PROOF, DISPROOF AND ADVANCES CONCERNING CERTAIN CONJECTURES ON REAL QUADRATIC FIELDS $Q\left(\sqrt{N^{2}+4}\right)$

R. A. MOLLIN AND H. C. WILLIAMS

Abstract

The purpose of this paper is to address conjectures raised in [2]. We show that one of the conjectures is false and we advance the proof of another by proving it for an infinite set of cases. Furthermore, we give hard evidence as to why the conjecture is true and show what remains to be done to complete the proof. Finally, we prove a conjecture given by S. Louboutin, for Mathematical Reviews, in his discussion of the aforementioned paper.

1. Introduction. In [2] Leu raised 2 conjectures concerning real quadratic fields $Q\left(\sqrt{n^{2}+4}\right)$ where $D=n^{2}+4$ is square-free. To state them we first need some notation.

DEFInItion 1.1. Let D be the discriminant of a real quadratic field $Q(\sqrt{D})$, and let $M_{D}=\sqrt{D} / 2$, the Minkowski bound. If $(* / *)$ denotes the Kronecker symbol then

$$
S_{D}=\{r: r \text { is prime, } r<\sqrt{D} / 2 \text { and }(D / r) \neq-1\} .
$$

Thus, if h_{D} denotes the class number of $Q(\sqrt{D})$ we have:
CONJECTURE 1.1. Let $D=n^{2}+4$ be square free, then $h_{D}=2$ if and only if $D=p q$ for primes $p<q$ with $p \equiv q \equiv 1(\bmod 4)$ and $1 \leq\left|S_{D}\right| \leq 2$ such that if $r \in S_{D}$ with $(D / r)=1$ then $r^{2}>\sqrt{D} / 2$.

This conjecture was actually stated by Leu [2, Conjecture, p. 309] in an unnecessarily complicated fashion with conditions which were not needed (see Remark 3.2). In Section 3, we give a proof of the sufficiency for $h_{D}=2$ which is much simpler and more informative than that given in [2] (see Theorem 3.1). Moreover, we prove the necessity when the prime $p=4 k^{2}+1$ and show how we "just miss" a proof when p is of the form $k^{2}+4$ (see Theorem 3.2ff). Primes p of these two forms are carefully chosen because we know, with one possible exception (which is ruled out by the generalized Riemann hypothesis, GRH) the complete list of those values for which Conjecture 1.1 holds (see Example 3.1), and in that list p is always one of the above two forms. In any discussion which follows, we will call the aforementioned exceptional value a "GRH-ruled out exception". In point of fact, we used such techniques in [7] to list all possible values $D=k^{2}+r$ where $r \mid 4 k$ (called extended Richard-Degert types, or simply ERD-types)

[^0]with $h_{D}=2$, and one GRH-ruled out exception. Previously in [6] we had solved the $h_{D}=1$ problem for ERD-types with one GRH-ruled out exception. This included the Chowla conjecture (see [8]) and several conjectures given by the authors in [4]- [5]. This technique, (which is now standard and easily applied to a vast array of class number problems for real quadratic fields) consists of using a result of Tatuzawa [15] to give a complete list of discriminants which, due to Tatuzawa's result, may be lacking in at most one value. We then use the GRH and the analytic class number formula to show that the list is indeed complete (see [9] for a detailed description of these techniques). Hence, the exceptional value resulting from Tatuzawa's result would necessarily be a counterexample to the GRH. This explains then why we call it a "GRH-ruled out exception". In point of fact, we were able to refine our techniques and make our procedures more efficient in [10] where we found a complete list (with one GRH-ruled out exception) of all real quadratic fields $Q(\sqrt{D})$ with $h_{D}=2$ when the continued fraction expansion of w (see definition in Section 2) has period length less than 25. We note that D 's of ERD-type have period length of the continued fraction expansion of w being at most 6 . Leu's proof of Conjecture 1.1 under the assumption of GRH in [2] does not take into account any of the above results. Previously we proved a similar result for a list of all D 's with $h_{D}=1$ and period length of the continued fraction expansion of w less than 25 in [11]. What we now seek therefore, is an unconditional proof that these lists are complete. The difficulty is verifying this for even the restricted forms considered in this paper shows how far we have yet to go. In fact, we believe that to complete the proof of Conjecture 1.1 may be as difficult as giving an unconditional proof of the Chowla conjecture.

Another conjecture given by Leu in [2] is
CONJECTURE 1.2. If $D=n^{2}+4$ is square-free then $\left|S_{D}\right| \leq 2 h_{D}-1$.
We show that this conjecture is false (see Table 3.1 ff) and give evidence that there are in fact infinitely many counterexamples.

In his review of Leu's paper [2], S. Louboutin (see MR \#93f: 11075) says that Conjecture 1.1 is a "deceptively reasonable one". He goes on to say that "... it is reasonable to conjecture that . .."

Conjecture 1.3. For all integers $m>0$ there exists a prime p such that whenever $D=p q=n^{2}+4$ where $q>p$ is also prime we have $l(\alpha) \geq 2 m+3$ where $\alpha=(\sqrt{D}+p) / 2 p$, and $l(\alpha)$ is the period length of the continued fraction expansion of α (see Section 2).

We have stated this conjecture in our terminology for convenience sake, (see Section 2 for details on notation). In Section 3 we give a complete proof of this conjecture, (see Theorem 3.3). Our earlier contention that the proof of Conjecture 1.1 is seriously difficult is borne out by Louboutin's last comment in his review pertaining to Conjecture 1.3. He says, "Hence, the author's conjecture could not be proved algebraically even if he changed $\left|S_{D}\right|=1$ or 2 into $1 \leq\left|S_{D}\right| \leq l$ for any $l \geq 2$." Therefore, any advance toward the proof of Conjecture 1.1 should be viewed as significant progress.
2. Notation and preliminaries. Throughout, D will be a positive square-free integer and $w=(\sigma-1+\sqrt{D}) / \sigma$ where $\sigma=2$ if $D \equiv 1(\bmod 4)$ and $\sigma=1$ otherwise. The discriminant Δ of $Q(\sqrt{D})=K$ is given by $\Delta=(2 / \sigma)^{2} D$. If $[\alpha, \beta]$ denotes the module $\{\alpha x+\beta y: x, y \in \mathbb{Z}\}$ then the maximal order O_{Δ} of K is $[1, w]$. We use $\bar{\alpha}$ to denote the algebraic conjugate of α and $N(\alpha)$ to denote the value of $\alpha \bar{\alpha}$, the norm of α.

An ideal of O_{Δ} can be written as $I=[a, b+w]$ where $a, b, c \in \mathbb{Z}$ with $a, c>0, c|b, c| a$ and $a c \mid N(b+c w)$. Conversely, if $a, b, c \in \mathbb{Z}$ with $c|b, c| a$ and $a c \mid N(b+c w)$ then $[a, b+c w]$ is an ideal of O_{Δ}. In an ideal $I=[a, b+c w]$ with $a, c>0$ the norm of $I, N(I)$ is given by $N(I)=a c>0$. If $c=1$ then I is a primitive ideal. The conjugate of $I=[a, b+w]$ is $I^{\prime}=[a, b+\bar{w}]$. A primitive ideal I is reduced if it does not contain any non-zero element α such that both $|\alpha|<N(I)$ and $|\bar{\alpha}|<N(I)$.

At this juncture we introduce the connection between reduced ideals and continued fractions. Let $\alpha \in K$ then we can write $\alpha=\left(P_{0}+\sqrt{D}\right) / Q_{0}$ where $P_{0}, Q_{0} \in \mathbb{Z}$. If we put $a_{0}=\lfloor\alpha\rfloor$ (where \rfloor is the greatest integer function) and define

$$
\begin{gathered}
P_{i+1}=a_{i} Q_{i}-P_{i} \\
Q_{i} Q_{i+1}=D-P_{i+1}^{2} \quad \text { and } \\
a_{i+1}=\left\lfloor\left(P_{i+1}+\sqrt{D}\right) / Q_{i+1}\right\rfloor \quad(i=0,1,2, \ldots)
\end{gathered}
$$

then

$$
\alpha=\left\langle a_{0}, a_{1}, \ldots, a_{i}, \ldots\right\rangle
$$

is the continued fraction expansion of α. Moreover, we have
THEOREM 2.1. Let $I_{1}=I=[a, b+w]$ be a reduced ideal of O_{Δ}. If $\alpha=(b+w) /$ a then all of the reduced ideals in the same equivalence class as I and only these are given by

$$
I_{j}=\left[Q_{j-1} / \sigma,\left(P_{j-1}+\sqrt{D}\right) / \sigma\right]
$$

for $j=1,2,3, \ldots$ where the values of the P_{j} 's and Q_{j} 's are found by expanding α into a continued fraction.

THEOREM 2.2. If I is a reduced ideal of O_{Δ} then $N(I)<\sqrt{\Delta}$. If I is a primitive ideal of O_{Δ} such that $N(I)<\sqrt{\Delta} / 2$, then I is a reduced ideal of O_{Δ}.

By Theorem 2.2, there can only be a finite number of reduced ideals of O_{Δ} and since all the I_{j} 's from Theorem 2.1 are reduced then we see that the sequence of reduced ideals $I_{1}, I_{2}, \ldots, I_{j}, \ldots$ produced by the continued fraction must be purely periodic, i.e., there must exist a minimal positive integer l such that $I_{l+1}=I_{1}$. We call $l(\alpha)=l=l(I)$ the period length of the continued fraction expansion of α. For convenience sake, we denote the period length of continued fraction expansion of w by $l(1)$.

Let C_{Δ} denote the class group of K and let h_{Δ} be its order; i.e., the class number of K. Equivalence of ideals is denoted by $I \sim J$, and the class of I is denoted by $\{I\}$. We also have

THEOREM 2.3. (1) If I is a reduced ideal of O_{Δ} then there exists an ideal of $J \sim I$ such that $N(J)<\sqrt{\Delta} / 2$.
(2) C_{Δ} is generated by the primitive ideals I with $N(I)<\sqrt{\Delta} / 2$.

Immediate from the above is
THEOREM 2.4. Let $\Delta>0$ be a discriminant and $\bigcup_{i=1}^{k}\left\{J_{i}\right\}$ classes of primitive ideals in O_{Δ}, then $C_{\Delta}=\bigcup_{i=1}^{k}\left\{J_{i}\right\}$ if and only if for each prime $p<\sqrt{\Delta} / 2$ with $(\Delta / p) \neq-1$, there exists an integer i with $1 \leq i \leq k$ and a reduced ideal $I_{i}=\left[a_{i}, b_{i}+w\right] \sim J_{i}$ such that in the continued fraction expansion of $\alpha_{i}=\left(b_{i}+w\right) / a_{i}$ we have $Q_{j} / \sigma=p$ for some j with $1 \leq j \leq l_{i}=l\left(\alpha_{i}\right)$.

REMARK 2.1. If $I=[a, b+w]$ is a reduced ideal in an ambiguous class of C_{Δ} (i.e., $\left.I^{2} \sim 1\right)$ then in the continued fraction expansion of $\alpha=(b+w) / a$ we must have either $Q_{\frac{t+1}{2}}=Q_{\frac{l-1}{2}}\left(\right.$ when $l(\alpha)=l$ is odd) or $P_{\frac{l}{2}}=P_{\frac{l}{2}+1}$ when l is even (see [9]).

We also have
THEOREM 2.5. If I is a reduced ideal in O_{Δ} and ϵ_{Δ} is the fundamental unit of $Q(\sqrt{\Delta})$ then $N\left(\epsilon_{\Delta}\right)=(-1)^{l(I)}$.

For complete details and proofs concerning the above results, the reader is referred to [9] and [16].

Finally we include the following result for the sake of completeness since we will have occasion to use it in the next section.

THEOREM 2.6. Let $D=n^{2}+4$ be square-free and set $-N(b+w)=m t$ where $|b|<$ $(\sqrt{D}-1) / 2$ and $m<n$, then $h(d) \geq \max \{\tau(m), \tau(m)+d(t)-1\}$ where τ is the divisor function and $d(t)$ denotes the number of prime (not necessarily distinct) divisors of t.

Proof. This is a trivial consequence of Mollin et. al. [14, Theorem 2.1 p. 94].
3. Conjecture 1.1. We first prove the "easy" direction of Conjecture 1.1, i.e., the sufficiency for $h_{D}=2$.

THEOREM 3.1. If $D=n^{2}+4=p q$, for primes $p<q$ and $1 \leq\left|S_{D}\right| \leq 2$ with $r^{2}>\sqrt{D} / 2$ whenever $(D / r)=1$ and $r \in S_{D}$, then $h_{D}=2$.

Proof. By Theorems $2.3-2.4, h_{D}=1$ if and only if $S_{D}=\emptyset$. Therefore, we may assume that $h_{D}>1$. Consider the reduced ideal $I=[p,(p+\sqrt{D}) / 2]$. In the continued fraction expansion of $\alpha=(p+\sqrt{D}) /(2 p)$ we must have that $l(\alpha)=l$ is odd by Theorem 2.5 (and $l>1$ since $l=1$ implies that $D=P_{1}^{2}+4 p^{2}$ forcing $p^{2} \mid D$, a contradiction). By Remark 2.1, we must have that $Q_{\frac{t+1}{2}}=Q_{\frac{l-1}{2}}<\sqrt{D}$. Hence, $D=P_{\frac{t+1}{2}}^{2}+Q_{\frac{t+1}{2}}^{2}$. Clearly p cannot divide $Q_{\frac{t+1}{2}}$ since D is square-free; thence, $Q_{\frac{t+1}{2}}=2 r_{1}^{s_{1}} r_{2}^{s_{2}}$ with $r_{i} \in S_{D}$ and $\left(D / r_{i}\right)=1$ for $s_{i} \geq 0$. If $s_{i}>0$ for $i=1,2$ then

$$
D=P_{\frac{l+1}{2}}^{2}+4 r_{1}^{2 s_{1}} r_{2}^{2 s_{2}} \geq P_{\frac{t+1}{2}}^{2}+4 r_{1}^{2} r_{2}^{2}>D
$$

(since $r_{i}^{2}>\sqrt{D} / 2$ by hypothesis), a contradiction. Therefore, $s_{2}=0$ say, and $Q_{\frac{\mid+1}{2}}=2 r_{1}^{s_{1}}$. If $s_{1}>1$ then $Q_{\frac{t+1}{2}}>2 r_{1}^{2}>\sqrt{D}$, a contradiction; whence $s_{1}=1$. Since $Q_{\frac{t+1}{2}}=2 r_{1}$ then $\mathcal{R}_{1} \sim \mathcal{P}$ and so $\mathcal{R}_{1}^{2} \sim \mathscr{P}^{2} \sim 1$ where \mathcal{R}_{1} lies over r_{1} and \mathcal{P} lies over p. Furthermore, $\mathcal{R}_{1} \nsim 1$ since $l(1)=1$. We have thus far shown that if $\left|S_{D}\right|=1$ or if $p \in S_{D}$ then $h_{D}=2$, so we now assume that $S_{D}=\left\{r_{1}, r_{2}\right\}$ with $\left(D / r_{i}\right)=1$ for $i=1,2$. Consider $D=P_{1}^{2}+Q_{0} Q_{1}=P_{1}^{2}+2 p Q_{1}$. Since $S_{D}=\left\{r_{1}, r_{2}\right\}$, then $p>\sqrt{D} / 2$; whence, $Q_{1}<\sqrt{D}$. Moreover, $Q_{1} \neq 2$ since $R_{1} \sim 1$ as above. Thus, the only odd prime which can divide Q_{1} is r_{2}, so $Q_{1}=2 r_{2}^{s_{2}}$. If $s_{2}>1$ then $Q_{1}>\sqrt{D}$ (since $r_{2}^{2}>\sqrt{D} / 2$ by hypothesis), a contradiction. Hence, $Q_{1}=2 r_{2}$, whence $\mathcal{R}_{2} \sim \mathcal{P}$ and $\mathcal{R}_{2}^{2} \sim \mathscr{P}^{2} \sim 1$. Hence, $h_{D}=2$ and the result is secured.

Now we look at the converse of Theorem 3.1.
Since $D=n^{2}+4$ then it follows from the genus theory of Gauss that $h_{D}=2$ necessarily implies $D=p q$ for primes $p \equiv q \equiv 1(\bmod 4)$. Suppose that $q>p$ and

$$
p=a^{2}+4 b^{2} \quad \text { with } a, b>0
$$

and

$$
q=s^{2}+4 t^{2} \quad \text { with } s, t>0
$$

Since D must be a sum of 2 squares in essentially two distinct ways, we must have that

$$
D=(a s+4 b t)^{2}+4(b s-a t)^{2}
$$

and

$$
D=(a s-4 b t)^{2}+4(b s+a t)^{2}
$$

from which it follows that

$$
\begin{equation*}
b s-a t=\epsilon= \pm 1 \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
b s+a t=c \tag{3.2}
\end{equation*}
$$

where c is divisible only by primes in S_{D}.
REmark 3.1. It is evident that $S_{D} \neq \emptyset$. In fact, as noted in the proof of Theorem 3.1, $h_{D}=1$ if and only if $S_{D}=\emptyset$. If D were not of the form $D=n^{2}+4$ then we would not be able to assert that $h_{D}=1$ implies $S_{D}=\emptyset$ since it is possible, in general, to have $S_{D}=\emptyset$ while $h_{D}=1$ when the primes in S_{D} have principal prime ideals above them. However, in our special case $l(1)=1$ which means that there are no nontrivial principal reduced ideals. However we may always assert that $S_{D}=\emptyset$ implies $h_{D}=1$ by Theorem 2.3.

Remark 3.2. In [2] Leu states Conjecture 1.1 with more conditions given than are required. Thus his proof of the sufficiency (which we proved in a simpler fashion with only minimal assumptions in Theorem 3.1) uses facts which actually follow from $\left|S_{D}\right| \leq 2$. First of all he addresses the case where $S_{D}=\{p\}$ which we have shown cannot occur. (To see this, we look at the proof of Theorem 3.1. If $S_{D}=\{p\}$ then $Q_{\frac{t+1}{2}}$ would be forced to equal 2, i.e., $\mathcal{P} \sim 1$. Therefore, $h_{D}=1$ which forced $S_{D}=\emptyset$, by Remark 3.1, a contradiction). Therefore, [2, Lemma 1, p. 310] is vacuous. Secondly, in proving the sufficiency he uses the additional assumptions that both $p r>\sqrt{D} / 2$ when $(D / r)=1$, and $(p / q)=-1$. Both of these facts follow from $\left|S_{D}\right| \leq 2$ as Theorem 3.1 clearly shows. Thus the use of the Redei-Reichardt result [2, Proposition D, p. 310] (i.e., that $(p / q)=-1$ if and only if h_{D} is not divisible by 4$)$ is unnecessary, as is [2, Proposition C, p. 310] which asserts that all primes $p \mid D$ satisfy $p \equiv 1(\bmod 4)$, since our elucidation at the outset of this section shows that this actually follows from Gauss. Finally, our comments at the beginning of this section concerning $S_{D}=\emptyset$ shows that [2, Theorem 1, p. 310] is unnecessarily stated.

It is however, worth noting that in [3] Leu showed unconditionally, that if there are no inert primes less than M_{Δ} and S_{Δ} consists only of primes p with $(\Delta / p)=1$, then $\Delta>0$ implies that $\Delta \in\{2,3,5,13,17,33,73,97\}$ none of which satisfies our criterion. Therefore, we must have inert primes less that M_{Δ}. However, in [12] we were able to classify those D 's for which $\left|S_{D}\right|=1$, and were able to list all of them with one GRHruled out exception. One sub-class of that classification is naturally our $D=n^{2}+4$ but the only ones with $h_{D}=2$ for such D on that list are $D=85$ and 269 .

Now we examine the converse of Theorem 3.1
As delineated earlier, we know all of the square-free $D=n^{2}+4$ having $h_{D}=2$, with one (GRH-ruled outed) exception. We now list them here with their associated continued fraction expansions for the classes of order 2 in O_{D}.

EXAMPLE 3.1. (i) $D=85=5 \cdot 17=p \cdot q=9^{2}+4$
The continued fraction expansion of $(5+\sqrt{D}) / 6$ is:

i	0	1	2	3
P_{i}	5	7	5	5
Q_{i}	6	6	10	6
a_{i}	2	2	1	2

(ii) $D=365=5 \cdot 73=p \cdot q=19^{2}+4$

The continued fraction expansion of $(15+\sqrt{D}) / 14$ is:

i	0	1	2	3
P_{i}	15	13	15	15
Q_{i}	14	14	10	14
a_{i}	2	2	3	2

(iii) $D=533=13 \cdot 41=p \cdot q=23^{2}+4$

The continued fraction expansion of $(15+\sqrt{D}) / 22$ is:

i	0	1	2	3	4	5
P_{i}	15	7	15	13	13	15
Q_{i}	22	22	14	26	14	22
a_{i}	1	1	2	1	2	1

(iv) $D=629=17 \cdot 37=p \cdot q=25^{2}+4$

The continued fraction expansion of $(17+\sqrt{D}) / 10$ is:

i	0	1	2	3
P_{i}	17	23	17	17
Q_{i}	10	10	34	10
a_{i}	4	4	1	4

(v) $D=965=5 \cdot 193=p \cdot q=31^{2}+4$

The continued fraction expansion of $(9+\sqrt{D}) / 26$ is:

i	0	1	2	3	4	5
P_{i}	9	17	9	25	25	9
Q_{i}	26	26	34	10	34	26
a_{i}	1	1	1	5	1	1

(vi) $D=1685=5 \cdot 337=p \cdot q=41^{2}+4$

The continued fraction expansion of $(11+\sqrt{D}) / 34$ is:

i	0	1	2	3	4	5
P_{i}	11	23	11	35	35	11
Q_{i}	34	34	46	10	46	34
a_{i}	1	1	1	7	1	1

(vii) $D=1853=17 \cdot 109=p \cdot q=43^{2}+4$

The continued fraction expansion of $(29+\sqrt{D}) / 22$ is:

i	0	1	2	3	4	5
P_{i}	29	37	29	17	17	29
Q_{i}	22	22	46	34	46	22
a_{i}	3	3	1	1	1	3

(viii) $D=2813=29 \cdot 97=p \cdot q=53^{2}+4$

The continued fraction expansion of $(39+\sqrt{D}) / 38$ is:

i	0	1	2	3	4	5
P_{i}	39	37	39	29	29	39
Q_{i}	38	38	34	58	34	38
a_{i}	2	2	2	1	2	2

Remark 3.3. We observe in Example 3.1 that all p 's are of the form $p=k^{2}+4$ or $4 k^{2}+1$. We now prove Conjecture 1.1 when p is of the form $4 k^{2}+1$.

THEOREM 3.2. Conjecture 1.1 holds when $p=4 k^{2}+1$ for some integer $k \geq 1$.

Proof. Let $q=r^{2}+4 s^{2}$; whence, $r=2 m+1$ and

$$
D=\left(4 k^{2}+1\right)\left(r^{2}+4 s^{2}\right)=(r+4 k s)^{2}+4(s-k r)^{2}=(r-4 k s)^{2}+4(s+k r)^{2}
$$

Since D is representable as a sum of 2 squares in only 2 (essentially) distinct ways then we must have $s-k r=\epsilon$ where $|\epsilon|=1$.

Since $n=r+4 k s$ then $n=r+4 k(k r+\epsilon)=p r+4 k \epsilon$. Therefore, $D=(p r+4 k \epsilon)^{2}+4=$ $p^{2} r^{2}+8 \epsilon p r k+4 p$. Now consider the continued fraction expansion of $(p+\sqrt{D}) /(2 p)$.

Case 1. $\epsilon=1$

i	0	1	2	3
P_{i}	p	$p r$	$\left(4 k^{2}-1\right) r+4 k$	$p r$
Q_{i}	$2 p$	$4 r k+2$	$4 r k+2$	$2 p$
a_{i}	$m+1$	$2 k$	$2 k$	r

CASE 2. $\epsilon=-1$ (in which case $r \geq 3$ since, if $r=1$ then $q=1+4(k-1)^{2}<p$, a contradiction).

i	0	1	2	3	
P_{i}	p	$p r-2 p$	$(p-4 k) r+2$	$(p-2) r-4 k$	
Q_{i}	$2 p$	$(2 p-4 k) r-2(p-1)$	$4 k r-2$	$4 k r-2$	
a_{i}	m		1	$2 k-1$	$2 k-1$
		i	4	5	
		P_{i}	$(p-4 k)+r+2$	$p r-2 p$	
		Q_{i}	$(2 p-4 k) r-2(p-1)$	$2 p$	
		a_{i}	1	$r-2$	

Now, if we assume that $h_{D}=2$ then, by Theorem 2.6, all $Q_{i} / 2$'s in either case must be primes. Hence in Case $1,\left|S_{D}\right| \leq 2$ clearly. In Case 2, we would have $\left|S_{D}\right| \leq 2$ if we could show that $Q_{1} / 2>\sqrt{D} / 2$. Suppose, to the contrary, that $Q_{1} / 2<\sqrt{D} / 2$ then

$$
Q_{1} / 2=(p-2 k) r-p+1<\sqrt{\Delta} / 2
$$

which implies that

$$
p r-2 k r-p+1 \leq(p r-4 k) / 2
$$

from which a calculation shows that

$$
4 k^{2}(r-2)+4 k(1-r)+r \leq 0,
$$

or

$$
(2(r-2) k-r)(2 k-1) \leq 0 .
$$

Since $k \geq 1$ then we must have

$$
k \leq r /(2 r-4)
$$

Hence,

$$
k< \begin{cases}2 & \text { if } r=3 \\ 1 & \text { if } r \neq 3\end{cases}
$$

Since $k \geq 1$, then $r=3, k=1$ which implies that $s=2$ and $q=25$, a contradiction. The converse is Theorem 3.1.

We now examine the only other case for p 's appearing in Example 3.1; viz., $p=k^{2}+4$. From (3.1)-(3.2) we get that $b=1$ and $a=k$. Therefore, $s=k t \pm 1$.

CASE 1. $s=k t-1$. Thus the continued fraction expansion of $(p+\sqrt{D}) /(2 p)$ is

i	0	1	2	3	4	5
P_{i}	p	$t p-p$	$t p-c$	$k c-t p$	$t p-c$	$t p-p$
Q_{i}	$2 p$	$(2 t p-c-p) / 2$	$2 c$	$2 c$	$(2 t p-c-p) / 2$	$2 p$
a_{i}	$t / 2$	2	$(k-1) / 2$	$(k-1) / 2$	2	$t-1$

CASE 2. $s=k t+1$ which implies that the continued fraction expansion of $(p+\sqrt{D}) /(2 p)$ is

i	0	1	2	3	4	
P_{i}	p	$t p-p$	$(c+p) / 2$	$t p-c$	$k c-t p$	
Q_{i}	$2 p$	$(2 t p+c-p) / 2$	$(2 t p-c+p) / 2$	$2 c$	$2 c$	
a_{i}	$t / 2$		1		1	$(k-1) / 2$
		i	5	6	7	$(k-1) / 2$
		P_{i}	$t p-c$	$(c+p) / 2$	$t p-p$	
		Q_{i}	$(2 t p-c+p) / 2$	$(2 t p+c-p) / 2$	$2 p$	
		a_{i}	1	1	$t-1$	

Remark 3.4. Again by Theorem 2.6, all $Q_{i} / 2$'s in either case must be primes. However, there is a good reason why they cannot all be primes in general. For example, if $D=87029=29 \cdot 3001$ then the continued fraction expansion of $(29+\sqrt{D}) / 58$ has period length 7 and all $Q_{i} / 2$'s are primes. Moreover, $[29,(29+\sqrt{D}) / 2]$ is ambiguous. However, $h_{D}=10$ and so there is (of course) another ideal; viz., $[5,(3+\sqrt{D}) / 2]$ which has order 5. Nevertheless, in our cases 1-2 above there is no clear algebraic way to show that D is a quadratic residue modulo any integer $m<\sqrt{\Delta} / 2$ where $m \neq Q_{i} / 2$ for any i with $1 \leq i \leq l(I)$ where the Q_{i} 's appear in the continued fraction expansion of $(p+\sqrt{D}) /(2 p)$ with $I=[p,(p+\sqrt{D}) / 2]$ (as is the case with $D=87029$ where $(D / 5)=1$ and $t=10$). It is in fact quite frustrating that in cases 1-2 above we have $\left|S_{D}\right| \leq 3$ and we cannot eliminate the additional prime. If this could be done then we would have shown that the conjecture is true for p of the form either $k^{2}+4$ or $4 k^{2}+1$. Then, in order to complete the proof of the conjecture we clearly would need only to show that if $h_{D}=2$ then $b=1$.
4. Proof of Conjecture 1.3 and disproof of Conjecture 1.2. In order to prove Conjecture 1.3, we begin with results for more general D 's than those considered in the last section. (P and Q are also not necessarily primes).

Theorem 4.1. Let $D=P Q$ where $P=A^{2}+B^{2}$, g.c.d. $(A, B)=1, A>B>0$, and $A / B=\left\langle q_{0}, q_{1}, \ldots, q_{l}\right\rangle$. If $Q=\left(r A_{l}+2 A_{l-1}\right)^{2}+\left(r B_{l}+2 B_{l-1}\right)^{2}$ with $r \geq 1$ odd, then the continued fraction expansion of $(P+\sqrt{D}) /(2 P)$ is given by

$$
\left\langle(r+1) / 2, \overline{q_{l}, q_{l-1}, \ldots, q_{0}, q_{0}, q_{1}, \ldots, q_{l}, r}\right\rangle .
$$

Proof. It is well-known that

$$
\left\langle q_{l}, q_{l-1}, \ldots, q_{1}, q_{0}\right\rangle=A_{l} / A_{l-1}
$$

and

$$
\left\langle q_{l}, q_{l-1}, \ldots, q_{2}, q_{1}\right\rangle=B_{l} / B_{l-1}
$$

Put

$$
\begin{gathered}
L=A_{l-1} A_{l}+B_{l} B_{l-1} \\
M=A_{l-1}^{2}+B_{l-1}^{2} .
\end{gathered}
$$

We then get

$$
\begin{aligned}
\left\langle q_{l}, q_{l-1}, \ldots, q_{1}, q_{0}, q_{0}, q_{1}, \ldots, q_{l-1}, q_{l}\right\rangle & =\left(\left(A_{l} / B_{l}\right) A_{l}+B_{l}\right) /\left(\left(A_{l} / B_{l}\right) / A_{l-1}+B_{l-1}\right) \\
& =P / L
\end{aligned}
$$

and

$$
\begin{aligned}
\left\langle q_{l}, q_{l-1}, \ldots, q_{1}, q_{0}, q_{0}, q_{1}\right. & \left., \ldots, q_{l-1}\right\rangle \\
& =\left(\left(A_{l-1} / B_{l-1}\right) A_{l}+B_{l}\right) /\left(\left(A_{l-1} / B_{l-1}\right) / A_{l-1}+B_{l-1}\right) \\
& =L / M .
\end{aligned}
$$

Let

$$
\theta=\left\langle\overline{q_{l}, q_{l-1}, \ldots, q_{1}, q_{0}, q_{0}, q_{1}, \ldots, q_{l-1}, q_{l}, r}\right\rangle
$$

Then

$$
\theta=(\theta(r P+L)+P) /(\theta(r L+M)+L)
$$

Suppose that $r \geq 1$ and r is odd. Set

$$
\begin{aligned}
\lambda & =\langle(r+1) / 2, \theta\rangle \\
& =(r+1) / 2+1 / \theta \\
& =\left\langle(r+1) / 2, \overline{q_{l}, q_{l-1}, \ldots, q_{0}, q_{0}, \ldots, q_{l-1}, q_{l}, r}\right\rangle .
\end{aligned}
$$

Now

$$
\theta^{2}(r L+M)+\theta L=\theta r P+\theta L+P
$$

which implies that

$$
\theta^{2}(r L+M)=\theta r P+P
$$

If $\gamma=\frac{1}{\theta}$ then

$$
P \gamma^{2}+\gamma r P-(r L+M)=0
$$

Thus, $\lambda=(r+1) / 2+\gamma$,

$$
\gamma=\left(-r P+\sqrt{r^{2} P^{2}+4 P(r L+M)}\right) /(2 P)
$$

and,

$$
\lambda=\left(P+\sqrt{r^{2} P^{2}+4 P(r L+M)}\right) /(2 P)
$$

Put $N=r^{2} P^{2}+4 P(r L+M)$, then

$$
N=P\left[r^{2} P+4(r L+M)\right]=P Q=D
$$

Therefore, the continued fraction expansion of $(P+\sqrt{D}) /(2 P)$ is given by

$$
\left\langle(r+1) / 2, \overline{q_{l}, q_{l-1}, \ldots, q_{0}, q_{0}, \ldots, q_{l}, r}\right\rangle .
$$

DEFINITION 4.1. Let $r>1$ be a rational number and denote by $m(r)$ the value of t where $r=\left\langle q_{0}, q_{1}, q_{2}, \ldots, q_{t}\right\rangle$ with $q_{t}>1$.

THEOREM 4.2. For any positive integer m there exists an infinitude of primes p of the form $A^{2}+B^{2}$ with $A>B$ such that $m(A / B) \geq m$.

Proof. We make use of the results of Hecke [1] from which we can easily deduce that there exists an infinitude of primes of the form $x^{2}+y^{2}$ with

$$
c_{1}<\frac{x}{y}<c_{2}
$$

for any given pair of positive reals c_{1} and c_{2} with $c_{1}<c_{2}$. Consider

$$
A_{n} / B_{n}=\left\langle a_{0}, a_{1}, a_{2}, \ldots, a_{n}\right\rangle
$$

where $n \geq m$, and the only constraint we put on the a_{i} 's is that they be positive integers. Now if

$$
\begin{aligned}
\lambda & =\left\langle a_{0}, a_{1}, a_{2}, \ldots, a_{n}, \theta\right\rangle \\
& =\left(\theta A_{n}+A_{n-1}\right) /\left(\theta B_{n}+B_{n-1}\right),
\end{aligned}
$$

and $\theta=b / c$ with b and c being relatively prime integers then, if $\lambda=x / y$ we get $x=b A_{n}+c A_{n-1}$ and $y=b B_{n}+c B_{n-1}$. It follows that

$$
b=\left(x B_{n-1}-y A_{n-1}\right)(-1)^{n-1}
$$

and

$$
c=\left(y A_{n}-x B_{n}\right)(-1)^{n-1} .
$$

If n is odd then $A_{n} / B_{n}>A_{n-1} / B_{n-1}$ and

$$
b=x B_{n-1}-y A_{n-1}, \quad c=y A_{n}-x B_{n} .
$$

Let p be a prime of the form $x^{2}+y^{2}$ where

$$
A_{n-1} / B_{n-1}<x / y<A_{n} / B_{n} .
$$

In this case we have $b, c>0$. If n is even then $A_{n-1} / B_{n-1}>A_{n} / B_{n}$. Let p be a prime of the form $x^{2}+y^{2}$, where $A_{n} / B_{n}<x / y<A_{n-1} / B_{n-1}$. In this case we also have $b, c>0$. Thus, in either case, we see that $\theta>0$ and that the length of the continued fraction expansion of $\lambda=x / y$ is at least $n \geq m$.

Theorem 4.3. For all integers $m>0$, there exists a prime p such that whenever $D=p q=n^{2}+4$ where $q>p$ is also prime, we have that $l(\alpha) \geq 2 m+3$ where $\alpha=(\sqrt{D}+p) /(2 p)$.

PROOF. If $D=p q=n^{2}+4$, we may assume without loss of generality that $q>p$. By (3.1)-(3.2) we get that

$$
n=a s+4 b t=(p s-4 b \epsilon) / a
$$

so that $D=(p s-4 b \epsilon)^{2} / a^{2}+4=\left(p^{2} s^{2}-8 \epsilon p s b+4 p\right) / a^{2}$. Also $b s \equiv \epsilon(\bmod a)$. Therefore if $b^{*} b \equiv 1(\bmod a)$ then $s \equiv b^{*} \epsilon(\bmod a)$. Since a is odd, we may assume without loss of generality that b^{*} is even. Since $s \equiv b^{*} \epsilon(\bmod a)$ we can write $s=b^{*} \epsilon+a r$. Since s is odd, b^{*} is even, and a is odd, we must have that r is odd. Thus,

$$
\begin{aligned}
D & =\left(p^{2}\left(b^{*} \epsilon+a r\right)^{2}-8 \epsilon p b\left(b^{*} \epsilon+a r\right)+4 p\right) / a^{2} \\
& =\left(p^{2} a^{2} r^{2}+2 \epsilon\left(b^{*} p-4 b\right) p a r+p\left(b^{* 2}-8 b b^{*}+4\right)\right) / a^{2} \\
& =p^{2} r^{2}+2 \epsilon\left(b^{*} p-4 b\right) p r / a+p\left(b^{* 2}-8 b b^{*}+4\right) / a^{2} .
\end{aligned}
$$

CASE 1. $a>2 b$. Thus, $a / 2 b=\left\langle q_{0}, q_{1}, \ldots, q_{l}\right\rangle=A_{l} / B_{l}$ with $q_{l}>1$. We have that $A_{l} B_{l-1}-B_{l} A_{l-1}=(-1)^{l-1}$. We may now assume that $\epsilon=(-1)^{l}$; for if $\epsilon \neq(-1)^{l}$, set $q_{l+1}=1$, replace the values of q_{l} by that of $q_{l}-1$ and l by $l+1$. We can then use $2 A_{l-1} \epsilon$ for the value of b^{*}. In this instance,

$$
A_{l}=a, B_{l}=2 b, B^{*}=2 A_{l-1} \epsilon,
$$

and

$$
B_{l-1}=\left(B_{l} A_{l-1}-\epsilon\right) / A_{l}=\left(2 b \epsilon b^{*} / 2-\epsilon\right) / a=\epsilon\left(b b^{*}-1\right) / a .
$$

CASE 2. $a<2 b$. Put $2 b / a=\left\langle q_{0}, q_{1}, \ldots, q_{l}\right\rangle=A_{l} / B_{l}$. We now assume that $\epsilon=$ $(-1)^{l-1}$ and get

$$
A_{l}=2 b, B_{l}=a, b^{*}=2 B_{l-1} \epsilon .
$$

Also,

$$
A_{l-1}=\left(A_{l} B_{l-1}-\epsilon\right) / B_{l}=\epsilon\left(b b^{*}-1\right) / a .
$$

In either case, we find that

$$
\epsilon\left(b^{*} p-4 b\right) /(2 a)=a \epsilon b^{*} / 2+2 b \epsilon\left(b b^{*}-1\right) / a=A_{l-1} A_{l}+B_{l} B_{l-1}
$$

and

$$
\left(b^{* 2} p-8 b b^{*}+4\right) /\left(4 a^{2}\right)=\left(b^{*} / 2\right)^{2}+\left(\left(b b^{*}-1\right) / a\right)^{2}=A_{l-1}^{2}+B_{l-1}^{2} .
$$

Since, $p=A_{l}^{2}+B_{l}^{2}$ which implies that

$$
\begin{aligned}
D / p & =q=p r^{2}+4\left(A_{l-1} A_{l}+B_{l} B_{l-1}\right) r+4\left(A_{l-1}^{2}+B_{l-1}^{2}\right) \\
& =\left(r A_{k}+2 A_{k-1}\right)^{2}+\left(r B_{l}+2 B_{l-1}\right)^{2}
\end{aligned}
$$

Also, $b^{*} \epsilon+a r>0$, since $s>0$. Thus, if $a>2 b$ then $A_{l} r+2 A_{l-1}>0$ which implies that $r \geq-1$. Also, if $a<2 b$ then $B_{l} r+2 B_{l-1}>0$ implies that $r \geq-1$. If $r=-1$ then $q=\left(A_{l}-2 A_{l-1}\right)^{2}+\left(B_{l}-2 B_{l-1}\right)^{2}<A_{l}^{2}+B_{l}^{2}=p$, a contradiction. It follows that $r>0$. By Theorem 4.1, we see that the value of $l(\alpha)=2 l+3$. By Theorem 4.2, we know that there must exist, for any value of $m>0$, some $p=A^{2}+B^{2}$ such that $A>B$ and $m(A / B)>m$. Since $l \geq m$, we have $l(\alpha) \geq 2 m+3$ for this value of p.

We have seen therefore, that if D is given by the above formula, there will be only 1 principal reduced ideal (the trivial one) but there can be an arbitrary number of reduced ideals equivalent to the reduced ideal $I=[p,(p+\sqrt{D}) / 2]$ depending upon the choice of the prime p. Finally, by Theorem 2.6, if $h_{D}=2$ then all $Q_{i} / 2$'s are primes and by (3.3), $l(I) \geq 2 l+3$.

Now we deal with Conjecture 1.2. As noted by Louboutin in his review of [2], (see MR: 93f: 11075), this conjecture is false. He notes only one counter example. We independently established this fact and did some computation and arrived at the following list of counterexamples for $D \leq 2 \cdot 10^{6}$, where $D=n^{2}+4$.

D	$2 h_{D}-1$	$\left\|S_{D}\right\|$	factors of D
237173	21	24	prime
316973	23	27	197,1609
552053	29	33	prime
877973	39	42	$37,61,5197$
1585085	47	49	$5,61,5197$
1760933	59	60	373,4721
1885133	51	56	1217,1549

Table 4.1. Counterexamples to Conjecture 1.2.

We also compiled a list of counterexamples for $D \leq 10^{9}$ and found 518 counterexamples, too lengthy therefore to list here.

Note added in Proof. All of the results in this paper will appear in the first author's book Quadratics to be published by C.R.C. Press 1995.

References

1. E. Hecke, Eine neue art von Zetafunctionen und ihre Beziehungen zur Verteilung der Primzahlen, Math. Z. 6(1920), 11-51.
2. M. G. Leu, On a Criterion for the Quadratic Fields $Q\left(\sqrt{n^{2}+4}\right)$ to be of Class Number Two, Bull. London Math. Soc. 24(1992), 309-312.
3. \qquad , On a Problem of Ono and quadratic Non-Residues, Nagoya Math. J. 115(1989), 185-198.
4. R. A. Mollin, Class Number One Criteria for Real Quadratic Fields I, Proc. Japan Acad. Ser. A 63(1987), 121-125.
5. R. A. Mollin and H. C. Williams, Prime-Producing quadratic Polynomials and Real Quadratic Fields of Class Number One. In: Number Theory (ed. J. M. Dekoninck and C. Levesque), Walter de Gruyter, Berlin, 1989, 654-663.
6. \qquad Solution of the Class Number One Problem for Real Quadratic Fields of Extended RichaudDegert Type (with one possible exception). In: Number Theory (ed. R. A. Mollin), Walter de Gruyter, Berlin, New York, 1990, 417-425.

7.

\qquad On a Solution of a Class Number Two Problem for a Family of Real Quadratic Fields. In: Computational Number Theory, (ed. A. Pethö et al.), Walter de Gruyter, Berlin, New York, 1991, 95-101.
8. \qquad A Conjecture of S. Chowla Via the Generalized Riemann Hypothesis, Proc. Amer. Math. Soc. 102(1988), 794-796.
9. \qquad Computation of the Class Number of a Real Quadratic Field, Utilitas Math. 41(1992), 259-308.
10. \qquad On Real Quadratic Fields of Class Number Two, Math. Comp. 59(1992), 625-632.
11. \qquad On a Determination of Real Quadratic Fields of Class Number One and Related Continued Fraction Period Length Less Than 25, Proc. Japan Acad. Ser. A. 67(1991), $20-25$.
12. Classification and Enumeration of Real Quadratic Fields Having Exactly One Non-Inert Prime Less Than a Minkowski Bound, Canad. Math. Bull. 36(1993), 108-115.
13. R. A. Mollin and A. J. van der Poorten, A note on symmetry and Ambiguity, Bull. Austral. Math. Soc., to appear.
14. R. A. Mollin, L.-C. Zhang and P. Kemp, A Lower Bound For the Class Number of a Real Quadratic Field of ERD-type, Canad. Math. Bull. 37(1994), 90-96.
15. T. Tatuzawa, On a Theorem of Siegel, Japan J. Math. 21(1951), 163-178.
16. H. C. Williams and M. C. Wunderlich, On the Parallel Generation of the Residue for the Continued Fraction Factoring Algorithm, Math. Comp. 177(1987), 405-423.

Department of Mathematics and Statistics
University of Calgary
Calgary, Alberta
T2N IN4
e-mail: ramollin@acs.ucalgary.ca

Computer Science Department
University of Manitoba
Winnipeg, Manitoba
R3T 2N2
e-mail: hugh_williams@csmail.cs.umanitoba.ca

[^0]: The authors' research was supported by NSERC Canada grant \#A8484 (respectively \#A7649).
 Received by the editors August 24, 1994.
 AMS subject classification: Primary: 11R11, 11R29; secondary: 11 J 70.
 (c) Canadian Mathematical Society, 1995.

