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The impact of an edge radial electric field on the particle orbits and the orbital
spectrum in an axisymmetric toroidal magnetic equilibrium is investigated using a guiding
centre canonical formalism. Poloidal and bounce/transit-averaged toroidal precession
frequencies are calculated, highlighting the role of the radial electric field. The radial
electric field is shown to drastically modify the resonance conditions between particles
with certain kinetic characteristics and specific perturbative non-axisymmetric modes,
and to enable the formation of transport barriers. The locations of the resonances and
the transport barriers that determine the particle, energy and momentum transport are
shown to be accurately pinpointed in the phase space by employing the calculated orbital
frequencies.
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1. Introduction

Resonant mode–particle interactions have a crucial role in determining particle, energy
and momentum transport, and confinement in fusion plasmas. Resonant interactions
take place at specific locations of the phase space and affect particles with certain
kinetic characteristics defined by their energy, momentum and pitch angle (Kaufman
1972; Escande 1985; Horton 1990), rendering the phase space of the particle motion
strongly inhomogeneous in terms of the effect of a perturbative mode. In general, resonant
mode–particle interactions strongly perturb the integrability of the particle motion and
result in complex particle dynamics. Depending on the mode amplitude, as well as on the
overlap of nearby resonances, the chaoticity of the particle motion can be either localised
or extended, leading to significant modification of the particle distribution function and/or
particle losses (Heidbrink & White 2020; White & Bierwage 2021). The origin of the
perturbing modes can be either due to externally applied modifications of the magnetic
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field by using proper sets of coils or due to intrinsically developed instabilities that may
lead to decreased plasma confinement, compromising the high-performance operation
that is required especially in view of future fusion devices like ITER (Perkins et al.
1999). Moreover, intentionally introduced perturbative modes can be used to control the
shape of the distribution function as well as to mitigate undesirable instabilities. For
example, resonant magnetic perturbations (RMPs) are widely used to mitigate or suppress
pressure-gradient driven edge localised modes (ELMs) (Zohm 1996; Liang et al. 2007;
Evans et al. 2008; Wingen et al. 2010; Schmitz et al. 2012; Orain et al. 2019), inherent
to H-mode operation (Wagner et al. 1982), which expunge bursts of particles and heat
fluxes towards the plasma facing components (PFCs), reducing significantly their lifetime
(Loarte et al. 2014).

The effect of non-axisymmetric perturbing modes on particle trajectories, and hence
on transport and confinement, is commonly studied on the basis of the guiding centre
(GC) approximation and more specifically on its canonical Hamiltonian formulation
(White 1982; Littlejohn 1983; Meiss & Hazeltine 1990; Cary & Brizard 2009). Conditions
for resonant interactions strongly depend on the three constants of the motion of the
unperturbed GC motion in an axisymmetric magnetic equilibrium, namely the energy
E, the magnetic moment μ and the canonical toroidal momentum Pζ (Kaufman 1972).
Therefore, particles may or may not resonantly interact with a mode, depending on their
different kinetic characteristics. The resonance conditions for low-energy particles, which
mostly follow magnetic field lines, can be determined by the helicity of the equilibrium
magnetic field described by the safety factor q. However, for more energetic particles that
significantly drift from the magnetic field lines, an effective helicity of the drift particle
orbit, defined as the kinetic-q factor (Gobbin et al. 2008), is involved in the resonance
conditions. The latter is determined by the orbital spectrum of the GC motion (Brizard &
Duthoit 2014; Zestanakis et al. 2016; Antonenas, Anastassiou & Kominis 2021), that is,
the poloidal and bounce/transit-averaged toroidal precession frequencies of trapped and
passing particles.

The presence of an electric field has been shown to be closely related to edge magnetic
islands introduced by RMPs for ELM mitigation, which results in ambipolar electron/ion
transport near islands (Spizzo et al. 2014; Ciaccio et al. 2015) and is responsible for
flows measured during RMP applications (McCool et al. 1990; Shaing 2002; Evans 2015).
Moreover, a drastically increased radial electric field Er accompanies H-mode operation in
fusion plasmas, as was first reported in ASDEX (Wagner et al. 1982) and has been reported
in many other fusion devices ever since. In addition to the strong radial electric field,
the L–H transition is accompanied by the formation of an edge transport barrier (ETB)
across the pedestal of the pressure and density profiles, suppressing the particle transport
perpendicularly to the magnetic field and increasing accordingly the plasma pressure
and density gradient (Itoh & Itoh 1996). Due to its efficient confinement characteristics,
H-mode operation is considered as the standard baseline scenario for ITER operation
(Doyle et al. 2007). Even though a plethora of analytical models have emerged to interpret
the basic mechanism under the L–H transition (Itoh & Itoh 1988; Shaing & Crume 1989;
Connor & Wilson 2000) and many experiments have been conducted to verify these
models (Burrell 1997; Connor & Wilson 2000; McDermott et al. 2009; Viezzer et al. 2013,
2014; Cavedon et al. 2017; Liang et al. 2018; Cavedon et al. 2020), the full understanding
of the physical mechanism for the enhanced plasma confinement in H-mode operation
is an open issue. Theoretical studies have been mainly focused on neoclassical effects
following two directions. First, they consider the orbit squeezing effect, according to
which the orbit shape of the particle drift can be drastically changed due to the radial
electric field so that the ion banana widths can be significantly decreased resulting in
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reduced prompt losses (Hazeltine 1989; Chankin & McCracken 1993; Krasheninnikov &
Yushmanov 1994; deGrassie et al. 2009; Brzozowski et al. 2019). Second, the suppression
of the perturbation-driven transport due to the formation of ETB caused by the E × B
shear flow is investigated. The interplay of the magnetic field shear with the E × B shear
flow, along with the finite width of the particle drift orbit, determines the kinetic-q factor
(Gobbin et al. 2008; Ogawa et al. 2016; Zestanakis et al. 2016; Sanchis et al. 2019;
Antonenas et al. 2021). The latter dictates the conditions for resonant mode–particle
interactions, as well as for the formation of transport barriers (TBs) at local extrema of the
kinetic-q profile, resulting in reduced transport and enhanced confinement (Horton et al.
1998; Morrison 2000; Kurki-Suonio, Lashkul & Heikkinen 2002; Connor et al. 2004;
Wagner et al. 2006; Pütterich et al. 2009; Falessi, Pegoraro & Schep 2015; Chen, Xu &
Wang 2018; Di Giannatale et al. 2018a, 2018b; Ida & Fujita 2018; Pegoraro et al. 2019).
Thus, the kinetic-q factor describes the role of the background magnetic field and the
macroscopic flows in plasma transport and stability, under perturbing non-axisymmetric
modes and fluctuations. It is worth noting that the dynamics of TB formation is a topic of
intense research interest; however, most previous works either neglect neoclassical drifts
(Rosalem, Roberto & Caldas 2014; Marcus et al. 2019; Grime et al. 2023) or consider
simplified cylindrical geometries (Ogawa et al. 2016).

The radial electric field is calculated from the lowest order radial force balance equation
(Groebner, Burrell & Seraydarian 1990; Burrell 1997),

Er = ∇Pi

niqi
− (V i × B)r = ∇Pi

niqi
− (Vθ,iBφ − Vφ,iBθ ), (1.1)

which is valid for any plasma species (or impurity) i, with P, n, q,Vθ ,Vφ,Bθ and Bφ being
the pressure, density, charge, poloidal and toroidal velocity, poloidal and toroidal magnetic
field, corresponding to each species. Experimentally, Er can be directly measured from
the highly localised and accurate signals of charge exchange recombination spectroscopy
(CXRS) diagnostics, with the pressure gradient ∇Pi being the main contributor to Er for
main ions, and poloidal rotation Vθ,iBφ for impurities (Viezzer et al. 2013, and references
therein). As long as the radial electric field does not depend on the toroidal angle,
although it does not perturb the integrability of the GC motion, it strongly modifies
the energy landscape of the GC motion. As a consequence, it can significantly modify
both the shape of the orbits and their orbital spectrum, and therefore, the kinetic-q
factor determining the resonance conditions with non-axisymmetric modes and the overall
transport characteristics.

In this work, we use a canonical Hamiltonian GC formulation to systematically study
the effect of a radial electric field localised across the pedestal on the particle orbits,
under resonant perturbative modes in a toroidal plasma configuration. We investigate
the topological changes of the GC phase space through bifurcations of new particle
equilibrium points and families of orbits, as well as drastic orbit changes due to the
radial electric field that can transform an otherwise lost orbit to a confined one, and vice
versa, even in the absence of any perturbation, consequently modifying the particle prompt
losses. Moreover, we calculate the orbital spectrum and the kinetic-q factor of the orbits
as a function of the constants of the motion for thermal as well as for higher energy
particles, taking fully into account the neoclassical drifts, and we show that resonance
conditions are drastically altered under the influence of the radial electric field. It is
also demonstrated that the radial electric field may prevent or facilitate the resonant
mode–particle interactions between specific modes and particles with certain kinetic
characteristics. The calculation of the kinetic-q factor enables the accurate prediction
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of the location of the resonances in the six-dimensional phase space of the system.
The a priori knowledge of the resonance locations for a given set of modes is
systematically confirmed by numerical particle tracing simulations, suggesting a valuable
tool for investigating and designing mode synergies for plasma transport control. Finally, it
is shown that the kinetic-q factor can be used for locating the phase space positions where
TBs are formed, persistently bounding the particle orbits and reducing extended particle,
energy and momentum transport.

The paper is organised as follows. In § 2, the canonical Hamiltonian formulation of
the GC motion is presented, while in § 3, we describe the configuration of the electric
and magnetic field, and the respective GC equations of motion. In § 4, we present the
modification of the phase space topology and orbit shape due to the radial electric field
and its effect on confinement, in the absence of perturbative modes. In § 5, we describe
the action-angle formulation of the GC motion that allows the consistent calculation of
the orbital spectrum, the kinetic-q factor and the resonance conditions, and compare the
cases of zero and non-zero electric field. In § 6, we demonstrate the importance and
the accuracy of the a priori knowledge of the resonances and TBs’ locations, based on
the kinetic-q factor, through numerically calculated Poincaré surfaces of section, under
the presence of specific non-axisymmetric modes.

2. Canonical GC Hamiltonian

In a toroidal magnetic configuration consisting of nested magnetic-flux surfaces, the
equilibrium magnetic field can be given in contravariant and covariant form using Boozer
coordinates (Boozer 1981; White & Chance 1984),

B = ∇ψ × ∇θ + ∇ζ × ∇ψp,

B = g(ψ)∇ζ + I(ψ)∇θ + δ(ψ, θ)∇ψ,

}
(2.1)

where ζ and θ are the toroidal and poloidal angles, respectively, ψ is the toroidal flux,
ψp is the poloidal flux, the functions g(ψ), I(ψ) are related to the poloidal and toroidal
current, and δ(ψ, θ) measures the non-orthogonality of the coordinate system. In such
straight-field-line coordinates, the helicity of the field lines is given from the expression

dθ
dζ

= B · ∇θ
B · ∇ζ = 1

q(ψ)
(2.2)

with dψp/dψ = 1/q(ψ) and q(ψ) being the safety factor.
The GC Lagrangian of a charged particle in the presence of electromagnetic fields

is given as L = (A + ρ‖B) · V + μξ̇ − H, where A, B are the vector potential and the
corresponding magnetic field, respectively, ρ‖ is the velocity component parallel to
the magnetic field, normalised to B, V is the velocity of the guiding centre, μ = v2

⊥/2B is
the magnetic moment, conjugate to the gyro-phase ξ , and

H = ρ2
‖B2/2 + μB +Φ (2.3)

is the Hamiltonian of the system, with the magnetic field being normalised to its value
on magnetic axis B0, and Φ the electric potential (Littlejohn 1983). The GC motion is
expressed in normalised units, namely, time is normalised to inverse cyclotron angular
frequency ω−1

0 , with ω0 = qiB0/mi the on axis gyro-frequency, qi and mi the ion charge
and mass, respectively, lengths are normalised to the major axis R0, and consequently,
energy is normalised to miω

2
0R2

0.
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The canonical momenta conjugate to angles ζ and θ are properly expressed in relation
to the variables ρ‖, g(ψ) and I(ψ) (White 2014, p. 79), as

Pζ = g(ψ)ρ‖ − ψp(ψ), (2.4)

Pθ = ψ + ρ‖I(ψ), (2.5)

and consequently, the Hamiltonian in (2.3) is given in the form

H = (Pζ + ψp(Pζ ,Pθ ))2

2g2(Pζ ,Pθ )
B2(Pζ ,Pθ , ζ, θ)+ μB(Pζ ,Pθ , ζ, θ)+Φ(Pζ ,Pθ , ζ, θ). (2.6)

The absence of an explicit time dependence renders the Hamiltonian, and hence the energy
E of the system, a constant of the motion, whereas the absence of the gyro-phase ξ
results in the conservation of the magnetic moment μ. In the case of an axisymmetric
configuration where both the magnetic field and the electric potential are independent of
the toroidal angle ζ , the conjugate canonical momentum Pζ is an additional invariant of
the motion. The existence of three independent constants of the motion (E, μ,Pζ ) renders
the system integrable and along with the sign of ρ‖, are uniquely defining, and hence
labelling, the orbits of the particles in phase space.

In the following sections, our calculations are carried out under the consideration of
a circular cross-section large aspect ratio (LAR) magnetic field equilibrium, with ε =
r0 � 1 being the inverse aspect ratio and r0 the minor axis (normalised to major axis R0).
Under this approximation, it is easy to show that, to leading order, I(ψ) � 0, g(ψ) � 1,
δ(ψ, θ) = 0 (White & Chance 1984; White 2013b). Subsequently, from (2.5), we get Pθ =
ψ = r2/2, while the magnetic field acquires the quite simple form B = B0(1 − r cos θ) =
B0(1 − √

2Pθ cos θ).

3. Radial electric field across the pedestal

We consider a strong, radially dependent and highly localised non-monotonic electric
field, neglecting any dependence on the poloidal or toroidal angle, which is given from the
expression

Er(r) = −Ea exp
[
−(r − ra)

2

r2
w

]
, (3.1)

where Er(r) is the well-like profile of the electric field, Ea is the amplitude (depth) of the
well located at r = ra and rw is the waist of the radial profile. Adopting typical values
for the electric field profile near the wall (Kurki-Suonio et al. 2002; Burrell et al. 2004;
McDermott et al. 2009; Viezzer et al. 2013; Huang & Wang 2020) and disregarding its
shape close to the core, the respective well is placed at ra = 0.98r0, having a waist rw =
r0/50 and an amplitude Ea � 75 kV m−1, deliberately selected to yield an electrostatic
potential of approximately Φ = 1.2 kV at the last closed flux surface (LCFS) denoted as
ψwall.

The electric potential corresponding to (3.1) is straightforwardly calculated from the
integral

Φ(r) = −
∫ r

0
Er(r′) dr′, (3.2)
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(a) (b)

FIGURE 1. Radial profiles of (a) the radial electric field Er(ψ) and of (b) the respective electric
potential Φ(ψ). For a LAR magnetic field equilibrium,ψ = Pθ . The red vertical line marks the
wall.

which, in terms of the poloidal momentum Pθ = ψ = r2/2 (for a LAR magnetic field
equilibrium), yields

Φ(Pθ ) = Ea

√
πPθw

2

[
erf
(√

Pθ − √
Pθa√

Pθw

)
+ erf

(√
Pθa

Pθw

)]
(3.3)

with Pθw = r2
w/2 and Pθa = r2

a/2 being the waist and the location of the well, respectively.
Figures 1(a) and 1(b) show the radial profile of the radial electric field as well as the
respective potential barrier, as functions of the toroidal flux ψ , coinciding with the
canonical poloidal momentum Pθ for a LAR equilibrium.

Under the aforementioned approximations of a LAR equilibrium magnetic field and a
purely radial electric field, the GC Hamiltonian takes the form

H =
(
Pζ + ψp(Pθ )

)2

2
(1 −

√
2Pθ cos θ)2 + μ(1 −

√
2Pθ cos θ)+Φ(Pθ ), (3.4)

where the axisymmetry of the dynamical system is preserved due to the absence of
the canonical angle ζ . The corresponding equations of motion are derived from the
expressions

Ṗζ = −∂H
∂ζ

= 0, (3.5)

Ṗθ = −∂H
∂θ

= − (Pζ + ψp(Pθ ))2(1 −
√

2Pθ cos θ)
√

2Pθ sin θ − μ
√

2Pθ sin θ, (3.6)

ζ̇ = ∂H
∂Pζ

= (Pζ + ψp(Pθ ))(1 −
√

2Pθ cos θ)2, (3.7)

θ̇ = ∂H
∂Pθ

= −(1 − √
2Pθ cos θ)(Pζ + ψp(Pθ ))2√

2Pθ
− μ cos θ√

2Pθ

+ (1 −
√

2Pθ cos θ)2(Pζ + ψp(Pθ ))ψ ′
p(Pθ )+Φ ′(Pθ ), (3.8)

where primes imply differentiation with respect to Pθ . Equation (3.8) clearly shows that
the radial electric field effects are introduced exclusively through the Φ ′(Pθ ) term of the
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poloidal angle time-derivative θ̇ , appearing additively to the magnetic shear effects, as
expressed by the term proportional to ψ ′

p(Pθ ), a fact that has a significant impact on the
modification of GC orbits in terms of their shape and poloidal angular frequency, as will
be shown in the following sections.

The magnetic shear is dictated by the q factor profile, which in our analysis is considered
according to the commonly used expression (White 2014, p. 56)

q(Pθ ) = q0

[
1 +

(
Pθ

Pθk(qwall)

)n]1/n

, (3.9)

where q0 is the value of the safety factor on the magnetic axis, Pθk is a function related to
the location of the ‘knee’ of the profile and n characterises the order of the equilibrium,
with n = 1, 2, 4 denoting a peaked, round or flat profile, respectively. In that respect, the
poloidal flux can be analytically obtained by integrating the rotational transform i(Pθ ) =
1/q(Pθ ),

ψp(Pθ ) =
∫

i(Pθ ) dPθ , (3.10)

which results in the hypergeometric function 2F1 of the general form

ψp(Pθ ) = Pθ
q0

2F1

[
1
n
,

1
n
; 1 + 1

n
,

(
1 −

(
qwall

q0

)n)( Pθ
Pθ wall

)n]
, (3.11)

where qwall and Pθ wall are the values of the safety factor and the poloidal momentum on the
wall, respectively. In the following analysis, we select a q profile with the moderate n = 2
value, q0 = 1.1 and qwall = 3.5.

The consideration of the LAR equilibrium, along with the corresponding simplification
ψ = Pθ and the analytical expression (3.11) for ψp(Pθ ), result in an explicit expression of
the equations of motion. It is important to note that for a generic (non-LAR) equilibrium,
the Hamiltonian cannot be explicitly expressed in canonical variables, instead, one should
use the equations of motion in terms of (θ, ψp, ρ‖, ζ ) (White 2014) and afterwards
calculate the canonical momenta Pθ , Pζ , according to (2.4), (2.5). To solve the equations
of motion (3.5)–(3.8), a fourth-order Runge–Kutta method is implemented, also used
in well-known orbit following codes like ORBIT (White & Chance 1984) or ASCOT
(Hirvijoki et al. 2014).

4. Change of the GC phase space topology and orbit shape due to Er

The existence of a radial electric field that is localised near the LCFS of the tokamak
affects the topology of the GC phase space by introducing additional fixed points and
by modifying the shape of the GC orbits. As a result, the presence of the electric field
can significantly modify the prompt particle losses by changing an otherwise confined
orbit into a lost one, and vice versa (Hazeltine 1989; Chankin & McCracken 1993;
Krasheninnikov & Yushmanov 1994).

For typical values of Er amplitude (10–60 kV m−1) and waist (1–2 cm, restricted in the
range 0.85r0–1.05r0), the corresponding electric potential energy is of the order of a few
hundreds of eV. Even though these values of the potential energy are not sufficient to
essentially reshape the highly energetic particle trajectories, the impact to thermal and
mildly energetic particles, located well inside the bulk of the distribution function profile,
could considerably affect the confinement inside this region. Apparently, this impact
depends strongly on the amplitude of the potential barrier and will increase as it becomes
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comparable to the kinetic energy of the particles, as well as on the effective time that a
particle spends inside the well during its radial drift.

When no electric potential exists, the θ − Pθ plane of the phase space of the LAR
Hamiltonian demonstrates a single elliptical point along the outboard midplane θ = 0,
with its location along Pθ depending on μ and Pζ . Evidently, the existence of a radial
electric field can effectively modify this picture in two ways. First, the inclusion of the
potential term Φ(Pθ ) in the Hamiltonian may impose significant changes in the topology
of the phase space, in the sense that either the location of the respective critical points
may be rearranged or additional critical points may emerge due to bifurcations. In either
case, the transformation of the phase space could significantly affect the respective orbits
in terms of their characterisation as passing or trapped, and confined or lost. Second, when
the elliptic point of the system lies in the neighbourhood of the pedestal, the lower-energy
orbits residing relatively close to the elliptic point will undergo the strongest impact, as
their energy will be comparable to the amplitude of the potential barrier. Moreover, due to
their relatively small radial drift, these particles will remain well inside the vicinity of the
strong potential barrier along their entire orbits, increasing the effective interaction time
of the system. However, higher energy particles undergo a wider radial drift motion inside
the torus, and therefore their trajectories spend a smaller fraction of their period inside the
pedestal, decreasing the influence that Er has on the respective orbits.

These features are very clearly illustrated in figure 2, where in panels (a,c,e), we show
the θ − Pθ projection of the phase space of the Hamiltonian (3.4), for various values of
the perpendicular kinetic energy μB0 and the toroidal momentum Pζ , with the latter being
properly selected for the elliptical point to be located in the vicinity of the potential barrier,
where its effects are more acute. Coloured contour-plots correspond to the kinetic energy
Ek levels of (2.6), when Φ(Pθ ) = 0, and red contour-lines correspond to energy levels
withΦ(Pθ ) being given from (3.3). Accordingly, in panels (b,d, f ), the respective orbits are
depicted in the configuration space of the LAR magnetic equilibrium. Greyed areas denote
the wall (LCFS) of the equilibrium, and no re-entrance is allowed for particles beyond this
point as they are considered to be lost. As it is clearly seen, the modification of the phase
space trajectories is more vividly manifested for thermal and weakly energetic particles
initialised along the potential gradient, whereas higher energy particles experience only
minor modifications in their orbits, in the form of small variations from the original Er = 0
case.

Focusing on the implications that the radial electric field imposes upon the particles’
orbits for various sets of parameters, in figure 2(a,b), we depict the orbits of thermal
particles with μB0 = 0.5 keV, Pζ = −0.272, for various values of the total energy E.
In panel (a), it is shown that in the absence of Er (coloured orbits), the trapped/passing
boundary is formed beyond the wall, hence, there exist low-energy counter-passing orbits
being confined for small Pθ which become eventually lost as Pθ increases. In the presence
of Er (red orbits), the picture changes significantly and confined trapped orbits populate
the phase space near the wall, as a result of the emergence of an additional elliptical point
inside of the wall, along outboard midplane θ = 0. Moreover, the appearance of a pair of
critical points close to the wall, an elliptic along θ = ±π and a hyperbolic along θ = 0,
respectively, is responsible for the appearance of a new family of orbits oscillating around
the elliptic point at θ = ±π, as well as for the unusual parallel velocity reversal points
encountered by passing orbits, manifested also as turning points in the poloidal direction
of the configuration phase (panel b).

The existence of turning points in the pedestal is associated with the contribution of
E × B drift velocity to the total perpendicular velocity of the plasma particles and the
conservation of the magnetic moment μ. Normally, for a passing orbit in a torus, the
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(a) (b)

(c) (d)

(e) ( f )

FIGURE 2. (a,c,e) GC orbits depicted in phase space, with background coloured orbits
corresponding to Er = 0 and red orbits corresponding to Er �= 0. (b,d, f ) Characteristic GC orbits
for Er �= 0, depicted in configuration space. Dots and crosses denote elliptic and hyperbolic
critical points, respectively, and white dashed lines denote the trapped-passing boundaries
(separatrices) when Er �= 0. (a,b) Thermal particles with μB0 = 0.5 keV, Pζ = −0.0272. Here,
Er causes the emergence of additional critical points near the wall, inducing additional trapped
orbits along the θ = π midplane and twice-reversed passing particles manifesting the abrupt
changes of the perpendicular drift velocity. (c,d) Low-energy particles with μB0 = 2 keV,
Pζ = −0.025. Here, Er rearranges the orbits into the confined trapped domain. (e, f ) Energetic
particles with μB0 = 10 keV, Pζ = −0.0125. As the kinetic energy increases, the contribution
of the potential to the total energy decreases, leaving the phase space of such orbits practically
undisturbed. The confined passing orbits retain their shapes, and only minor modifications near
the wall witness the presence of Er.
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initial velocity ratio v‖0/v⊥0 is sufficiently large to prevent the existence of a turning point;
however, when a radial electric field is present, the sudden increase of the perpendicular
drift velocity VE×B inside the pedestal results in the decrease of the velocity ratio, allowing
now the velocity reversal due to ∇B drift along the orbit. As soon as the influence of the
electric field starts to decline, the particle goes through its second turning point, carrying
out a full rotation around the magnetic axis.

In figure 2(c,d), we depict low-energy particles with μB0 = 2 keV and Pζ = −0.025. In
the absence of Er (coloured orbits), the dominant elliptic point roughly touches the wall,
and consequently, the near-wall area is populated by either confined counter-passing or
promptly lost trapped particles. In the presence of the radial electric field (red orbits), the
existence of the elliptic point at θ = 0, Pθ � 0.9Pθ,wall, drastically changes the topology of
the phase space, allowing for the banana orbit width squeezing (Hazeltine 1989; Chankin
& McCracken 1993; Krasheninnikov & Yushmanov 1994) and the existence of confined
trapped orbits, as well.

Finally, figure 2(e, f ) depicts orbits of higher-energy particles with μB0 = 10 keV and
Pζ = −0.0125. In this instance, the kinetic energy of the particles dominates over the
potential barrier, and counter-passing orbits populate almost exclusively the outer area
of the torus, regardless of the presence of the radial electric field. The relatively large
radial drift undergone by the particles allows only a partial interaction with the potential
gradient, which is constrained within the narrow pedestal region. This weak interaction
is graphically witnessed in both the phase space (panel e) and the configuration space
(panel f ), by observing the minor deviations between the respective orbits in the absence
(coloured orbits), and in the presence (red orbits) of Er.

5. Orbital spectrum modification due to Er

The electric potential term of the Hamiltonian does not affect the integrability property
of the GC motion; however, as shown in (3.8), it directly affects the time evolution of
the poloidal angle and modifies the poloidal period, as well as the periods of the other
degrees of freedom that are coupled to the poloidal motion. Hence, apart from the shape
variations that a trajectory undergoes due to the existence of the potential barrier, the
frequency spectrum of the respective orbits may significantly deviate from that obtained
in the absence of Er, and consequently, rearrange dramatically the resonance condition
of the particle orbits with non-axisymmetric perturbations. This aspect is of paramount
importance as the resonant mode–particle interactions dictate momentum and particle
transport phenomena in fusion plasmas (Heidbrink & White 2020; White & Bierwage
2021).

In the following, we investigate the impact of the radial electric field on the orbital
spectrum, namely the poloidal and the bounce/transit-averaged toroidal precession
frequencies, of different orbits, characterised by a specific set of constants of the motion
(μ,E,Pζ ), and therefore, the respective drift-mode resonant numbers corresponding to
these orbits. To perform our calculations, we take advantage of the Hamiltonian framework
by describing our system in the action-angle variables formalism which fully exploits the
canonical structure of GC dynamics (Zestanakis et al. 2016; Antonenas et al. 2021).

The integrability of the GC Hamiltonian (3.4) allows for a canonical transformation
from the original canonical variables to action-angle variables

(μ, ξ) → (Jξ , ξ̂ ),

(Pζ , ζ ) → (Jζ , ζ̂ ),

(Pθ , θ) → (Jθ , θ̂ ),

⎫⎪⎪⎬
⎪⎪⎭ (5.1)
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using the appropriate mixed-variable generating function (Lichtenberg & Lieberman 1992;
Goldstein, Poole & Safko 2002)

F2(Jξ , Jζ , Jθ , ξ, ζ, θ) = ξJξ + ζJζ + f2(Jξ , Jζ , Jθ , θ), (5.2)

with

f2(Jξ , Jζ , Jθ , θ) = f2(J , θ) =
∫ θ

Pθ
(
Jξ , Jζ , Jθ (Jξ , Jζ ), θ ′) dθ ′. (5.3)

It is quite straightforward to show that in the first two sets of (5.1), the respective actions
are equal to the old momenta, that is, μ = Jξ and Pζ = Jζ , while the third action is defined
as

Jθ = 1
2π

∮
Pθ (E, Jξ , Jζ , θ) dθ, (5.4)

where E is the total energy of the dynamical system, and Jθ may correspond to either
bounced (trapped) or transit (passing) motion. The new angles (canonical positions)
corresponding to bounce-averaged gyro-angle, toroidal and poloidal angles, respectively,
are given in relation to the old angles as (Kaufman 1972; Zestanakis et al. 2016)

ξ̂ = ξ + ∂f2(J, θ)

∂Jξ
, ζ̂ = ζ + ∂f2(J, θ)

∂Jζ
, θ̂ = ∂f2(J, θ)

∂Jθ
. (5.5a–c)

It is worth noting that the angles (ξ, ζ, θ) do not exhibit a linear time dependence, and
hence, the respective frequencies (ξ̇ , ζ̇ , θ̇ ) do not represent any physical frequency of the
Hamiltonian system. However, (5.5a–c) implies that θ̂ is a periodic function of θ , and as
such, both share the same periodicity, yielding

Tθ̂ = Tθ = 2π/ω̂θ , (5.6)

a feature that does not apply to the rest of the angles ξ̂ , ζ̂ .
Omitting the variables related to fast gyromotion for brevity, the orbital frequencies of

the remaining degrees of freedom are acquired by virtue of implicit differentiation

ω̂ζ

ω̂θ
= ∂H (

Jξ , Jζ , Jθ (Jξ , Jζ )
)
/∂Jζ

∂H (
Jξ , Jζ , Jθ (Jξ , Jζ )

)
/∂Jθ

= −∂Jθ (Jξ , Jζ )
∂Jζ

(5.7)

revealing the fact that under the action-angle formalism, the poloidal action (−Jθ ) can be
considered as the new Hamiltonian of the system (White & Chance 1984; Antonenas et al.
2021), with the time being normalised to the inverse poloidal frequency ω̂θ . Substituting
(5.4) into (5.7) yields

ω̂ζ

ω̂θ
= − 1

2π

∂

∂Jζ

∮
Pθ (E, μ,Pζ , θ) dθ = − 1

2π

∮
∂Pθ (E, μ,Pζ , θ)

∂Jζ
dθ

= 1
2π

∮
1
θ̇

∂H
∂Pζ

dθ = 1
2π

∫ Tθ

0
ζ̇ dt = 1

2π

∫ ζ2(t=Tθ )

ζ1(t=0)
dζ,

ω̂ζ

ω̂θ
= (ζ)Tθ

2π
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.8)
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Considering also that

〈ζ̇ 〉Tθ
.= 1

Tθ

∫ Tθ

0
ζ̇ dt = 1

Tθ

∫ ζ2(t=Tθ )

ζ1(t=0)
dζ = ω̂θ

2π
(ζ)Tθ , (5.9)

equations (5.8) and (5.9) lead us to the conclusion that

ω̂ζ = ˙̂
ζ = 〈ζ̇ 〉Tθ , (5.10)

suggesting that the frequency ω̂ζ is directly associated with the bounce/transit averaged
toroidal precession (White 2015; Antonenas et al. 2021).

The toroidal to poloidal frequency ratio calculated in (5.8) is associated with the kinetic
resonance condition of the unperturbed GC particle motion with any non-axisymmetric
perturbative mode of the form Fmn(ψ) exp[i(nζ̂ − mθ̂ )]

nω̂ζ − mω̂θ = 0,

qkin ≡ ω̂ζ

ω̂θ
= m

n
,

⎫⎬
⎭ (5.11)

with qkin being the drift-frequency ratio, also known as the kinetic-q factor, and m, n
being the (integer) poloidal and toroidal mode numbers, respectively. The concept of the
kinetic-q factor, first introduced by Gobbin et al. (2008), has a paramount role in resonant
mode–particle interactions (White 2014), and its significance was first reported when a
discrepancy was detected between the location of the resonant orbits and the location of
the resonant surfaces of the magnetic q profile, in MST reversed field pinch (Fiksel et al.
2005). The difference between kinetic and magnetic q factors implies that kinetic and
magnetic resonant islands, along with the accompanied chaoticity, may occur in different
spatial positions, depending on the kinetic characteristic of each orbit, namely the energy,
the magnetic moment, and the poloidal and toroidal momenta. In particular, higher energy
particles experience significant radial drifts across the magnetic field lines, and their
trajectory only partially resides in the vicinity of a magnetic island, suggesting that the
chaoticity of the orbits cannot be directly derived from the chaoticity of the magnetic
field lines. This is not the case for low-energy particles, whose radial drift is considerably
smaller, and hence, particle trajectories follow the magnetic field lines, inheriting its
chaoticity (Cambon et al. 2014; He et al. 2019, 2020; Moges et al. 2024).

To corroborate our arguments, regarding the expected changes of the orbital spectrum
and the kinetic-q factor, in this section, we present indicative cases, corresponding to those
shown in figure 2. In figures 3–5, we present the orbital spectrum, that is, the poloidal
and bounce/transit-averaged toroidal precession frequencies in panels (a), as well as the
kinetic-q factor (qkin) in panels (b), in the absence of the radial electric field. Accordingly,
panels (c,d) depict the same information when a radial electric field is present.

In particular, figure 3 depicts the orbital frequencies and the kinetic-q factor for
thermal particles corresponding to figure 2(a,b), with μB0 = 0.5 keV and Pζ = −0.0272,
in the (a,b) absence and in the (c,d) presence of the radial electric field. The existence
of a non-zero Er changes both quantitatively and qualitatively the orbital frequencies.
The drastic qualitative changes, manifested by multiple branches, correspond to the
introduction of additional orbit families due to the radial electric field. Kinetic-q is
modified accordingly, suggesting that the radial electric field drastically changes the
conditions for resonant particle interaction with non-axisymmetric modes, since (5.11)
can now be fulfilled for different mode numbers (m, n) and particle energies. According
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(a) (c)

(b) (d)

FIGURE 3. Effects of Er on the orbital spectrum and the kinetic-q factor (qkin) for thermal
particles, with μB0 = 0.5 keV, Pζ = −0.0272, corresponding to figure 2(a,b). (a,c) Poloidal
frequency ω̂θ (light blue points) and toroidal precession frequency ω̂ζ (orange points), as
functions of the energy E, for (a) Er = 0 and (c) Er �= 0. (b,d) Kinetic-q factor qkin = m/n =
ω̂ζ /ω̂θ , as a function of the energy E, for (b) Er = 0 and (d) Er �= 0. Multiple branches
correspond to different orbit families.

to figure 3(d), the resonance condition can now be fulfilled for two different particle
energies, for orbits belonging either in different families (upper branches) or in the same
family (lower branch), where the latter presents a non-monotonic dependence on the
energy. Moreover, the existence of a gap in the value range of qkin suggests that resonance
conditions cannot be fulfilled for modes with an m/n ratio residing within this gap. For
example, a perturbative mode with (m, n) = (10,−3) that can resonate with the particle
motion when Er = 0 cannot resonate when Er �= 0. Such features evidently alter the
resonant domain of the interaction upon the emergence of a radial electric field, cutting off
or permitting specific modes to resonantly interact with the particles, indicating a major
modification of stochastic particle transport in each case.

In figure 4, orbital frequencies and kinetic-q factor are depicted for low-energy particles
corresponding to figure 2(c,d), with μB0 = 2.0 keV and Pζ = −0.025. As already pointed
out, the unconfined trapped orbits are transformed into confined trapped orbits due to the
presence of Er, but more importantly, the kinetic-q curve is significantly changed. The
orbital spectrum is modified due to the presence of the radial electric field in such a way
that resonances with modes having negative m/n can take place, whereas these modes are
non-resonant when Er = 0.

The case of mildly energetic counter-passing orbits corresponding to figure 2(e, f ) is
shown in figure 5. Although the modifications of the orbit shapes as well as of the
orbital frequencies due to Er are not drastic, the respective effect on the kinetic-q factor
is quite important, as shown by comparing figure 5(b,d). In addition to the lack of
resonances for qkin > 2.62 for Er �= 0, the non-monotonicity of the qkin(E) curve (also
shown in the lower branch of figure 3d) introduces two qualitatively different features
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(a) (c)

(b) (d)

FIGURE 4. Same as figure 3 for low energy particles with μB0 = 2 keV, Pζ = −0.025,
corresponding to figure 2(c,d). The presence of the radial electric field changes the sign and
the monotonicity of the qkin(E) curve.

in comparison to the Er = 0 case. First, the non-monotonicity indicates the likeliness
of particles with different energies (located at different flux surfaces) to resonantly
interact with the same perturbative mode. For instance, a mode with (m, n) = (5, 2)
could resonantly affect orbits with energy E = 14.7 keV when Er = 0, whereas all orbits
with E = {14.7 keV, 16.8 keV, 18.4 keV} will be susceptible to resonantly interact with
the specific mode when a radial electric field is present. Second, the local extrema of the
qkin(E) curve, where q′

kin(E) = 0, indicate the existence of shearless points which have a
great significance for stochastic transport, as they signify the onset of stochastic transport
barriers (STBs), reducing the radial transport, even when chaotic orbits occur (Morrison
2000), as will also be discussed in the following section.

6. Resonant mode-particle interaction and stochastic transport in the presence of Er

The calculations of the orbital spectrum and the kinetic-q factor for the unperturbed
GC motion in an axisymmetric LAR magnetic equilibrium in the presence of a radial
electric field, allows for an a priori knowledge of important properties of stochastic
transport under resonant mode–particle interaction with non-axisymmetric perturbative
modes. More specifically, these calculations allow to pinpoint, with a remarkable accuracy,
the regions of the six-dimensional phase space where significant particle and momentum
transfer takes place, as well as the existence of dynamical barriers separating different
regions of stochastic transport. This is of particular importance since the effects of
resonant mode–particle interaction is strongly inhomogeneous in the phase space. It
is worth emphasising that this information does not require time-consuming numerical
particle tracing and provides physical intuition on the characteristics of complex particle
dynamics and stochastic transport.

Time-independent perturbative magnetic modes can be given in the form

δB = ∇ × αB (6.1)
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(a) (c)

(b) (d)

FIGURE 5. Same as figure 3 for mildly energetic particles with μB0 = 10 keV, Pζ = −0.0125
corresponding to figure 2(e, f ). The presence of the radial electric field renders the qkin(E)
non-monotonic and introduces local extrema with important implications for stochastic transport
related to stochastic transport barriers.

with α(ψ, ζ, θ) = ∑
m,n amn(ψ) sin(nζ − mθ), amn(ψ) the amplitude profile of the

perturbation, m, n integers that correspond to poloidal and toroidal harmonics of the mode,
and ψ = Pθ for the case of a LAR equilibrium (White 2013b). This type of magnetic field
perturbation is particularly useful under the GC approximation as it sufficiently describes
the ∇ψ component of any perturbation with practical interest, such as MHD activity
of tearing or ideal modes, as well as resonant magnetic perturbations (RMPs) (White
2013a,b), whereas some possible limitations of that scheme are discussed by Ciaccio
et al. (2013). The perturbation term is directly introduced as a modification in normalised
parallel velocity, yielding the expression of the perturbed GC Hamiltonian (White 1982;
White & Chance 1984)

H = (ρ‖ − α)2B2/2 + μB +Φ. (6.2)

Without loss of generality, in terms of the resonant character of mode–particle
interactions and their effects on stochastic transport, in the following analysis, we
consider perturbations with a constant mode amplitude, that is, |amn| = εB0, with ε

being designated as the ratio of the amplitude of the perturbative magnetic mode to
the background magnetic field. It must be noted that, due to the nonlinear character of
the canonical transformation to action-angle variables, a single mode in (ζ, θ) results in
a multi-mode Fourier expansion in terms of the (ζ̂ , θ̂ ) variables, according to (5.5a–c)
(White 2014, p. 109).

The axisymmetry-breaking perturbative modes render the GC Hamiltonian non-
integrable, since the ζ -dependence of the modes results in a no longer invariant toroidal
momentum Pζ , whereas the time-independent character of the perturbations ensures
the invariance of the total energy E. These features suggest that GC dynamics under
time-independent, non-axisymmetric perturbations take place on constant energy surfaces
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of the phase space and facilitate their study in terms of Poincaré surfaces of section in
the (ζ,Pζ ) or (θ,Pθ ) planes, as well as the consideration of the kinetic-q factor (qkin) as a
function of Pζ , for constant (invariant) values of the magnetic moment μ and the energy
E.

In figure 6, we consider the case of thermal particles with μB0 = 0.5 keV and E =
1.5 keV. Panel (a) depicts the projection of the unperturbed orbits in the absence and the
presence of a radial electric field, for different values of the canonical toroidal momentum
Pζ . The non-zero Er introduces unperturbed trapped orbits (red closed orbits), not existing
for Er = 0 (coloured orbits). The kinetic-q factor under the presence of the radial electric
field, determining the position of the resonances with the perturbative mode, is depicted
in panel (c) as a function of Pζ . The labelled red points indicate rational values of
qkin corresponding to fractions of small integers, and therefore primary resonances with
different Fourier components (in terms of the angle variables ζ̂ , θ̂ ) of the perturbative
mode with (m, n) = (5,−3). Evidently, the exact locations of the resonant islands, as
shown in a (ζ,Pζ ) Poincaré surface of section in panel (d), are obtained with a remarkable
accuracy from the curve qkin(Pζ ). The number of resonant islands in (ζ,Pζ ) Poincaré
surface of section coincides with the denominator of the resonant fractions, while the
numerator corresponds to the number of islands in a (θ,Pθ ) Poincaré surface of section, as
shown in panel (b). It should be mentioned that the island width corresponding to different
resonances in both Poincaré surfaces of section depends on the amplitude of each Fourier
component of the perturbative mode, as expressed in angle variables, and determines the
degree of the chaoticity of the phase space (Chirikov 1979; Lichtenberg & Lieberman
1992). In this specific case of thermal particles and perturbative mode, the phase space is
mostly populated by regular orbits corresponding to well-defined KAM curves and island
chains (Lichtenberg & Lieberman 1992), and the perturbation does not lead to stochastic
losses, since orbits are bounded by a surrounding KAM curve located inside the wall, as
shown in panel (b). It is worth emphasising that the application of this specific perturbative
mode (m, n) = (5,−3) is non-resonant in this domain of the phase space when Er = 0, as
can be seen in the range of qkin values shown in figure 3(b). The corresponding Poincaré
surface of section in this case simply consists of plain KAM lines.

The case of low-energy particles with μB0 = 2 keV and E = 2.2 keV is shown in
figure 7, where all unperturbed orbits are trapped for a non-zero Er (red orbits), as shown
in panel (a). The location of resonance island chains, in the presence of a perturbative
mode with (m, n) = (3,−2), is accurately given by the rational values of qkin(Pζ ), as
shown in panels (c,d). Hence, the dominant mode (m, n) = (3,−2) is identified by the
two-island chain at Pζ = −0.02597 in panel (d) and by the three-island encircling chain in
panel (c), having one of its elliptical points approximately at θ � π/10, Pθ � 0.825Pθ wall.
Accordingly, the secondary resonance (m, n) = (5,−4) is identified by the four-island
chain at Pζ = −0.0268 and a corresponding five-island encircling chain with one of each
elliptical points approximately at θ � 0, Pθ � 0.86Pθ wall. In both Poincaré surfaces of
section, we can observe the onset of stochastisation near the separatrix of the primary
island with (m, n) = (3,−2).

For the case of higher-energy particles with μB0 = 10 keV and E = 18 keV, depicted in
figure 8, it is evident that the presence of a radial electric field does not significantly
modify the unperturbed counter-passing orbits, as shown in panel (a). However, in
accordance with figure 5, the kinetic-q factor is drastically modified, as shown in panel
(c). The non-monotonicity of the qkin(Pζ ) curve results in the emergence of two local
extrema, one local minimum at (qkin,Pζ )min = (2.47,−0.0123) and one local maximum at
(qkin,Pζ )max = (2.61,−0.0111). The first consequence of this non-monotonic dependence
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(a) (b)

(c) (d)

FIGURE 6. (a) Unperturbed phase space in Pζ (μ,E,Pθ , θ) representation for particles with
μB0 = 0.5 keV, E = 1.5 keV. Coloured orbits are associated with the case Er = 0, while
red orbits correspond to the Er �= 0 case. (b) Poincaré surface of sections at ζ = 0 for the
perturbed Hamiltonian with ε = 3 × 10−6B0 and (m, n) = (5,−3), in θ − Pθ cross-section. (c)
Demonstration of the semi-analytical profile of kinetic-q (drift-resonance ratio) characterising
constant energy orbits, for various values of Pζ , in the unperturbed system. (d) Poincaré surface
of sections at θ = 0 when mode (m, n) = (5,−3) is applied, in ζ − Pζ cross-section. Thick
dashed red horizontal lines pinpoint the location of the excited resonant modes with respect to Pζ ,
exhibiting a perfect agreement between the numerically calculated values and the theoretically
predicted values of the unperturbed system.

concerns the multiplicity of specific resonances, in the sense that a particular resonant
mode can interact with particles having different toroidal momentum Pζ , or equivalently,
with particles that are located at different flux surfaces (different Pθ ). This feature is
quite essential for particle and energy transport along the radial direction, as particles
in different positions can undergo a resonant interaction with the same perturbative mode.
Provided that the perturbation strength is sufficiently large, for the resonances to become
overlapping, this mechanism describes how a particle can start from the plasma core and
drift all the way to the wall and become lost, entirely through stochastic transport. Second,
the local extrema q′

kin(Pζ ) = 0 indicate regions of zero kinetic shear which are responsible
for the generation of stochastic transport barriers between two adjacent island-chains
(Horton et al. 1998; Morrison 2000; Gobbin et al. 2011; Caldas et al. 2012; Marcus et al.
2019; Grime et al. 2023).
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(a) (b)

(c) (d)

FIGURE 7. Same as figure 6, for particles with μB0 = 2 keV, E = 2.2 keV. Applied
perturbations correspond to the fluctuating magnetic mode (m, n) = (3,−2) with ε = 2 ×
10−6B0.

Figure 8(b,d) illustrate the Poincaré surfaces of section corresponding to the
unperturbed cases of panels (a) and (c), at ζ = 0 and θ = 0, respectively, in the presence
of two perturbing modes with (m, n) = (5, 2) and (m, n) = (13, 5). It is clearly shown that
the locations of the resonant island chains are very accurately predicted by the values of
the kinetic-q factor qkin(Pζ ). Resonances with the (m, n) = (5, 2) mode appear for three
different values of Pζ , whereas resonances with (m, n) = (13, 5) appear for two different
values. In both cases, adjacent regions corresponding to resonances with the same mode,
although highly chaotic, are well separated by persistent KAM curves forming stochastic
transport barriers and bounding the complex particle motion, at Pζ values corresponding
to local extrema of the kinetic-q factor. It is worth emphasising that non-axisymmetric
perturbations induce magnetic field line chaoticity, with TBs bounding the chaotic regions
of the magnetic field lines phase space, when non-monotonic q profiles are considered.
In such cases, STBs appear for low-energy, field-line following particles at shearless
points corresponding to local extrema of the q factor, where q′(ψ) = 0. However, for a
high-energy particle with large drifts across the magnetic field lines, the effective kinetic
shear is properly described by the kinetic-q factor (Gobbin et al. 2008; White 2014;
Antonenas et al. 2021), with its extrema pinpointing the location of the STB. Both cases
are introduced on equal footing in the third and fourth term, respectively, of the equation
of motion for θ̇ , shown in (3.8). Experimental findings indicate that there is a strong
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(a) (b)

(c) (d)

FIGURE 8. Same as figure 6, for trajectories with μB0 = 10 keV, E = 18 keV. Applied
perturbations correspond to the synergetic effect of two resonant modes (m1, n1) = (5, 2) with
ε1 = 5 × 10−6B0, and (m2, n2) = (13, 5) with ε2 = 0.9 × 10−6B0. Magenta and cyan lines
indicate the existence of two STBs, due to Er shear, effectively separating neighbouring chaotic
regions. The locations of the STBs are in perfect agreement with the analytically calculated
locations of shearless points of qkin(Pζ ) curve of panel (c).

correlation between the appearance of local extrema in qkin and the elimination of transport
for high-energy particles, when an edge-localised radial electric field is present (Sanchis
et al. 2019).

7. Summary and conclusions

The presence of a radial electric field in the pedestal area of a tokamak imposes
significant modification in the orbit topology. Rearranged or bifurcated critical points
of the phase space may dramatically change the type of the orbits residing in that area
and significantly modify particle prompt losses, especially for thermal or low-energy
particles. The radial electric field significantly alters the orbital spectrum of the particles
in such a way that it can modify the location of the resonances in the particle phase
space, and prevent or allow resonances with specific modes. The resonance conditions
are determined by the kinetic-q factor, which contains all the essential information for the
shear of the background magnetic field, the E × B shear flow, as well as the neoclassical
finite-orbit-width effects in a toroidal plasma configuration. Moreover, local extrema of the
kinetic-q factor correspond to locations where transport barriers are formed, preventing

https://doi.org/10.1017/S0022377824000047 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377824000047


20 G. Anastassiou, P. Zestanakis, Y. Antonenas, E. Viezzer and Y. Kominis

the extended stochastic particle transport. It is shown that the calculated kinetic-q contains
all the essential information of the macroscopic plasma configuration, allowing for the a
priori knowledge of the exact locations of resonances and transport barriers that determine
particle, energy and momentum transport, as confirmed by numerical particle tracing
simulations.
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