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Abstract

We establish some supercongruences for the truncated 2F1 and 3F2 hypergeometric series involving the p-
adic gamma functions. Some of these results extend the four Rodriguez-Villegas supercongruences on the
truncated 3F2 hypergeometric series. Related supercongruences modulo p3 are proposed as conjectures.
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1. Introduction

Rodriguez-Villegas [9] observed the relationship between the number of points over
Fp on hypergeometric Calabi–Yau manifolds and the truncated hypergeometric series.
To state these results, we first define the truncated hypergeometric series. For complex
numbers ai, b j and z, with none of the b j being negative integers or zero, the truncated
hypergeometric series are defined by

rFs

a1, a2, . . . , ar

b1, b2, . . . , bs
; z


n

=

n∑
k=0

(a1)k(a2)k · · · (ar)k

(b1)k(b2)k · · · (bs)k
·

zk

k!
,

where (a)0 = 1 and (a)k = a(a + 1) · · · (a + k − 1) for k ≥ 1.
Throughout this paper, p is a prime with p ≥ 5. Rodriguez-Villegas [9] proposed

four conjectural supercongruences associated to certain modular K3 surfaces. These
were all of the form

3F2

 1
2 , −a, a + 1

1, 1
; 1


p−1

≡ cp (mod p2), (1.1)

where a = − 1
2 , −

1
3 , −

1
4 , −

1
6 and cp is the pth Fourier coefficient of a weight-three

modular form on a congruence subgroup of SL(2, Z). The case with a = − 1
2 was

confirmed by van Hamme [18], Ishikawa [5] and Ahlgren [1]. The other cases with
a = − 1

3 ,−
1
4 ,−

1
6 were partially proved by Mortenson [8], and finally proved by Sun [15].
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Let 〈a〉p denote the least nonnegative integer r with a ≡ r (mod p). Sun [12,
Theorem 2.5] showed that for any p-adic integer a with 〈a〉p ≡ 1 (mod 2),

3F2

 1
2 , −a, a + 1

1, 1
; 1


p−1

≡ 0 (mod p2), (1.2)

which partially extends (1.1). Guo and Zeng [4, Theorem 1.3] obtained an interesting
q-analogue of (1.2). Using the same idea, Sun [12, Corollary 2.2] also proved that for
〈a〉p ≡ 1 (mod 2),

2F1

−a, a + 1

1
;

1
2


p−1

≡ 0 (mod p2). (1.3)

The cases when a = − 1
2 ,−

1
3 ,−

1
4 ,−

1
6 on the left-hand side of (1.3) have been dealt with

by Sun [11, 12], Sun [14, 16] and Tauraso [17].
In this paper, we will prove some supercongruences for the truncated 2F1 and 3F2

hypergeometric series involving p-adic gamma functions. Some of these results extend
the four Rodriguez-Villegas supercongruences on the truncated 3F2 hypergeometric
series. Our proof is based on some combinatorial identities involving harmonic
numbers and properties of the p-adic gamma functions.

Theorem 1.1. Let p ≥ 5 be a prime. For any p-adic integer a with 〈a〉p ≡ 0 (mod 2),

2F1

−a, a + 1

1
;

1
2


p−1

≡ (−1)(p+1)/2Γp

(1
2

)
Γp

(
−

a
2

)
Γp

(a + 1
2

)
(mod p2), (1.4)

where Γp(·) denotes the p-adic gamma function recalled in the next section.

Theorem 1.2. Let p ≥ 5 be a prime. For any p-adic integer a with 〈a〉p ≡ 0 (mod 2),

3F2

 1
2 , −a, a + 1

1, 1
; 1


p−1

≡ (−1)(p+1)/2Γp

(
−

a
2

)2
Γp

(a + 1
2

)2
(mod p2). (1.5)

In order to prove Theorem 1.2, we need the following supercongruence which is a
special case of a result due to Sun ([13], Theorem 2.2).

Theorem 1.3. Suppose p ≥ 5 is a prime. For any p-adic integer a,

3F2

 1
2 , −a, a + 1

1, 1
; 1


p−1

≡ 2F1

−a, a + 1

1
;

1
2

2

p−1

(mod p2). (1.6)

Supercongruence (1.6) is a p-adic analogue of the identity

3F2

 1
2 , −a, a + 1

1, 1
; 1

 = 2F1

−a, a + 1

1
;

1
2

2

, (1.7)

which can be deduced from Clausen’s formula. We shall give an alternative proof of
(1.6) by using some combinatorial identities.
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The rest of this paper is organised as follows. In the next section we recall some
properties of the p-adic gamma functions and establish some combinatorial identities
involving harmonic numbers. We prove Theorem 1.1 in Section 3, and Theorems 1.2
and 1.3 in Section 4. Related supercongruences modulo p3 are proposed as conjectures
in the final section.

2. Some lemmas
Let p be an odd prime and let Zp denote the set of all p-adic integers. For x ∈ Zp,

Morita’s p-adic gamma function [3, Definition 11.6.5] is defined by

Γp(x) = lim
m→x

(−1)m
∏

0<k<m
(k,p)=1

k,

where the limit is for m tending to x p-adically in Z≥0. We recall some basic properties
of the p-adic gamma function (see [3, Section 11.6] for more details). For x ∈ Zp,

Γp(1) = −1, (2.1)

Γp(x)Γp(1 − x) = (−1)sp(x), (2.2)

Γp(x + 1)
Γp(x)

=

−x if |x|p = 1,
−1 if |x|p < 1,

(2.3)

where sp(x) ∈ {1, 2, . . . , p} with sp(x) ≡ x (mod p) and | · |p denotes the p-adic norm.
For a ∈ Zp, set G1(a) = Γ′p(a)/Γp(a). Then G1(a) ∈ Zp (see [6, Proposition 2.3]).

Lemma 2.1. Let p be an odd prime. For any x ∈ Zp,
G1(x) ≡ G1(1) + Hsp(x)−1 (mod p), (2.4)

where Hn denotes the nth harmonic number Hn =
∑n

k=1 (1/k).

Proof. The p-adic logarithm is defined by

logp(1 + x) =

∞∑
n=1

(−1)n+1xn

n
.

It converges for x ∈ Cp with |x|p < 1. Taking the logp derivative on both sides of (2.3),

G1(x + 1) −G1(x) =

1/x if |x|p = 1,

0 if |x|p < 1.
(2.5)

For any p-adic integers a and b with a ≡ b (mod p), by [6, (2.2) and (2.3)], we have
Γp(a) ≡ Γp(b) (mod p) and Γ′p(a) ≡ Γ′p(b) (mod p), and so G1(a) ≡ G1(b) (mod p). By
repeatedly applying (2.5), we obtain

G1(x) ≡ G1(sp(x)) (mod p)

= G1(sp(x) − 1) +
1

sp(x) − 1

= G1(1) + Hsp(x)−1

which is the desired result. �
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We also need some combinatorial identities.

Lemma 2.2. For any even integer n,

n∑
k=0

(
2k
k

)(
n + k

2k

)(
−

1
2

)k
=

(
n

n/2

)
(−4)n/2 , (2.6)

n∑
k=0

(
2k
k

)2(n + k
2k

)(
−

1
4

)k
=

(
n

n/2

)2

4n , (2.7)

n∑
k=0

(
2k
k

)(
n + k

2k

)(
−

1
2

)k k∑
i=1

1
n + i

=

(
n

n/2

)
(−4)n/2

(1
2

Hn −
1
2

Hn/2

)
, (2.8)

n∑
k=0

(
2k
k

)2(n + k
2k

)(
−

1
4

)k k∑
i=1

1
n + i

=

(
n

n/2

)2

4n

(3
2

Hn − Hn/2

)
. (2.9)

Proof. Identities (2.6) and (2.7) are deduced directly from (1.7) and the identity

2F1

−a, a + 1

1
;

1
2

 =
Γ(1/2)

Γ((1 − a)/2)Γ(1 + a/2)
(2.10)

(see [2, (2), page 11]), by setting a = n.
Note that

k∑
i=1

1
n + i

= Hn+k − Hn.

In order to prove (2.8) and (2.9), by (2.6) and (2.7), it suffices to show that

2n∑
k=0

(
2k
k

)(
2n + k

2k

)(
−

1
2

)k
(2H2n+k − 3H2n + Hn) = 0, (2.11)

2n∑
k=0

(
2k
k

)2(2n + k
2k

)(
−

1
4

)k
(2H2n+k − 5H2n + 2Hn) = 0. (2.12)

Let An and Bn denote the left-hand sides of (2.11) and (2.12), respectively. Using the
software package Sigma developed by Schneider [10], we find that An and Bn satisfy
the recurrences

(2n + 1)An + 2(n + 1)An+1 = 0
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and

4(n + 1)2(2n + 1)2(4n + 7)Bn − (4n + 5)(32n4 + 160n3 + 296n2 + 240n + 71)Bn+1

+ 4(n + 2)2(2n + 3)2(4n + 3)Bn+2 = 0,

respectively. It is easy to verify that A0 = 0 and B0 = B1 = 0, and so An = Bn = 0 for
all n ≥ 0. �

Remark 2.3. The combinatorial identities (2.8) and (2.9) can also be automatically
discovered and proved by Schneider’s computer algebra package Sigma. We refer
to [10, Section 3.1] for an interesting approach to finding and proving combinatorial
identities of this type.

3. Proof of Theorem 1.1

We can rewrite (1.4) as

p−1∑
k=0

(
2k
k

)(
a + k

2k

)(
−

1
2

)k
≡ (−1)(p+1)/2Γp

(1
2

)
Γp

(
−

a
2

)
Γp

(a + 1
2

)
(mod p2). (3.1)

Let δ = (a − 〈a〉p)/p. It is clear that δ is a p-adic integer and a = 〈a〉p + δp. Since

k∏
i=1

(C + x ± i) =

( k∏
i=1

(C ± i)
)(

1 + x
k∑

i=1

1
C ± i

)
+ O(x2),

it follows that(
2k
k

)(
a + k

2k

)
=

(
2k
k

)(
〈a〉p + δp + k

2k

)
=

(
2k
k

) k∏
i=1

(〈a〉p + δp + i)
k∏

i=1

(〈a〉p + δp + 1 − i)
2k∏
i=1

i−1

≡

(
2k
k

)(
〈a〉p + k

2k

)(
1 + δp

( k∑
i=1

1
〈a〉p + i

+

k∑
i=1

1
〈a〉p + 1 − i

))
(mod p2),

(3.2)

where we have used the fact that
(

2k
k

)∏2k
i=1 (1/i) ∈ Zp for 0 ≤ k ≤ p − 1. Now

LHS (3.1) ≡
p−1∑
k=0

(
2k
k

)(
〈a〉p + k

2k

)(
−

1
2

)k

×

(
1 + δp

( k∑
i=1

1
〈a〉p + i

+

k∑
i=1

1
〈a〉p + 1 − i

))
(mod p2). (3.3)
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Let b = p − 〈a〉p. It is clear that 〈a〉p ≡ −b (mod p) and 0 ≤ b − 1 ≤ p − 1 is an even
integer. Note that

(
−b+k

2k

)
=

(
b−1+k

2k

)
. Thus,

p−1∑
k=0

(
2k
k

)(
〈a〉p + k

2k

)(
−

1
2

)k k∑
i=1

1
〈a〉p + 1 − i

≡ −

p−1∑
k=0

(
2k
k

)(
−b + k

2k

)(
−

1
2

)k k∑
i=1

1
b − 1 + i

(mod p)

= −

p−1∑
k=0

(
2k
k

)(
b − 1 + k

2k

)(
−

1
2

)k k∑
i=1

1
b − 1 + i

(2.8)
=

(
b]−1

(b−1)/2

)
(−4)(b−1)/2

(1
2

H(b−1)/2 −
1
2

Hb−1

)
. (3.4)

Since
(

2n
n

)(
− 1

4
)n

=
(
−1/2

n

)
and b + 〈a〉p = p,(

b−1
(b−1)/2

)
(−4)(b−1)/2 =

(
− 1

2
b−1

2

)
≡

( p−1
2

b−1
2

)
=

( p−1
2
〈a〉p

2

)
≡

(
− 1

2
〈a〉p

2

)
=

(
〈a〉p
〈a〉p/2

)
(−4)〈a〉p/2

(mod p). (3.5)

It follows from (3.4) and (3.5) that

p−1∑
k=0

(
2k
k

)(
〈a〉p + k

2k

)(
−

1
2

)k k∑
i=1

1
〈a〉p + 1 − i

≡

(
〈a〉p
〈a〉p/2

)
(−4)〈a〉p/2

(1
2

H(p−〈a〉p−1)/2 −
1
2

Hp−〈a〉p−1

)
(mod p). (3.6)

Furthermore,

p−1∑
k=0

(
2k
k

)(
〈a〉p + k

2k

)(
−

1
2

)k (2.6)
=

(
〈a〉p
〈a〉p/2

)
(−4)〈a〉p/2

(3.7)

and

p−1∑
k=0

(
2k
k

)(
〈a〉p + k

2k

)(
−

1
2

)k k∑
i=1

1
〈a〉p + i

(2.8)
=

(
〈a〉p
〈a〉p/2

)
(−4)〈a〉p/2

(1
2

H〈a〉p −
1
2

H〈a〉p/2
)
. (3.8)

Combining (3.3) and (3.6)–(3.8) gives

LHS (3.1) ≡
(
−

1
4

)〈a〉p/2( 〈a〉p
〈a〉p/2

)(
1 +

δp
2

(H(p−〈a〉p−1)/2 − H〈a〉p/2)
)

(mod p2), (3.9)

where we have used the fact that Hp−1−k ≡ Hk (mod p) for 0 ≤ k ≤ p − 1.
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Note that ( 1
2
)
k

(1)k
=

(
2k
k

)
4k , (3.10)

and for a ∈ Zp, n ∈ N such that none of a, a + 1, . . . , a + n − 1 are in pZp (see [7,
Lemma 17, (4)]),

(a)n = (−1)n Γp(a + n)
Γp(a)

. (3.11)

From (3.10) and (3.11), we deduce that(
−

1
4

)〈a〉p/2( 〈a〉p
〈a〉p/2

)
(3.10)
= (−1)〈a〉p/2

(1/2)〈a〉p/2
(1)〈a〉p/2

(3.11)
= (−1)〈a〉p/2

Γp(1)Γp((1 + 〈a〉p)/2)
Γp(1/2)Γp(1 + 〈a〉p/2)

.

(3.12)

By (2.2),

Γp

(1
2

)2
= (−1)(p+1)/2, (3.13)

Γp

(
1 +
〈a〉p

2

)
Γp

(
−
〈a〉p

2

)
= (−1)1+〈a〉p/2. (3.14)

Applying (2.1), (3.13) and (3.14) to the right-hand side of (3.12) and then using
〈a〉p = a − δp,(

−
1
4

)〈a〉p/2( 〈a〉p
〈a〉p/2

)
= (−1)(p+1)/2Γp

(1
2

)
Γp

(1 + 〈a〉p
2

)
Γp

(
−
〈a〉p

2

)
= (−1)(p+1)/2Γp

(1
2

)
Γp

(1 + a − δp
2

)
Γp

(
−a + δp

2

)
. (3.15)

Note that for a, b ∈ Zp (see [7, Theorem 14]),

Γp(a + bp) ≡ Γp(a)(1 + G1(a)bp) (mod p2). (3.16)

Furthermore, applying (3.16) to the right-hand side of (3.15),(
−

1
4

)〈a〉p/2( 〈a〉p
〈a〉p/2

)
≡ (−1)(p+1)/2Γp

(1
2

)
Γp

(1 + a
2

)
Γp

(
−

a
2

)
×

(
1 +

δp
2

(
G1

(
−

a
2

)
−G1

(1 + a
2

)))
(mod p2). (3.17)

It follows from (3.9) and (3.17) that

LHS (3.1) ≡ (−1)(p+1)/2Γp

(1
2

)
Γp

(1 + a
2

)
Γp

(
−

a
2

)
×

(
1 +

δp
2

(
H(p−〈a〉p−1)/2 − H〈a〉p/2 + G1

(
−

a
2

)
−G1

(1 + a
2

)))
(mod p2).
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In order to prove (3.1), it suffices to show that

H(p−〈a〉p−1)/2 − H〈a〉p/2 + G1

(
−

a
2

)
−G1

(1 + a
2

)
≡ 0 (mod p). (3.18)

By (2.4),

G1

(
−

a
2

)
−G1

(1 + a
2

)
≡ Hsp(−a/2)−1 − Hsp((1+a)/2)−1 (mod p). (3.19)

Since 〈a〉p is an even integer,

sp

(
−

a
2

)
− 1 = p −

〈a〉p
2
− 1, (3.20)

sp

(1 + a
2

)
− 1 =

p + 〈a〉p + 1
2

− 1. (3.21)

Substituting (3.19) into the left-hand side of (3.18) and then using (3.20) and (3.21),

LHS (3.18) ≡ H(p−〈a〉p−1)/2 − H〈a〉p/2 + Hp−(〈a〉p/2)−1 − H(p+〈a〉p−1)/2 ≡ 0 (mod p),

where we have utilised the fact that Hp−k−1 ≡ Hk (mod p) for 0 ≤ k ≤ p − 1.

4. Proofs of Theorems 1.2 and 1.3

The proof of Theorem 1.2 directly follows from (1.4), (1.6) and (3.13). It remains
to prove Theorem 1.3. We distinguish two cases to show (1.6).

If 〈a〉p ≡ 1 (mod 2), by (1.2) and (1.3), then (1.6) clearly holds.
If 〈a〉p ≡ 0 (mod 2), by (3.9) and (3.10), it suffices to show that

p−1∑
k=0

(
2k
k

)2(a + k
2k

)(
−

1
4

)k

≡

(1
4

)〈a〉p( 〈a〉p
〈a〉p/2

)2

(1 + δp(H(p−〈a〉p−1)/2 − H〈a〉p/2)) (mod p2). (4.1)

Applying (3.2) to the left-hand side of (4.1) yields

LHS (4.1) ≡
p−1∑
k=0

(
2k
k

)2(
〈a〉p + k

2k

)(
−

1
4

)k

×

(
1 + δp

( k∑
i=1

1
〈a〉p + i

+

k∑
i=1

1
〈a〉p + 1 − i

))
(mod p2). (4.2)
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Using the same idea as in the previous section and the identities (2.7) and (2.9),

p−1∑
k=0

(
2k
k

)2(
〈a〉p + k

2k

)(
−

1
4

)k k∑
i=1

1
〈a〉p + 1 − i

≡

(
〈a〉p
〈a〉p/2

)2

4〈a〉p

(
H(p−〈a〉p−1)/2 −

3
2

Hp−〈a〉p−1

)
(mod p), (4.3)

p−1∑
k=0

(
2k
k

)2(
〈a〉p + k

2k

)(
−

1
4

)k
=

(
〈a〉p
〈a〉p/2

)2

4〈a〉p
, (4.4)

and

p−1∑
k=0

(
2k
k

)2(
〈a〉p + k

2k

)(
−

1
4

)k k∑
i=1

1
〈a〉p + i

=

(
〈a〉p
〈a〉p/2

)2

4〈a〉p

(3
2

H〈a〉p − H〈a〉p/2
)
. (4.5)

Combining (4.2)–(4.5) gives the desired result that

LHS (4.1) ≡
(1
4

)〈a〉p( 〈a〉p
〈a〉p/2

)2

(1 + δp(H(p−〈a〉p−1)/2 − H〈a〉p/2)) (mod p2).

5. Some open conjectures

Long and Ramakrishna [7, Theorem 3] have extended the case when a = − 1
2 in (1.1)

to a supercongruence modulo p3. Numerical calculation suggests that the other three
cases when a = − 1

3 ,−
1
4 ,−

1
6 in (1.1) have similar modulo p3 extensions. These three

conjectural supercongruences follow.

Conjecture 5.1. Let p ≥ 5 be a prime. Then, modulo p3,

3F2

 1
2 ,

1
3 ,

2
3

1, 1
; 1


p−1

≡


(−1)(p+1)/2Γp

(1
6

)2
Γp

(1
3

)2
if p ≡ 1 (mod 6),

(−1)(p−1)/2 p2

18
Γp

(1
6

)2
Γp

(1
3

)2
if p ≡ 5 (mod 6),

(5.1)

3F2

 1
2 ,

1
4 ,

3
4

1, 1
; 1


p−1

≡


(−1)(p+1)/2Γp

(1
8

)2
Γp

(3
8

)2
if p ≡ 1, 3 (mod 8),

(−1)(p−1)/2 3p2

64
Γp

(1
8

)2
Γp

(3
8

)2
if p ≡ 5, 7 (mod 8),

(5.2)

3F2

 1
2 ,

1
6 ,

5
6

1, 1
; 1


p−1

≡


−Γp

( 1
12

)2
Γp

( 5
12

)2
if p ≡ 1 (mod 4),

−
5p2

144
Γp

( 1
12

)2
Γp

( 5
12

)2
if p ≡ 3 (mod 4).

(5.3)
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There is strong numerical evidence to suggest that supercongruence (1.5) also holds
modulo p3.

Conjecture 5.2. Let p ≥ 5 be a prime. For any p-adic integer a with 〈a〉p ≡ 0 (mod 2),

3F2

 1
2 , −a, a + 1

1, 1
; 1


p−1

≡ (−1)(p+1)/2Γp

(
−

a
2

)2
Γp

(a + 1
2

)2
(mod p3). (5.4)

It is clear that (5.4) reduces to the first cases of (5.1)–(5.3) when a = − 1
3 ,−

1
4 ,−

1
6 .

Unfortunately, the method in this paper is not applicable for proving these conjectures.
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[5] T. Ishikawa, ‘Super congruence for the Apéry numbers’, Nagoya Math. J. 118 (1990), 195–202.
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Conference on p-Adic Analysis (Houthalen, 1987) (Vrije Universiteit, Brussels, 1987), 189–195.

JI-CAI LIU, Department of Mathematics, Wenzhou University,
Wenzhou 325035, PR China
e-mail: jcliu2016@gmail.com

https://doi.org/10.1017/S0004972718000278 Published online by Cambridge University Press

http://www.arxiv.org/abs/0911.4261
http://orcid.org/0000-0002-8618-2305
mailto:jcliu2016@gmail.com
https://doi.org/10.1017/S0004972718000278

	Introduction
	Some lemmas
	Proof of Theorem 1.1
	Proofs of Theorems 1.2 and 1.3
	Some open conjectures
	References

