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CONCENTRATION OF THE ERROR BETWEEN A FUNCTION
AND ITS POLYNOMIAL OF BEST UNIFORM APPROXIMATION

by MAURICE HASSON

(Received 8th July 1996)

Let / be a continuous real valued function defined on [-1, 1] and let £„(/) denote the degree of best uniform
approximation to / by algebraic polynomial of degree at most n. The supremum norm on [a, b] is denoted
by IMIio.ii and the polynomial of degree n of best uniform approximation is denoted by />„. We find a class of
functions / such that there exists a fixed a e (— 1, 1) with the following property

11/ - PJ[a-x.+ic\ > CEr(f), n = 1, 2,3, . . .

for some positive constants C and N independent of n. Moreover the sequence (7) is optimal in the sense
that if £ is replaced by bn = o(;) then the above inequality need not hold no matter how small C > 0 is
chosen.

We also find another, more general class a functions / for which

11/ - PJ[..e..+x\ > CEn(f) infinitely often.

1991 Mathematics subject classification: 41al7, 41a25, 41a50.

1. Introduction

Let / be a continuous real valued function defined on [—1, 1] and let £„(/) denote
the degree of best uniform approximation to / by algebraic polynomial of degree at
most n. Thus

where ||.|| denotes the supremum norm on [—1, 1]. If a > — 1 and b < \ the supremum
norm on [a, b] will be denoted by ||.||[Oin. Let

«„(*) :=/(*) - Pn(x).

The classical alternation theorem [5] guarantees that en(x) reaches the value ±EJJ)
alternatively at least n + 2 times. The asymptotic distribution of points x, such that
KOOI = £*(/) has been extensively studied. See, among others, [3, 6] for the
polynomial case and [2, 4] for the setting where approximation by rational functions is
considered, and the references therein. However, in general, there is no fixed point
a e ( -1 , 1) such that \en(a)\ = £„(/) or even |en(a)| > CEn(J) for some positive constant
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448 MAURICE HASSON

C. It is then natural to ask whether there exist a fixed a e (— 1, 1) and a sequence (an)
of numbers tending to zero decreasingly with the following properties.

HZ" ^ n l l ^ . ^ 1 >CEn(f)

and (an) is optimal in the sense that if bn = o(an) then

Again we believe that, in general, a point a and sequence (an) satisfying the above
properties do not exist. It is the purpose of this paper to describe a class of functions
for which, precisely, such a point a and sequence (an) do exist. For such functions / we
say that the error en{x) is concentrated near a.

We then address the question of finding a more general class of functions / for
which the weaker condition

11/ - PAa-an.a+an\ > CEn(f) infinitely often.

is satisfied, where (an) fulfils the same optimality condition as above.
Notice that we insist that a belongs to the interior ( -1 , 1) of [—1, 1], which, in final

analysis, amounts to considering approximation of periodic functions by trigonometric
polynomials. Because of the rapid oscillation of en{x) near - 1 and 1, we believe that
the situation is completely different near the endpoints of the interval. See Section 4
where an open problem pertaining to that situation is stated.

Let / e C\~\ the space of periodic (of period 2n) k — 1-times differentiable functions.
Then a well known theorem of Zygmund [12] states that f-k~^ belongs to the Zygmund
class, i.e.

where co2(g,.) is the modulus of smoothness of the function g (see [11, p. 102]) if and
only if

where E*n(J) is the degree of approximation by trigonometric polynomials. This shows
that the condition £„(/; [— 1, 1]) = 0 ( 7 ) does not necessarily imply that / is in the
Zygmund class of [— 1,1 ]. However / belongs to the Zygmund class of [-1 + e, 1 —e], e > 0.
We will prove our results in the C*"'[—1,1] setting where it will be enough to assume
that £„(/) = O(-x). It will be clear from the proofs that the analogous results hold in
the trigonometric case (where, as noted above, this condition on E*n(f) amounts to
assuming that / is in the Zygmund class.) The examination of the situation in the
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THE ERROR BETWEEN A FUNCTION AND ITS POLYNOMIAL 449

trigonometric case will yield, in turn, a slight improvement of the results in the
algebraic case.

In [8] Steckin proved that, if in addition to (1.1), a^C/*'") satisfies

"•;) i f - = • • ! - 0 3)

then £„(/) is exactly of the order j^, that is to say there exist positive constants
K{, K2 such that for n — 1, 2 , . . . one has

£<£„(/)<£- (1.4)

The Dini derivatives D+/(x) and D~f{x) of a function / at a point x are defined by

D+f(x) and D_/(x) are similarly defined.
We record the following observation which will be used in the sequel: the relations

£>+/(0)=l, /(0) = 0 and £ > 0 imply the existence of a sequence (x,) of positive
numbers with lim,.,^ x, = 0 such that

/(*,) > (1 - e)xh x, € (0, 5]

for 5 > 0 small enough.
The following inequality, due to Bernstein, will play a fundamental role in the sequel

(see [5]).

Theorem (Bernstein inequality). Let Tn(0) be a trigonometric polynomial of degree n
of period 2n. Then

Here ||.||R denotes the supremum norm on the real line. It follows that if Pn is an algebraic
polynomial of degree n then {with \\.\\ denoting now, and as before, the supremum norm
on[-\,\])

\\K\\laM<Ma,bn\\PJ,a>-l,b<l (1.5)
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450 MAURICE HASSON

where Mab = - J = , c = max(|a|, \b\).
1-c2

We are now ready to state our main results. It may be useful to remark that the Dini
derivatives always exist, with the possible values of ±00. In Theorem 1.1 below, as well
as in Theorem 1.3, the inequalities (1.6), (1.7), (1.9) and (1.10) must be understood in
the extended real number system.

Theorem 1.1. Let k be a positive integer, f e C*~'[—1, 1]. If there exists a e (— 1,1)
with one of the following properties:

Jf\a) >flk\a) (1.6)

or

/?>(*) >ff\a) (1.7)

and if Pn is a sequence of polynomials of degree at most n such that

\\Pn -f\\ = <KEJJ)) = o[^j

then there exist positive constants N and K such that

Ea+x\ > ^ , n = l , 2 , . . . (1.8)

We remark that the relations £„(/) = 0(-r) and (1.8) imply the existence of a
constant C > 0 such that

11/ - PJ[.-**4\ > CEJJ), n= 1, 2, 3, . . .

That is to say, the error en(x) is concentrated near a.

Corollary 1.2. Let f be as in Theorem 1.1. Then £„(/) is exactly of the order -7, i.e.
satisfies (1.4).

It is easy to see that a ^ / * " 0 ^ ) > * . » = 1.2,... if/1"" satisfies (1.6) or (1.7). It
follows that Corollary 1.2 is also a consequence of Steckin's theorem. However it does
not seem that the techniques used by Steckin are appropriate to derive Theorem 1.1.
The papers [1] and [7] deal with the problem of finding functions / for which nkEn(J)
has a non zero finite limit as n goes to infinity. It would be of interest to see whether
the condition co2(/

('c"1),^) > ^, n = 1,2,... implies (1.6) or (1.7). If this was the case
then Theorem 1.1 would imply Steckin's theorem.
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THE ERROR BETWEEN A FUNCTION AND ITS POLYNOMIAL 451

Theorem 1.3. Let k be a positive integer, f e C*~'[—1, 1]. If there exists a G (— 1, 1)
with one of the following properties:

D+fk-\a)^D-f-k-\a) (1.9)

or

D_fk-\a)^D+fk-\a) (1.10)

and ifPn is a sequence of polynomials of degree at most n such that

\\Pn-f\\ = O(En(f)) = O\-j

then there exist positive constants N and K such that

\\Pn -f\\[a-Ea+^ > -k infinitely often. (1.11)

Notice that relation £„(/) = O(^) together with (1.11) guarantee the existence of a
constant C > 0 such that

11/ - Pn II[„_£.„+£] > C£n(/) infinitely often.

To use our previous terminology, the error en,(x) is concentrated near a for a sequence
(n,) of integers.

Corollary 1.4. Let f be as in Theorem 1.3. Then £„,(/) is exactly of the order jefor
some sequence («,), that is to say

-4 < £„(/) < -4 infinitely often. (1.12)
n n

As an example of application of Theorem 1.3 and its corollary, consider the function
/ defined by

f/(x) = x sin(log |x|), x e [-1, 1], x # 0
1/(0) = 0.

Because l/^x)! < V2, x ̂  0, with equality reached, it is readily seen that / belongs to
the Lipschitz class, with Lipschitz constant -Jl, of [-1,0) and (0, 1] and it is easy to
verify that it belongs to the Lipschitz class of [—1,1], with the same Lipschitz constant.
So / belongs to the Zygmund class of [-1,1]. Moreover, D+f(0) = D~f(0) = 1 and
D+/(0) = D_/(0) = - 1 . It follows that for this function / relation (1.11), with a = 0
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and k = l, and where Pn satisfy \\Pn -f\\ = O(En(f)) = 0(±), and relation (1.12), with
k = 1, hold true.

This paper is organized as follows. The next section is devoted to the proof of our
main results, Theorems 1.1 and Theorem 1.3. Section 3 shows that Theorem 1.1 and
Theorem 1.3 are sharp in the sense described above. The last section states an open
problem pertaining to the situation where a = — 1 or a — 1.

2. Proofs of Theorem 1.1 and Theorem 1.3

Lemma 2.1. Let f e C([—1, 1]) have the following property: there exists a sequence
of polynomials of degree at most n, Pn, such that for some positive integer k one has

Then there exists a constant M such that, for n = 1 , 2 , . . .

Proof. Let r be the integer defined by 2r~' < n < 2'. Then

The Bernstein inequality gives:

\\P?+l)\\fr.$ < K U + X \ \ P » - PA + YJ2
iM)i\\P2' - P 2 " ll)

\ i=l /

so that, in view of the inequality \\Pn -f\\ < ^,

< Mn.

It is of interest to note that the proof of Lemma 2.1 shows that
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THE ERROR BETWEEN A FUNCTION AND ITS POLYNOMIAL 453

Moreover it can be shown that this estimate cannot be improved.
The purpose of Lemma 2.3 below is to prove the following

Proposition 2.2. Let k be a positive integer and let / e C'^'^O, d]. Assume that

\fk-l\x)\ > x, x 6 [0, d).

Then there exists ck > 0 such that

II/IIM, > ckd
k.

Proof. By the Hermite-Gennochi formula, we have

Jo JO

where

j=0 \ J

is the corresponding divided difference. Set h = j ^ . Then

Assume now, without loss of generality, that/(*~l)(x) > x on [0, d]. Then

f ... f f i > - l \ t t + ••• + t k _ x ) d t x . . . dtk_, > / * . . . f i t , + ••• + t k _ t ) d t t . . . dtk_t
Jo Jo Jo Jo

dk

~ 2(fc - I ) ' " 1 '

Proposition 2.2 follows with ck = ^(k^A-\ •

We now have built the necessary tools to demonstrate our main results.

Proof of Theorem 1.1. We first make the following reductions. By replacing, if
needed, / by —/ it is enough to make the proof only in the case (1.6). We suppose first
that the two derivatives are finite. We now remark that En(J + Qk) = £„(/), n > k,
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where Qk is a polynomial of degree k. It follows that we may assume that

a =f-\a) = 0

and that f?\a) = -Jlk)(a). Now £„(<*/) = \a\En(J), a. e R. It follows, again without loss
of generality, that we may assume that

ff\a) = 1

and that

/-» = -!•

Let Pn be as in Theorem 1.1 Lemma 2.1 gives

l|i?+1)ll[=j4]<Afn,n=l,2,... (2.1)

The mean value theorem and (2.1) yield

|pw(x) _ pmw < I, x e I"- _ L t 1 1 (2.2)
2 |_ 4MB 4M«J

The relations /^(O) = 1, /'"''(O) = 0 give

^"" (x) > \x, x € [0,5] (2.3)

if 5 > 0 is small enough. Suppose first that

Then (2.3) and (2.4) yield that one of (2.5), or (2.5)2 hold:

±] (2.5),

or

It follows from Proposition 2.2 and relation (2.5) that
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THE ERROR BETWEEN A FUNCTION AND ITS POLYNOMIAL 455

HP- - / l l [o . jy>^ .« = 1.2,... (2.6)

Suppose now that there exists x e [0, ̂ ] such that PJ,k\x) > ̂ . It follows from (2.2)
that

Nn;4 (27)

Because /?>(()) = -1 and /'""(O) = 0 we have

fik-l\x)>-lx,xe[-d,O] (2.8)

for 5 small enough. By (2.7), Pf"0 is increasing on [ —JJJ;.O]. This fact and relation
(2.8), yield that one of (2.9), or (2.9)2 hold:

or

It follows by Proposition (2.2) and relation (2.9) that

| |P n - / | | [ d . . o ]>^ , fe = l >2 ) . . . (2.10)

We have proved, in view of (2.6) and (2.10), that

This is relation (1.8) if we let N := J-JJ. Theorem 1.1 is proved in the case when both
derivatives are finite. If one derivative is infinite, then (2.3) and (2.8) still hold and the
rest of the proof remains unchanged.

Theorem 1.1 is proved.

We now proceed to the proof of Theorem 1.3. In what follows |/| designates the
length of the interval /.

Lemma 2.3. Let /(x) belong to the Zygmund class of [— 1,1], with constant 1, that
is to say
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|/(x + h) + / (x -h)- 2/(x)| <h,(h> 0) (2.11)

for x, x + h, x - h e [-1,1]. Assume that /(0) > 1. Then there exists an interval I
contained in [-1, 1], with 0 e / and \I\ > i SMC/I f/iaf /(x) > *, x e /. It follows that Bb e R
and J c [— 1, 1] with \J\>\, such that f(x) > x + b, x e J. In fact we can choose b > 0.

Proof. The proof follows directly from relation (2.11).

Lemma 2.4. Let 8 >0 and let (x,) be a sequence of positive numbers with lim,,^ x, = 0.
Then for each I there exists an integer n, such that

, - . - 1 . (2-12)
2n, n,\

Moreover n, can be chosen in such a way that

t'-i^l, (2-13)-
and

--x, >J-. (2.13)2
n, bn,

Proof. That there exists a sequence (n,) satisfying (2.12) follows from the fact that

Now (for M > 5 ) j;<~^ — ̂  = length of the intersection of such two consecutive
intervals. Relation (2.13) now follows by taking, if necessary, a subsequence, still
denoted («,), of the sequence (n,).

Proof of Theorem 1.3. Because of some similarities between the proofs of Theorems
1.1 and 1.3, we omit those details of the proof of Theorem 1.3 which are analogous
to the corresponding arguments of the proof of Theorem 1.1. We first make, as before,
the following reductions. Because D+g(a) = -D + — g(a) and D~g(a) — —D_ — g(a), we
make the proof only in the case (1.10). We suppose first that the two Dini derivatives
are finite. In that case we may suppose, without loss of generality, that

D+f-]\a) = 1

and
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THE ERROR BETWEEN A FUNCTION AND ITS POLYNOMIAL 457

Again without loss of generality we may assume that

a = / < ' - » = 0.

Let Pn be as in Theorem 1.3. Lemma 2.1 gives

l | P r ) l l [ - . y < M n , n = l > 2 , . . . (2.14)

The mean value theorem and (2.14) yield

[̂ ]̂ (2.15)

The relations D+fk~l\0) - 1, /'""(O) = 0 give: there exists a sequence (x,) of positive
numbers with lim^^ x, — 0 such that

Jik-X)(x,)>lxl,x,e(0,S] (2.16)

for S > 0 small enough. Suppose first that

[^\ (217)

Then (2.14), (2.17), Lemma 2.3 and Lemma 2.4 guarantee the existence of b, > 0,
b\ > 0 such that

|/fe-'>(x) - P<^"(x)| > X-x + b,, x e I, C [o, ^ 1 - ] (2.18),

or

(2.18)2

where |//|,|J(| > £. (K depends on M and on the Zygmund constant.) It follows from
Proposition 2.2 and relation (2.18) that

Suppose now that there exists x e [0, -^] such that P^'(x) > \. It follows from
(2.15) that
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(2.20)

Because D_fk-"(0) = - 1 and /^"''(O) = 0 we have

< t ° - | x ; , x ; 6 [ - 5 , o ] (2.21)

for a sequence x', of negative numbers with lim,.,,^ x\ = 0 and for <5 > 0 small enough.
By (2.20), I*k-l) is increasing on [ - ^ , 0]. This fact and relation (2.21), together with
Lemma 2.3 and Lemma 2.4, yield that one of (2.22), or (2.22)2 hold for some bh

b\ > 0:

\fk~l\x) - Pik-[\x)\ > ^ + fc,,xe/,c[- - ^ - , oj (2.22),

or

where |/,|, |/,| > £. It follows by Proposition 2.2 and relation (2.22) that

We have proved, in view of (2.19) and (2.23), that

This is relation (1.11). Theorem 1.3 is proved in the case when both Dini derivatives
are finite. If one Dini derivative is infinite, then (2.16) and (2.21) still hold and the rest
of the proof remains unchanged.

Theorem 1.3 is proved.

We end this section with two remarks about the above proofs of Theorem 1.1 and
1.3.

(a) The crucial step in the proofs of Theorem 1.1 and 1.3 is relation (2.2) (and
(2.15)) which could not have been obtained by estimating directly 11 °̂II[-$.}]• Indeed,
as noticed before, it can be shown that this sequence is bounded by Af logn and that
this estimate cannot be improved. This explains the role played by Lemma 2.1 in the
proofs of Theorem 1.1 and 1.3.

(b) If the condition that f-k~n belongs to the Zygmund class of [-1,1] is replaced
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THE ERROR BETWEEN A FUNCTION AND ITS POLYNOMIAL 459

by pk~]) is in the Lipschitz class, then ll^llf-i.il < C. This observation will play an
important role in the next section.

Finally we notice, as already pointed out previously, that Theorem 1.1 and 1.3 hold
in the trigonometric setting. Going back to the algebraic case with the standard
transformation x = cos(0), we see that these results can be slightly improved by
showing higher concentration of the error towards the endpoints ±1. This is addressed
in Section 4 below.

3. The sharpness of Theorem 1.1 and of Theorem 1.3

The purpose of this section is to show that the conclusion of Theorem 1.1 and of
Theorem 1.3 need not hold if the interval [a —7.^ + 7] is replaced by [a — bn, a+- bn]
where bn = o('-).

Lemma 3.1. Let f e Ck"'[—1, 1] with Z**"0 e Lip 1. Let Pn be a sequence of
polynomials of degree n such that

\\Pn-f\\ = O(En(f)) = o(jj. (3.1)

Then

\\Pi° -/"llH.fl < j p . n = 1, 2 , . . . , 0 < i < k - 1 (3.2)

and

. f l < « . n = l ,2 , . . . (3.3)

As we observed before (3.3) need not hold if we assume only that f*'^ is in the
Zygmund class, even though in that case (3.2) still holds.

Proof. It follows from the Jackson (or Zygmund) theorem that there exists a
sequence Pn satisfying (3.1). Relation (3.2) follows by an adaptation of the proof of
Lemma 2.1. We now sketch the derivation of (3.3). We use the following (slight
generalization of a) result proved in [9, p. 6]:

Let g(9) be a periodic (k — 1) - times continuously differentiable function with
gik~x\6) belonging to the Lipschitz class. Then for the (trigonometric) polynomials
of best approximation to g, Qn, one has:

lie!? - 0 % < - ^ T , n = l , 2 0 < i < f c - l (3.4)
n

||<2<*>||R<K,n = l , 2 , . . . (3.5)

Here ||.||R denotes the supremum on the real line.
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Let now g{6) :=/(cos(0)). Because g(9) is even, Qn{&) is of the form YH=o ak cos(/c0) so
that Pn(x) := J2l=oakTk(x), where 7^(x) are the Chebyshev polynomials, are the
polynomials of best approximation to / on [—1, 1]. Now relations (3.4), (3.5) together
with Bernstein inequality yields (3.3) (and (3.2).)

Consider now the function

f(x) = xk-1\x\,xe[-l,\]. (3.6)

/(*-" e Lip 1 and f?\0) ^flk\0), so that / fulfils the conditions of Theorem 1.1. It
follows that £„(/) is exactly of the order ^, that is to say $• < £„(/) < $ . (In fact a
much more precise result is known for this particular function / : «*£„(/) has a non
zero limit as n goes to infinity. See [11, p. 417].) The function / also fulfils the
conditions of Theorem 1.3.

Theorem 3.2. Let k be a positive integer and let f(x) = xfc~'|:)c|,x e [—1, 1]. There
exists a sequence Pn of polynomials of degree at most n with the following properties:

\\Pn-f\\<2En(f)<-k,n = l,2,... (3.7)
n

and if(bn) is a sequence of positive numbers with

K = oQ) (3.8)

then

Q) (3-9)

Proof. Let Pn = Qn — Qn(0) where Qn is the polynomial of degree n of best
approximation to / . Clearly Pn satisfies (3.7). Now let x > 0. Then for some c" with
0 < c" < x we have:

P . ( x ) = a i x + a"2x
2 + ••• + a U x " - 1 + P ^ ( c " ) ^ , (3.10)

where, in view of Lemma 3.1,

W\ = o(^r\l<i<k-l (3.11)

and

C. (3.12)
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It follows easily from (3.8), (3.10), (3.11) and (3.12) that

||Pn(x) - xl-'|x|||[()Ail = ||P.(x) - x V n ) =

The proof is similar when x < 0. (Or more directly by noticing that Pn(x) — xk~' |x| is
even or odd according to whether k is odd or even.) Hence (3.9) is established.

Theorem 3.2 is proved.

4. Concluding remarks

As previously noted, Theorems 1.1 and 1.3 may be slightly improved by remarking
first that they hold in the trigonometric case, and then by using the standard
transformation x = cos(0).

Theorem 4.1. Let k be a positive integer, f e C*"'[—1, 1]. If there exists a e (— 1, 1)
with one of the following properties:

f?\a) >fl"\a)

or

fik\a) >J?\a)

and ifPn is a sequence of polynomials of degree at most n such that

then there exist positive constants N and K such that

Theorem 4.2. Let k be a positive integer, f e C*"'[—1, 1]. If there exists a e ( - 1 , 1)
with one of the following properties:

or

D_fk-\a) ± Dr-"(
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and if Pn is a sequence of polynomials of degree at most n such that

\\Pn-f\\ = 0(En(f)) = Ol-k\

then there exist positive constants N and K such that

r—z i—7 > — infinitely often.
[a

Because the error en{x) oscillates much faster near the endpoints of the interval in
the case of approximation by algebraic polynomials, one expects that the error is much
more concentrated near these points. In that case we an interval of length $, instead
of £, suffices to capture the error, at least in the analytic case and infinitely often.

Proposition 4.3. Let f be analytic on {a neighbourhood of) [—1, 1] and let Pn be the
algebraic polynomial of degree n of best approximation to f on [—1,1]. Then there exist
positive constants C and N independent on n such that

iip. - / H [ I - $ . I ] - CE»W infinitely °ften

and

IIpn -/H[-,._,+$] - C£-C/) '^finitely often.

This follows from a result of Tashev [10], see also [5].
It would be also of interest to build a function g satisfying the hypotheses of

Theorem 1.3 and for which, necessarily,

^-9W[a.E,a+u]^^ infinitely often (4.1)

but for which

fe) (4-2)
for some sequence (n,) of integers. It is of interest to note that for such a function
g^Xa) and g+\a) cannot both exist. Indeed if g{ll\a) = gf(a) then conditions (1.9) and
(1.10) of Theorem 1.3 are not fulfilled. If, on the other hand, g™(a) ^ gf(a) then (4.2)
cannot hold in view of Theorem 1.1. However we were not able to build such a
function although we believe that the function g[x) = xsin(log|x|) described page 4
following Corollary 1.4 satisfies (4.2) with a = 0 and k = 1 (in addition to satisfying
(4.1) with a = 0 and k — 1 as already noticed.)
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The existence of such a function g would show that, in general, the conclusion
(1.11) of Theorem 1.3 cannot be replaced by the stronger one
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