same.

Let F be a field with K € F, where K is the quotient field of D, and let X be an
indeterminate. It is known that R = D + XF[X] is an SFT Priifer domain if and only
if F = K and D is an SFT Priifer domain [17, Corollary 4.2]. More generally, we have
the following proposition.

Proposition 2.2 Let R = @;2, R, be a graded integral domain with R,, # {0} for all
n > 0. Then R is an SFT Priifer domain if and only if R = D + XK[X] for some SFT
Priifer domain D with quotient field K.

Proof Recall from [10, Proposition 3.4] that R = @, R, is a Priifer domain if and
only R 2 D+ XK][X] for some Priifer domain D with quotient field K. Thus, the result
follows directly from [17, Corollary 4.2]. ]

As the t-operation analog of generalized Dedekind domains, El Baghdadi [12] in-
troduced the notion of generalized Krull domains as follows: D is a generalized Krull
domain if D is a PyMD such that (i) Dp is strongly discrete for each maximal ¢-ideal
P of D and (ii) each prime t-ideal of D is the radical of a ¢-ideal of finite type. We
noted in the introduction that D is a Priifer domain if and only if D is a PvMD whose
maximal ideals are t-ideals, and each nonzero ideal of a Priifer domain is a ¢-ideal.
Thus, a generalized Dedekind domain is just a generalized Krull domain in which
each maximal ideal is a ¢-ideal.

Recall from [19, Section 43] that D is a generalized Krull domain if (i) Dp is a val-
uation domain for each P € X'(D), (ii) D = Mpext(p) Dp, and (iii) the intersection
D = Npex1(p) Dp islocally finite. A generalized Krull domain isa PvMD whose prime
t-ideals are maximal ¢-ideals, and a Krull domain is a generalized Krull domain. Thus,
a generalized Krull domain is a Krull domain if and only if it is a ¢-SFT-ring (cf. [8,
Proposition 9(2)]). Clearly, this notion of generalized Krull domains is different from
El Baghdadi’s generalized Krull domains, so we denote by GK-domains El Baghdadi’s
generalized Krull domains. As in the case of SFT Priifer domains, in [24, Theorem
2.5], Kang and Park proved the following lemma.

Lemma 2.3 D is a GK-domain if and only if D is a t-SFT PvMD.

An integral domain D is said to be of finite character (resp., finite t-character) if
each nonzero element of D is contained in only finitely many maximal ideals (resp.,
maximal t-ideals) of D. Following [21], we say that D is a ring of Krull type if D is
a locally finite intersection of essential valuation overrings of D; equivalently, D is a
PvMD of finite ¢-character [20, Theorem 7]. Clearly, both Krull domains and Priifer
domains of finite character are rings of Krull type. For easy examples of t-SFT PvMDs
and rings of Krull type, recall that a multiplicative subset S of D is t-splitting if for
each 0 # d € D, we have dD = (AB); for some integral ideals A, B of D such that
A;nsD=sA;foralls e Sand B; NS # @. Let X be an indeterminate over D, S be a
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multiplicative subset of D, D[ X] be the polynomial ring over Dg, and
D+ XDs[X] = {f e Ds[X]| f(0) e D},
$0 D + XDg[X] is a ring such that D[X] ¢ D + XDg[X] € Ds[X].

Proposition 2.4  Let S be a multiplicative subset of D and R = D + XDg[ X].

(i) Risat-SFT PvMD if and only if D is a t-SFT PvMD and S is t-splitting.
(ii) R is a ring of Krull type if and only if D is a ring of Krull type, S is t-splitting, and
the set of maximal t-ideals of D that intersect S is finite.

Proof
(i)  See [13, Corollary 2.3].
(i) See [2, Theorem 2.5]. [ |

Clearly, a Krull domain is both a t-SFT PvMD and a ring of Krull type. Also, it is
easy to see that every multiplicative subset of a Krull domain is a t-splitting set [L, p. 8].
Thus, by Proposition 2.4, we have the following corollary.

Corollary 2.5 Let D be a Krull domain, S be a multiplicative subset of D and R =

D+ XDg[X].

(i) Risat-SFT PvMD.

(i) ([2, Corollary 2.6]) If {P € t-Max(D) | Pn'S # @}| < oo, then R is a ring of
Krull type.

We recall the following useful lemma by which it follows that each t-ideal of a
t-SFT PvMD has only finitely many minimal prime ideals [12, Lemma 3.8].

Lemma 2.6 ([7, Lemma 2.1]) Let I be a proper integral t-ideal of D. If every prime
ideal of D minimal over I is the radical of a t-ideal of finite type, there are only finitely
many prime ideals of D minimal over I.

Let D be aring of Krull type. If I is a proper integral t-ideal of D, then I is contained
in only finitely many maximal ¢-ideals, and since each maximal ¢-ideal contains at
most one prime ideal of D minimal over I, the number of minimal prime ideals of I
is finite.

Proposition 2.7 D is a PvMD in which each integral t-ideal has only finitely many
minimal prime ideals if and only if D[{X,}] is. In this case, Dp is a DVR for all P €
XY(D) ifand only if D[{X,}]q is a DVR for all Q € X*(D[{X4}]).

Proof This result follows directly from the following observations: (i) D is a PvMD
if and only if D[{X,}] is; and (ii) if Q is a prime ¢-ideal of D[{X,}], then either
htQ =1with Qn D = (0) or Q = (Q n D)[{X,}] and Q n D is a prime ¢-ideal (cf.
[22, Theorem 3.1] and [14, Lemma 2.3]).

The “in this case” part follows from the following two observations: (i) if P is a
prime ideal of D, then htP = 1if and only if P[{X,}] € X*(D[{X4}]), and since
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D[{Xa}]p[{x.}]" K = Dp, we have that D[{ X, } ] p[{x,}] isa DVR ifand only if Dp is
aDVR;and (ii) if Q € X'(D[{X,}]) with QnD = (0), then D[{X,}]qisaDVR. ®

We end this section with three examples that show that SFT Priifer domains #
rings of Krull type; rings of Krull type # ¢-SFT PvMDs; and integral domains in
which each integral t-ideal has only finitely many minimal prime ideals # ¢-SFT
PvMDs or rings of Krull type.

Example 2.8 (i) The ring R = Z + XQ[X] is an SFT Priifer domain (hence
a t-SFT PvMD), while R is not a ring of Krull type because X € R is contained in
infinitely many maximal ¢-ideals pZ + XQ[X] for all prime elements p € Z.

(ii) If V isarank-one nondiscrete valuation domain, then V is a ring of Krull type
but not a ¢-SFT PvMD.

(iii) Let D be a generalized Krull domain that is not a Krull domain and R =
D + XK[X]. If | X'(D)| = oo, then each integral ¢-ideal of R has only finitely many
minimal prime ideals but R is neither a t-SFT PvMD nor a ring of Krull type.

3 Power Series Rings Over PyMDs

In this section, we prove that if D is a PyMD such that each proper integral ¢-ideal
has only finitely many minimal prime ideals and Dp isa DVR for all P € X'(D), then
D[[{Xa}]lip{oy is @ Krull domain. Hence, we note that D is a PvMD in which each
integral t-ideal has only finitely many minimal prime ideals if D is a t-SFT PvMD,
D is a ring of Krull type, D is a Priifer domain of finite character, or D is a valuation
domain. Also, throughout this section, we use the following notation.

Notation 3.1 <« D isa PvMD in which each integral t-ideal has only finitely many
minimal prime ideals, and D is not a field.

* K is the quotient field of D.

* t-Spec(D) is the set of prime ¢-ideals of D.

* A is a nonempty set of prime t-ideals of D with the property that if {Ps} € Aisa
chain under inclusion, then U Py € A.

* F(A) is the family of finite sets A of prime #-ideals in A such that no two elements
of A are comparable under inclusion.

» X'(D) is the set of height-one prime ideals of D.

* R =pexi(p) Dp (where R = K when X' (D) = 2).

If © is a set of prime t-ideals of an integral domain A, then Np.g Ap is called a
subintersection of A. It is known that a subintersection of a PvMD is a PvMD [26,
Proposition 5.1]. Thus, R = Npex1(p)y Dp is a PYMD.

Proposition 3.2 (i) R is a generalized Krull domain.
(ii) R isa Krull domain if and only if Dp is a DVR for all P € X'(D).

Proof If X'(D) = @, then R = K, so we can assume that X'(D) # @.

(i) If P € X'(D), then P is a t-ideal and Rpp,nr = Dp, and since D is a PyMD,
Dp is a rank-one valuation domain. Moreover, by assumption, each nonzero nonunit
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of D is contained in only finitely many height-one prime ideals of D, and hence R =
Npexi(p) Dp is locally finite. Thus, R is a generalized Krull domain.

(ii) This follows from (i) because a generalized Krull domain A is a Krull domain
ifand only if Ap is a DVR for each P € X'(A). [

Corollary 3.3 (i) IfDisa t-SFT PvMD, then R is a Krull domain.
(ii) If D is an SFT Priifer domain, then R is a Dedekind domain.

Proof (i) Note that Dp isa DVR for all P € X*(D) [8, Lemma 8(1)]. Thus, by Propo-
sition 3.2(ii), R is a Krull domain.

(ii) By (i), R is a Krull domain. Also, since D is a Priifer domain, R is a Priifer do-
main [19, Theorem 26.1]. Thus, R is a Dedekind domain (note that Dedekind domain
<> Krull domain + Priifer domain). |

A set G of ideals of D is called a multiplicatively closed set of ideals if AB € G for all
A, B € G, and if G is a multiplicatively closed set of ideals of D, then

Dg ={xeK|xAc DforsomeAc &S},

called a generalized transform of D, is a t-linked overring of D [22, Lemma 3.10]. For
more on the ring Dg, see [6].

Proposition 3.4 For A = {Py,...,P,} € F(A), let S, be the set of all t-invertible

ideals A of D such that ([1;_; P;): $ At S D, but AE P fori=1,...,r.

(i) 6, is a multiplicatively closed set of ideals of D.

(i) Let D) = Dg,. Then (0) # [I'_; Pi € (D: D).

(i) Let S = Ujeg(a) ©r- Then & is a multiplicatively closed set of ideals of D, Dg =
Ures(a) D, and D is a PvMD.

Proof (i) If A€ G,, then
P2 (11R), = (((

But, since A ¢ P; for i = 1,...,r, we have ([T_; P;)A™" < N!_, P;. Note that
(Pi+Pj); =D for i # j, since D is a PYMD, so Nj_; P; = ([1j-; P;)+ and there-
fore (TT:_; P;)¢ = ((ITi_; P;)A™"),. Hence, if A}, A, € &), then A A, is t-invertible,
A1A, ¢ P;fori=1,...,r,and

(A1Az): 2 ((iljlpa;)AlAZ)t: (((

1

r
i=

P)Aa™)A), and ([1P)A™cD.
1 i=1

:lPa,.)AglAIl)AlAz)t = <£I1P“") .
Thus, A1A, € G,.

(ii) This follows because [T;_, P; C A forall A€ G,.

(iii) If A;,A, € &, then A; € &), for some A; € F(A) fori = 1,2. Let A be
the set of minimal elements (under inclusion) of A; U A,. Clearly, A € F(A). Also,
[Tper P € [Tgex, Q for i =1,2, and hence ([Tpey P): & (Ai)rand A; ¢ Pforall P e A,
(Forif A; ¢ P for some P € A, then P ¢ A;. Note that [Toc), Q € (A;); S P; hence,
Q ¢ P for some Q € A;, and in this case, P ¢ A, a contradiction.) Thus, A}, A; € &),
and therefore AjA; € &) € &. Clearly, Dg = Ujes(a) Da> and since D is a PvMD,
Dg is a PyMD [22, Theorem 3.11]. |
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Let © be a set of prime ¢-ideals of D. Clearly,

() Dp =

Pe® K lf @ = Q.

{D if © = t-Max(D),
Hence, if each prime t-ideal of D is a maximal ¢-ideal (e.g., D is a Krull domain), then
t-Max(D) = X'(D), and hence R = D.

Corollary 3.5  Let the notation be as in Proposition 3.4, A = {Py,...,P,} e F(A), Q
be the set of nonzero prime ideals P of D such that P is a minimal element of A under
inclusion or P = N Ps for some chain {Ps} C A with the property that P' € A with
P' ¢ Ps for some Ps implies P' € {Ps}, and A = {M € t-Max(D) | P ¢ M for all
PeA}.

(i) Dy =(N} Dp,)n(N{Dy | M € t-Max(D) and [T}_, P; ¢ M}).

(i) De = (Npea Dp) N (Narea Du).

(iii) If A = t-Spec(D), then R = Uycg(a) Di.

(iv) R is the complete integral closure of D.

Proof (i) For convenience, let Ay = {M € t-Max(D) | [1;,;P; ¢ M} and T =
(Niz1 Dp;) N (Natea, Dm). (S): If x € Dy, then xA ¢ D for some A € G,. Note
that [T;_, Pi € A;and A ¢ P fori =1,...,7,50 x € (Nj_; xDp,) N (Npea, xDur) =
(le xADp,.) n (ﬂMEAA xADM) cT.

(2): Let 0 # y € Ty, andlet Ay ={deD|dyeD}. Clearly, A, ¢ P; fori =
1,2,...,r. Note also that A, = (1, )7}, so A, is a t-invertible t-ideal of D. Let
I = 1, P, and assume M € t-Max(D). If A, ¢ M, then IDy € Dy = A,Dy.
Next, assume A, ¢ M. If I ¢ M, ie, P; ¢ M fori = 1,...,r, then, by assump-
tion, y € Dy, and so Ay, ¢ M, a contradiction. Hence, P; ¢ M for some j, and
since Ay, ¢ P; and Dy, is a valuation domain, IDy; = P;Dy § A, Dy € Dyy. Thus,
I S Natet-Max(p) IDam € Nutet-Max(p) AyDm = (Ay)r = A, (cf. [22, Theorem 3.5] for
the first equality). Clearly, (IT;_, P;)¢ = I; # Ay, and hence A, € §,. Thus, y € D,.

(ii) Let T = (Npea Dp) N (Nyea Dm). (S): If x € Dg, then x € D, for some
A={Py,...,P,} € F(A). Hence, there exists an A € G, such that xA € D. Note that
[1i.;Pi C A, s0 A¢ Pforall P e QuA. Thus, x € (Npeq xDp) N (Nprea XDar) =
(Npea xADp) N (Mpea XADy) € T.

(2): For the reverse containment, let 0 # y € Tand A, = (1,y)™". Then A, is a
t-invertible t-ideal of D. If A, = D, then y € D € Dg, so assume A, ¢ D. Then
there are only finitely many prime ideals of D minimal over A,, say Qy,..., Q,. Let
O ={PeA|PgQ;forsomei}, whence A, ¢ P forall P € ®. If M is a maximal
t-ideal of D with Q; ¢ M for some i, then A, ¢ M, and hence M ¢ A. Thus, M
contains at least one prime ideal in A, and since D), is a valuation domain, P ¢ Q;
for some P € A by the choice of Q and y. Hence, ® # @. Also, if {Ps} is a chain of
prime ideals in @, then P := U Ps € A by the property of A, and since A, ¢ Ps for
all § and A, is of finite type, A, ¢ P. Thus, each element of ® is contained in at least
one maximal element under inclusion, and ® contains a finite number of maximal
elements. Let y be the set of maximal elements of ©, and let I = []p, P. Clearly,
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¢ € F(A), and it is easy to see that I; ¢ A, and A, ¢ P for all P € y (cf. the proof of
(i) above). Thus, y € D, € Dg.

(iii) It is obvious that ¢ -Spec(D) satisfies the given property of A. Hence, if A =
t-Spec(D), then Q = X'(D) and A = @, and thus by (ii) and Proposition 3.4(iii),
R =Ujes(a) Da-

(iv) Let D* be the complete integral closure of D. Clearly, D* C R, because D € R
and R is completely integrally closed. For the reverse containment, let « € R and
A = t-Spec(D). Then a € D, for some A € F(A), and since D, is a ring, a” € D,
for all integers n > 1. Note that [Tpy P € (D : D) by Proposition 3.4(ii), so if
0 # d € [1pey P, then da” € D for all n > 1. Thus, a € D*. [

Remark 3.6 If D is a ring of Krull type, then each integral t-ideal of D has only a
finite number of minimal prime ideals. Thus, by Corollary 3.5(iv), R = Npex1(p) Dp
is the complete integral closure of D. Also, if X' (D) # @, then R is a generalized Krull
domain by Proposition 3.2(i). This recovers Mott’s results [25, Theorems 1 and 3].

It is known that the complete integral closure of an SFT Priifer domain is a Dede-
kind domain [17, Corollary 3.2], and a completely integrally closed t-SFT PvMD is a
Krull domain ([12, Theorem 3.11] or [24, Theorem 2.9]).

Corollary 3.7  The complete integral closure of a t-SFT PvMD is a Krull domain.

Proof By Corollary 3.5(iv), R is the complete integral closure of D. Thus, by Corol-
lary 3.3, the complete integral closure of a t-SFT PvMD is a Krull domain. ]

For brevity of notations, let A[[X),...,X,]] = A[[X,]] for an integral domain A
and an integer n > 0, A[[Xo]] = A, &(X31,..., Xn) = &(X,) forany &(X3,..., X,) €
A[[X,]], and K,, be the quotient field of D[[ X, ]].

Lemma 3.8 Let A = t-Spec(D). If n > 0 is an integer, {&;(X,)}:2, is a subset
of R[[X,]], {mi}32, is a set of positive integers, and 0 # d(X,) € D[[X,]] is such
that d(X,)™ &(X,) € D[[X,]] for all i > 1, then {&;(X,)}52, € DA[[Xn]] for some
AeF(A).

Proof Let{&;}2, beasubsetof R, and assume that there exist 0 # d € D and positive
integers {m;}7°, such that d"™&; € Dforalli > 1. If dD = D, then §; € D, so we
assume dD ¢ D. Hence, there are only finitely many minimal prime ideals of dD,
say Qp, ..., Qu. IfhtQ; = 1, let P; = Qj, and if htQ; > 2, then choose a prime ideal
P; such that (0) ¢ P; ¢ Qj. Let A = {P,,,..., Py, } be the set of distinct P;’s (it is
possible that P; = P; for i # j,sor < m),andlet Ag, = {a € D | a&; € D}. Since
Ag, = (1, &)L Ay, is a t-invertible t-ideal of D. Since &; € R, we have Ay, ¢ Q for
all Q € X'(D). Next, note that d™ € Ag,; so if htQ; > 2, then P; ¢ Q}, and hence
Ag, ¢ Pj. Thus, Ay, ¢ Py, for j=1,...,r. Letp € ]'[;:1 Py;, and M € t-Max(D).
Ifd ¢ M, then p&; € Dy. If d € M, then P,; ¢ M for some j, whence if htP,; = 1,
then p&; € pR ¢ Paijuj = Py;Dy & Dy IfhtPy; > 2, then d ¢ Py, and so pé; €
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p(dmifi)Dpaj c pruj c Puijaj € Dy. Hence, pf, € mMEt—Max(D) Dy = D. Thus,
(]'I;=l Paj)t ¢ (Ag,)e = Ag,,and so Ag, € &,. Therefore, &; € D) forall i > 0.
Assume that if k = n — 1 is a nonnegative integer, {;(Xx)}%, is a subset of
R[Xk]), {ki}$2, is a set of positive integers, and 0 # d(Xx) € D[[X]] is such that
d(Xp)R&(Xy) € D[[Xx] for all i > 1, then {&(Xx)}2, € D,[[Xk]] for some
v e F(A). Let {&(X,)}:2, be asubset of R[ X, ]|, {1}, be a set of positive in-
tegers, and 0 # d(X,,) € D[[X,,]] be such that d(X,,)" &;(X,) € D[[X,]] foralli > L.
We can write

d(X,) = Zd (Koo)X, and E(X,) = 3 & (X)X,
=0

where d;j(X,-1) € D[X,.1]] and &;(X,-1) € R[[X,-1]], and we can assume
that do(X,-1) # 0. Hence, {&;(Xn-1)} is a subset of D[[X,]] such that
do(X—1)" UV E(X,m1) € D[[X,1]] forall j > 0 (cf. the proof of [27, Proposi-
tion 2.5]), and thus {&;; (X, - 1)}}"’0 € D,[[Xpn-1]] for some y € F(A) by assumption.
Therefore, &;(X,) € D,[[X,]] fori >1. |

Lemma 3.9 If A = t-Spec(D), then R[X,]] N Ky, = Upreg(a) Dal[ Xa]]-

Proof (2): Note that if A € F(A), then (D : D)) # (0) by Proposition 3.4(ii), so
D[ Xx]] € D[[Xu]lp-fo} € Ku. Hence, the result follows, because R = Ujeg(a) Da
by Corollary 3.5(iii).

(©): Let E(X,) = L5 € R[X, ]| N Ky, where 0 # £(X,), g(X,) € D[X, ]|, and
write £(X,) = X572 &(X,-1) X, and g(X,) = 2520 di(X,-1) X, We may assume
that do(X,—1) # 0; then

E(Xn)g(Xn) kZ( Y E(X0)di(X- ) X4 € DX, ]I
0 i+j
Hence, do(X,_1) " &;(X,_1) € D[[X,,_1]] for all i > 0, and thus
{fi(Xn—l)} c D)L [[Xn—l]]
for some A € F(A) by Lemma 3.8. Thus, £(X,,) € Dy [[X,.]]- [ |

Theorem 3.10 If R = Npexi(p) Dp is a Krull domain, then D[[{Xa}]lip_(qy is a
Krull domain.

Proof Since R is a Krull domain, R[[{X,}]]; is a Krull domain [18, Theorem 2.1],
and hence R[[{Xa}]lip_g; is a Krull domain [19, Corollary 43.6]. Clearly, if we let

qf (D[[{X4}]]1) be the quotient field of D[[{X,}]]1, then qf (D[[{ X« }]]1) is a Krull
domain. Hence, by [19, Corollary 44.10], it suffices to show that

R[{Xe}lip-(oy Naf (PI{Xe} 1) = D[{Xa}hip_(0)-

>

> is clear. For the reverse containment, note that if

uce R[[{th}]]lp_{o} n qf(D[[{Xa}]]l)’

The containment “2
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then du € R[[X,]] n K, for some Xj,...,X, € {X,} and 0 # d € D. However, since
R[[X,]]nK, = D[[X,]] by Lemma 3.9, we have u € D[[X, ]| ,_(oy € D[[{Xa}]lip_(0}-
|

Corollary 3.11 Let {Xpg} and {X,} be two disjoint nonempty sets of indeterminates
over D. If R = Npexi(py Dp is a Krull domain, then D[{ X} |[[{ X« } [lip-{o} is a Krull
domain.

Proof Let Dy = D[{Xg}]. Note that Dp is a DVR for all P € X'(D) by Proposi-
tion 3.2(ii), so Dg is a PvMD in which each integral t-ideal has only finitely many
minimal prime ideals and Dy, is a rank-one DVR for all Q € X'(D,) by Proposi-
tion 2.7. Hence, again by Proposition 3.2, Ngex1(p,) Do g is @ Krull domain, and thus
Do[[{Xa}]l1p,-{oy is @ Krull domain by Theorem 3.10.

Claim. Do[[{Xa}l1p,—goy 0 K[{Xp}[{Xa} Tl = Do[[{Xa}H]1p_t0y-

Proof of Claim Let h = ﬁ € Do[[{Xa}1p,—(0y N K[{Xp}H[[{Xa}]l1» where 0 # f €
Do[[{Xa}]l1and 0 # g € Dy. Let h; € K[{Xg}] (resp., f; € Do) be the coefficients of
h (resp., f) such that gh; = f; € Dy = D[{Xg}]. Since D is a PyMD, D 2 ¢(f;), =
c(ghi)y = (c(g)c(hi))y 2 a-c(h;) = c(ah;) forall 0 # a € c(g). Hence, ah; €
D[{Xp}]forall i,and thus ah € Do [[{Xq}]]:. Therefore, h = % € Do[[{Xa}]]

1p-{0}-
The reverse containment is clear. |

Note that K[{X}] is a Krull domain, so K[{Xs}][[{Xs}]]: is a Krull domain
(18, Theorem 2.1]. Thus, D[{ X} ] [[{X“}]]ID—{O} is a Krull domain by the claim and

[19, Corollary 44.10]. [ |

If D is a t-SFT PvMD, then each proper integral ¢-ideal has only finitely many
minimal prime ideals and R = Npex1(p) Dp is a Krull domain. Thus, by Theorem 3.10
and Corollary 3.11, we have the following corollary.

Corollary 3.12  Let {Xg} and {X,} be two disjoint nonempty sets of indeterminates
over D. If Dis a t-SFT PyMD, then D[[{Xa}]l1p_(q, and D[{Xp}] [[{X“}]]lp—{o} are
both Krull domains.

Let D be a valuation domain, and assume that [{Xg}| < co. It is known that if
X'(D) = @, then D[[{Xa}]lip_(oy is a UFD [3, Proposition 2.1 and Corollary 3.4].
Also, if D has a height-one prime ideal P that is not idempotent, i.e., P # P2, then Dp
is a rank-one DVR, and hence Dp[{Xp}][[{Xa}]]1 is a UFD (cf. [30, Theorem 2.1]).
Note that

UK X g, o, = Del{XgNT{Xe i, o

Thus, D[{Xp}] [[{X“}]]lD—{o} isa UFD.
Corollary 313 Let {Xg} and { X} be two disjoint nonempty sets of indeterminates

over a valuation domain V. If either X'(V) = @ or V has a height-one prime ideal P
with P> # P, then V[{X;;}][[{Xu}]]lv_{o} is a Krull domain.
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Proof Let R = Npexi(vy Vp. Then either R is a field or R = Vp is a rank-one DVR
(so a Krull domain) by assumption. Thus, by Corollary 3.11, V[{Xg } ][ { X} ]]

is a Krull domain.

ly- {0}

We end this paper by a t-SFT PyMD analog of Arnold’s result [5, Proposition 3.2]
that if D is a finite dimensional Priifer domain with the SFT-property and M is a
height-one maximal ideal of D, then ht(M[[X,,]]) = 1 for all integers n > 1. We first
need two lemmas.

Lemma 3.14 (cf. [5, Lemma 3.1]) Let D be a t-SFT PvMD and let A be a nonzero
ideal of D with the property that each prime ideal of D minimal over A is a maximal
t-ideal. Then A is t-invertible, and hence each maximal t-ideal is t-invertible.

Proof Since D is a t-SFT-ring, A, has only finitely many minimal prime ideals of
D, say My, ..., My, which are maximal t-ideals by assumption. Note that M; Dy, is
principal, so ADy, = a;Dy, for some a; € A. Also, there exists a finitely generated
ideal J € A of D such that \/A; = \/T,. Soifwelet B= ]+ (a,...,a,),then BS Ais
finitely generated, AD)y is principal, and ADy; = BD)y, for all maximal ¢t-ideals M of
D. Thus, A; = B; and By is t-invertible [22, Theorem 3.5 and Corollary 2.7]. Thus, A
is t-invertible. ]

Lemma 3.15 (cf. [5, Proposition 2.1(v)]) Let D be a t-SFT PvMD and let Q be a
prime t-ideal of D[[{ X4 }]]1. If Q n D = P, then P[[{X4}]: € Q.

Proof IfP =(0),then P[[{X4}]1 = (0) € Q,andsoassume P # (0). Note thatif I C
P is a nonzero finitely generated ideal of D, then Q 2 (ID[[{X4}]h)v = L{[{X«} I
[9, Lemma 3.1], and thus P = Q n D 2 I, [[{X«} ]l n D = I,. Thus, P; = P, so there
are a nonzero finitely generated ideal B and an integer k > 1 such that a* € B, for
all a € P. If P = P/B,, then each element of P[[{X, }]] is nilpotent (cf. the proof of

[5, Proposition 2.1(v)]). Thus, P[[{Xu} 1 = /Bv[[{X«}]1, and since B, [{Xa} ] =
(BD[[{Xa} 1)y € Qi = Q, we have P[{ X} ]l = /Bu[{Xa} i € Q. n

Proposition 3.16 (cf. [5, Proposition 3.2]) Let D be a t-SFT PvMD and let M be a
maximal t-ideal of D. If itM =1, then ht( M[[{X.}]]1) =1

Proof By Lemma3.14, M = (ay,...,ax), and MDy = mDy, for some ay,. .., ag,
m € M. Hence, thereisans € D-M such thatsM = s(ay,...,ax), = (sa,...,sax), C
mD, whence s"(M"); € m"D for all integers r > 1.

Assume that ht(M[[{X,}]]1) > 1, and let Q be a prime t-ideal of D[[{ X, }]]; such
that (0) ¢ Q ¢ M[[{X,}]];- Clearly, there are some Xj,..., X, € {X,} so that
QnD[[X,]] # (0) and QN D[[ X, ]] is a prime ¢-ideal. Replacing Q with QnD[[X,,]],
we assume that (0) ¢ Q ¢ M[[X,,]]. f Qn D # (0), then Q n D € M, and since
htM =1, Qn D = M. Thus, M[[X,]] = (MD[[X,])), = (MD[[X,]]): € Q, a
contradiction. Hence, Qn D = (0). Choose 0 # q € Q. Note that (M"); is M-primary
for all integers i > 1; hence, g € N2, (M")[[ X,,]] by an argument similar to the proof
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of [5, Proposition 3.2]. Thus, N, M Dy = N2 (M) Dy 2 N2 (M), # (0), and
therefore htM = ht M Dy > 1, a contradiction. [ |

Corollary 3.17  Let D be a t-SFT PvMD and { X } U{ X, } be the union of two disjoint
nonempty sets of indeterminates over D. If M is a height-one maximal t-ideal of D, then

ht(M{{Xp}[{Xa}) = 1

Proof This follows directly from Proposition 3.16, because D[{X}] is a t-SFT
PyMD by [8, Theorem 11], M[{X}] is a maximal t-ideal by [14, Lemma 2.1], and
ht(M[{X3}]) =1 (note that Dy is a one-dimensional valuation domain). [ |
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