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Abstract

The evaluation of the genetic quality of a seed lot is crucial for the quality control process in
its production and commercialization, as well as in the identification of superior genotypes
and the verification of the correct crossing in plant breeding programmes. Current techniques,
based on the identification of seed morphological characteristics, require skilled analysts, while
biochemical methods are time-consuming and costly. The application of spectral imaging
analysis, which combines digital imaging with spectroscopy, is gaining ground as a fast, accur-
ate and non-destructive method. The success of this technique is closely linked to chemo-
metric techniques, which use statistical and mathematical tools in data processing. The aim
of the work was to evaluate the main procedures in terms of spectral image analysis and che-
mometric procedures applied in seed phenotyping and its practical application. A systematic
review was conducted using the PRISMA methodology, in which a total of 1304 articles were
identified and screened to the inclusion of 44 articles pertaining to the scope. It was concluded
that spectral image analysis has a high ability to classify seeds of different genotypes (93.33%)
in a range of situations: between cultivars; hybrids and progenitors; and hybrids and lines, as
well as in the separation of coated seeds. Accurate classification can be obtained by different
strategies, such as the choice of the equipment type, the spectrum range and extra features,
guided by the characteristics of the species, as well as in the choice of algorithms and dimen-
sionality reduction procedures for the optimization of models when there is a large amount of
data. Despite the fact that the practical application of this technique in seed phenotyping still
needs to be developed for use in laboratories with large volumes of analyses, lots, genotypes
and harvests. Research has been accelerated to overcome the practical challenges of this
method, as seen in works using model update algorithms, online classification systems, and
real-time classification maps. Thus, there are strong indications that the application of multi-
spectral image analysis will reach the routine of seed analysis laboratories.

Introduction

Varietal sorting is an essential part of the quality control process of a seed lot, either in germ-
plasm bank management, production or commercialization, in order to identify its genetic
quality and avoid species mixture (Elmasry et al., 2019). For plant breeding programmes, cul-
tivar discrimination is also crucial to prove the correct crossing between plants, identify super-
ior genotypes and guarantee seed homogeneity according to their minimum descriptors for
the purposes of registering new cultivars. For all these purposes, the process of separating
seeds by its morphological characteristics, such as colour, texture and shape, requires well-
trained analysts and sometimes time-consuming and expensive biochemical and molecular
techniques (Hansen et al., 2016; Zhu et al., 2020).

Thus, non-destructive, rapid and non-subjective methods are of great interest in determin-
ing seed quality (Elmasry et al., 2019; Xia et al., 2019b). In this regard, multispectral image
analysis is a promising alternative that combines spectroscopy with digital imaging. The tech-
nique is based on the reflectance of an object – the intensity that a given surface reflects a
wavelength. An object can be illuminated by different wavelengths [e.g. visible light, near-
infrared (NIR)], and when combined with a digital image, the reflectance of each pixel of
this object’s image can be measured to differentiate it from another (Boelt et al., 2018; Xia
et al., 2019a,b).

Since each pixel contains a dataset (reflectance from each wavelength), the result is a large
amount of data proportional to the number of wavelengths used and the size of the image. As
these data are considered chemical information, the role of chemometrics is to use statistical
and mathematical tools to obtain the most important information from the dataset of each object
(Amigo, 2020).
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Spectral image analysis is considered one of the major emer-
ging technologies in seed analysis and technology. Its versatility,
non-destructive characteristics and rapid determination of quality
attributes of a seed lot, combined with data science, make it pos-
sible to automate the entire seed sorting process (Elmasry et al.,
2019; Xia et al., 2019a,b; Amigo, 2020; Zhou et al., 2020a,b).

The success in applying the technique lies in combining
experimental issues with the process of extracting information
from the seeds and the chemometric strategy used, which may
include from the choice of classification algorithms to data
dimensionality reduction processes. Therefore, the process of
choosing each aspect involved in the analysis is not trivial, and
thus, this systematic review aims to evaluate the main procedures
in terms of spectral imaging analysis and chemometric procedures
applied in seed phenotyping as well as its practical application.

Methodology

The study followed the Preferred Reporting Items for Systematic
Reviews and Meta-analyses (PRISMA) methodology (Moher
et al., 2009; Page et al., 2021), as it presents a clear and systematic
research method with a focus on reproducibility.

Inclusion and exclusion criteria

The inclusion and exclusion criteria were based on literature type,
access, period, language and scope (Table 1). The 15-year period
was chosen to limit the search to new papers, given the recent
expansion of spectral imaging technology in seed science.
Regarding the scope, only papers on spectral imaging analysis
(multispectral and hyperspectral) in seeds were considered;
thus, papers using material not considered as seeds (i.e. grains)
were not considered. Articles using spectral analysis only to quan-
tify chemical components (e.g. oil, protein content) of seeds but
did not classify them into different genotypes (e.g. cultivars or
varieties) were not considered. Language was considered as a cri-
terion to avoid bias in the translation of non-English language
papers.

Search methodology

The keywords for the present work, as well as their synonyms,
were obtained through prior review in studies related to the
areas of seed science and technology and spectroscopy
(Table 2). The databases used were the Web of Science Core
Collection (WOS) and Scopus and were chosen according to pre-
vious research on the number of articles related to the scope pre-
sent in each one. WOS is the database of Clarivate Analytics and
has indexed more than 21,000 papers covering 256 disciplines,
while the Scopus database belongs to Elsevier and is one of the
most related to plant science with peer-reviewed articles. In add-
ition to covering a large quantity of articles related to the topic,
these databases allow the inclusion of Boolean operators for the
search strategy, as well as symbols that allow the inclusion of all
possible terms with the same root.

The search consisted of three steps: identification of potential
articles, screening, and inclusion of articles (Fig. 1). A total of
1304 articles were identified and duplicates were removed with
the aid of the Mendeley Reference Manager management pro-
gramme (Dearden et al., 2011). A total of 308 articles were elimi-
nated based on their characteristics as per the exclusion criteria,
while 508 articles were excluded as per the scope from the

evaluation of the title and abstract. A total of 60 articles were eval-
uated in full and 44 were included in the review.

Statistical analysis

From the articles evaluated, data were collected regarding the
experiment, the best classification model obtained in each study,
as well as other information deemed relevant (Table 3), to identify
possible factors influencing the accuracy of seed classification
through spectral imaging analysis. A multiple generalized linear
regression model with gamma distribution and log-link function
was used, due to the non-normality of the data, in conjunction
with the stepwise feature selection algorithm (backward and for-
ward) to select the final model. The algorithm adds and removes
features and compares the models by means of Akaike’s Selection
Criterion (AIC), in order to obtain a final model with the feature
(or the combination of features) best-fitted (with the lowest AIC
value) to predict the accuracy of spectral imaging analysis applied
to seed phenotyping.

Results and applications

A total of 44 articles from the systematic review were included;
since the authors reported more than one experiment in some
papers, data from all the experiments performed were listed,

Table 1. Inclusion and exclusion criteria

Criterion Eligibility Exclusion

Literature
type

Article Reviews, conference
paper and book chapter

Access Full-text available

Period Between 2006 and 2021 <2006

Language English Non-English

Scope Uses spectral imaging
(e.g. hyperspectral,
multispectral imaging)
applied to seed
phenotyping

Did not use seeds; did
not combine
spectroscopy to image
analysis; or just quantify
certain components but
did not differ cultivars,
varieties, etc.

Table 2. The search strategy used for the systematic review process

Database Search criteria

Web of
Science

TS = ((seed OR seeds) AND (multispectral OR
hyperspectral OR spectral OR spectroscopy OR NIR OR
‘near infrared’ OR nearinfrared OR ‘near-infrared’ OR
reflectance OR chemometrics) AND (variet* OR cultiv*
OR phenot* OR breed* OR hybrid* OR transgenic*) AND
(classification OR discrimination OR identification OR
determination OR phenotyping))

Scopus TITLE-ABS-KEY((seed OR seeds) AND (multispectral OR
hyperspectral OR spectral OR spectroscopy OR NIR OR
‘near infrared’ OR nearinfrared OR ‘near-infrared’ OR
reflectance OR chemometrics) AND (variet* OR cultiv*
OR phenot* OR breed* OR hybrid* OR transgenic*) AND
(classification OR discrimination OR identification OR
determination OR phenotyping))
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including data from the best-performing classification model
(Table 4).

Accuracy, data splitting and validation methods

The average accuracy of the reviewed studies (considering all
experiments listed in Table 4) was 93.33% (±7.07%). In some
studies, the application of spectral image analysis resulted in
100% classification accuracy, as in Zhu et al. (2019a), on 10 soy-
bean seed varieties using the Ensemble Learning classification
algorithm. A similar result was found for Liu et al. (2014b),
whose study on transgenic and non-transgenic rice seeds, by
means of the Least-squares support vector machine (LS-SVM)
algorithm, used both spectral information and biometric data
regarding seed morphology. It was also the case of the study of
Kong et al. (2013) on four rice seed varieties, using the
Random Forest (RF) algorithm, and the study of Rodríguez-
Pulido et al. (2013), which separated four grape varieties using
general discriminant analysis (GDA).

Their high accuracy suggests a promising feature of spectral
image analysis in distinguishing genotypes, but there are some
concerns. The first is about the amount of classification groups:
only 46 and 23% of the experiments had more than 5 and 10 cat-
egories, respectively. In works that used many categories, for
example, Fabiyi et al. (2020), with 90 cultivars, although the over-
all accuracy was relatively high (79.64%) using the RF algorithm,

for some cultivars accuracy was only 30–50%. The same result was
found in the study of Zhou et al. (2020a), in which the overall
accuracy was 93.10% using a deep learning algorithm (convolu-
tional neural network – CNN) for the classification of 30 culti-
vars, while there was a variation of more than 20% in
classification accuracy for certain cultivars.

It is not clear, in most of the reviewed papers, if spectral image
analysis was applied owing to its agility and automation or
because of the ability to classify cultivars in situations in which
classification by visual morphological characteristics was not pos-
sible. This point is important because knowing whether the gen-
otypes were chosen randomly or whether they were chosen
arbitrarily from characteristics where separation would be possible
even by eye allows one to establish to what extent spectral image
analysis is applicable in situations of cultivar diversity, as occurs
in the seed industry.

Another point of concern is test and validation data: in most
works, there was (1) the absence of test data and (2) the absence
of test and/or validation lots (e.g. seeds from other harvests).
Ideally, when enough data are available, seed samples should be
divided into training, validation and test data. Training data are
used by the algorithm to estimate the model; validation data
are not to be used in training, in order to gather unbiased infor-
mation about the quality of the models developed. Validation
data are used for predicting errors in each model for the purpose
of selecting the best model. Since validation data are used

Fig. 1. Selection of articles according to the PRISMA framework.
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constantly (depending on the number of models to be tested),
test data (i.e. data not yet used) are commonly used to obtain
the true error of the final model (i.e. generalization error), and
these data are used only once so as not to overestimate accuracy
(Hastie et al., 2017).

In most works of the present review, despite the large number
of seeds being used, test data were not used – only validation data
(even when it was referred to as test data in the studies, owing to
different definitions), which may lead to high accuracy. In studies
with a small number of seeds, an alternative is to use cross-
validation, in which samples go through n data splitting cycles
(in training and validation), model building and error computa-
tion, and final accuracy is determined from the average error of
the n models obtained (Hastie et al., 2017). However, of the
experiments that used approximately less than 100 seeds per clas-
sification category (referring to the first quartile of the variable
number of seeds in Table 4), 37% did not perform cross-
validation, which may cause overestimation of the resulting
accuracy.

Another aspect regarding data division is that only 6% of the
studies used validation and/or test lots (i.e. from other harvests
and/or regions). In the works that did not use validation lots,
high accuracy may have been due to a model overfitted to the
lot; consequently, there may not be such accuracy in the classifi-
cation of the same cultivars from other harvests and regions (He
et al., 2016; Huang et al., 2016a). For example, Huang et al.
(2016a), when classifying seeds of four wheat varieties and
using – as test data – seeds from the same year as those used
for training, found 100% classification accuracy using the
LS-SVM algorithm. However, when using seeds from other
years, accuracy was only 75.4%. Similarly, Shrestha et al.
(2016a) used tomato seeds of four cultivars from three harvest
years, in experiments with seeds only from the same year and
with the mixture of seeds from the other years, both in the test
and training data. For the fitted and validated models with
seeds from the same year, they found accuracy per cultivar from

73 to 100%, whereas for the sample with mixed seeds from
other harvests, accuracy ranged from 34 to 88%.

There was a great variation in the total number of seeds used
per classified genotype, as observed in each experiment, even in
those that used the same species. For example, in the works per-
formed on wheat seeds, the number of seeds used per class ranged
from 20 to 5100 seeds. Few of the reviewed studies evaluated the
influence of seed quantity on training samples. For instance, Qiu
et al. (2018) tested training samples with different amounts for
designing their classification models, ranging from 100 to 3000
seeds, for each of the four cultivars. They found when using
more than 1500 seeds, the increment in accuracy was not signifi-
cant. Certainly, the accuracy determined in experiments that used
larger samples leads to more confidence, but the approach of
studying the ideal number of seeds has more practical applicabil-
ity, since the increase in the amount of samples generates extra
processing costs, without necessarily leading to a significant
increase in the accuracy of the models. Thus, stipulating the opti-
mal number of seeds is important to achieve a balance between
the cost and performance of a model, which would, thus, facilitate
the applicability of the analysis (Qiu et al., 2018).

One way to obtain more data without necessarily increasing
the number of seeds in a sample is by using the spectral informa-
tion of each seed pixel (i.e. pixel-wise spectrum), as opposed to
averaging the seed spectrum (i.e. object-wise), as evaluated by
Zhu et al. (2019c) in classifying three soybean cultivars. The
authors used the pixel-wise spectrum of 60 seeds and reported
the equivalent performance of a sample with 810 seeds using
object-wise spectrum. However, this technique requires a great
deal of data processing, as there is a significant increase in the
amount of information (i.e. equivalent to the number of pixels).
Moreover, it also needs to be explored in different situations
(e.g. species, cultivars, crops).

Crop-type application

Out of the 44 articles evaluated, approximately 80% performed an
analysis of agricultural crops species (e.g. soybean, maize, wheat),
11% of horticultural seeds, 5% of fruit production and 5% of other
classes (pasture and medicinal plants), while there was no work
on forest seeds (Fig. 2).

As with the present study, Rahman and Cho (2016), in a nar-
rative review with 32 papers that applied seed variety identifica-
tion using image analysis techniques, 31 focused on agricultural
crops. Given the emerging feature of the spectral imaging analysis
technique in seed phenotyping, the use of it in agricultural crop
seeds over other seeds may be mainly linked to the economic
appeal of these species, as well as to the greater number of
plant breeding programmes related to them.

Wavelength spectrum

Of the evaluated studies, 75% used hyperspectral equipment, and
according to the density plot, the frequency distribution of the
wavelengths applied in the studies varies according to the type
of equipment (Fig. 3). Commercial hyperspectral equipment
operates in bands with greater amplitude in the NIR spectrum
(750–2500 nm), whereas commercial multispectral imaging
equipment concentrates on the visible light range up to the begin-
ning of the NIR (350–950 nm).

The wavelength range used is closely linked with the compo-
nents measured in the seeds, and the visible spectrum is related

Table 3. Features that might affect the accuracy of seed distinction in spectral
analysis applied to seed phenotyping

Features Levels

Crop type Agricultural crops, horticultural crops,
fruit production, others

Application Varietal discrimination, haploid,
transgenic/non-transgenic, hybrid/
progenitors

Spectrum NIR, VIS–NIR

Sensor Multispectral imaging, hyperspectral
imaging

Number of wavelengths 19–700

Number of seed groups 2–90

Total seeds used 376–147,096

Algorithm class Machine learning, deep learning

Extra features (e.g.
morphology, texture, colour)

Present (1); Absent (0)

Wavelength selection and/or
dimensionality reduction

Present (1); Absent (0)

Wavelength preprocessing Present (1); Absent (0)

12 T.B. Michelon et al.
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Table 4. Characteristics and applications of spectral imaging (HIS – hyperspectral imaging; MSI – multispectral imaging) applied in seed phenotyping

Species Method
No. of

wavelengths Spectrum Application
No. of
groups

Total
seeds

Training (Tr),
testing(Te) and
validation (V)
proportion

Best
classifier

Extra
features

Wavelength (WL)
selection/

dimensionality
reduction

Spectral
preprocessing Accuracy References

Alfafa MSI 19 365–970 Varietal
discrimination

12 2400 70% Tr;
30% Te

SVM Morphological;
colour

− − 93.47% Yang et al. (2020)

Cotton HIS 256 1100–2500 Varietal
discrimination

4 807 2:1:1 PLS-DA − − Smoothing 98.00% Carreiro Soares
et al. (2016)

Cotton HIS 200 942–1646 Varietal
discrimination

7 13,160 3:1:1 CNN-
SoftMax

− − Smoothing;
normalization

88.84% Zhu et al. (2019b)

Grape HIS 240 914–1715 Varietal
discrimination

4 56 60% Tr;
40% V

GDA − − − 100.00% Rodríguez-Pulido
et al. (2013)

Grape HIS 200 975–1646 Varietal
discrimination

3 43,357 2:1 SVM − 10 WL (PCA) Smoothing 88.70% Zhao et al. (2018a)

Jatropha
curcas

HIS 256 874–1734 Origin
discrimination

4 240 2:1 LS-SVM Morphological 10 WL (SPA) − 93.75% Gao et al. (2013)

Looffah HIS 200 975–1645 Varietal
discrimination

6 4128 2:1 DCNN − − Smoothing 95.93% Nie et al. (2019)

Maize HIS 649 1110–2500 Varietal
discrimination

4 80 1:1 SIMCA − PCA Smoothing;
first derivative;
normalization

97.50% Jia et al. (2015)

Maize HIS 380 400–1000 Varietal
discrimination

3 376 70% Tr;
30% Te

LS-SVM − − Detrending 91.67% Wang et al. (2016)

Maize HIS 94 400–1000 Varietal
discrimination

4 2000 2:1 LS-SVM − − − 94.40% Huang et al.
(2016a)

Maize HIS 94 400–1000 Varietal
discrimination

4 2000 2:1 LS-SVM − − − 98.30% He et al. (2016)

Maize HIS 233 400–1000 Varietal
discrimination

17 1632 3:1 LS-SVM Morphological 11 WL (SPA);
PCA

Normalization 92.65% Huang et al.
(2016b)

Maize MSI 19 375–970 Haploid
discrimination

2 240 1:1 CDA Fluorescence
excitation/
emission

− − 85.83% De La Fuente et al.
(2017)

Maize HIS 94 400–1000 Varietal
discrimination

4 3600 5:1; 5:2;
5:2; 5:4

LS-SVM − − − 85.40% Guo et al. (2017)

Maize HIS 219 924–1657 Varietal
discrimination

14 1120 3:1 LS-SVM − 19 WL (JSWSA) − 96.57% Yang et al. (2017)

Maize HIS 256 862.9–1704.2 Haploid
discrimination

2 200 2:1 BPR − BULDP Smoothing;
first derivative;
normalization

99.85% Wang et al. (2018)

Maize HIS 200 975–1646 Varietal
discrimination

3 12,900 2:1 RBFNN − 15 WL (PCA) Smoothing 91.00% Zhao et al. (2018b)

Maize HIS 233 400–1000 Varietal
discrimination

17 1632 1:1 LS-SVM Texture 10 WL (MLDA) Normalization 99.13% Xia et al. (2019a,b)

Maize HIS 200 975–1646 Varietal
discrimination

3 5400 4:1:1 LR − − − 96.67% Zhang et al. (2020)

Maize HIS 200 975–1646 4 20,400 2:1 RBFNN − − Smoothing 98.09% Bai et al. (2020)

(Continued )

Seed
Science

Research
13

https://doi.org/10.1017/S0960258523000028 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0960258523000028


Table 4. (Continued.)

Species Method No. of
wavelengths

Spectrum Application No. of
groups

Total
seeds

Training (Tr),
testing(Te) and
validation (V)
proportion

Best
classifier

Extra
features

Wavelength (WL)
selection/

dimensionality
reduction

Spectral
preprocessing

Accuracy References

Varietal
discrimination

Maize HIS 420 450–979 Varietal
discrimination

4 3200 6:2:2 DCNN − − − 95.30% Zhang et al. (2021)

Maize
(silage maize)

HIS 200 975–1646 Varietal
discrimination

4 20,400 2:1 RBFNN − − Smoothing 99.10% Bai et al. (2020)

Maize (sweet
maize)

HIS 700 480–1020 Varietal
discrimination

9 810 4:1 SVM − 23 WL
(CARS)

Smoothing;
first derivative

94.86% Zhou et al. (2020b)

Maize and
silage maize

HIS 200 975–1646 Varietal
discrimination

8 40,800 2:1 RBFNN − − Smoothing 88.41% Bai et al. (2020)

Maize and
silage maize

HIS 200 975–1646 Varietal
discrimination

2 40,800 2:1 RBFNN − − Smoothing 88.41% Bai et al. (2020)

Maize waxy
maize

HIS 220 430–972 Varietal
discrimination

8 800 4:1 FDA − t-SNE Procrustes
analysis (PA)

97.50% Miao et al. (2018)

Oat HIS 200 975–1646 Varietal
discrimination

4 14,846 3:1 DCNN − − Smoothing 99.19% Wu et al. (2019)

Okra HIS 200 975–1645 Varietal
discrimination

6 6136 2:1 DCNN − − Smoothing 98.24% Nie et al. (2019)

Pepper MSI 19 365–970 Varietal
discrimination

3 4416 9:1 SVM − − − 97.70% Li et al. (2020a,b)

Rice HIS 256 1039–1612 Varietal
discrimination

4 225 2:1 RF − − First
derivative

100.00% Kong et al. (2013)

Rice MSI 19 365–970 Transgenic;
non-transgenic

2 400 LS-SVM Morphological − − 100.00% Liu et al. (2014b)

Rice MSI 19 365–970 Varietal
discrimination

5 250 4:1 LS-SVM Morphological;
colour

− − 94.00% Liu et al. (2016a,b)

Rice MSI 19 365–970 Varietal
discrimination

20 600 − k-NN +
multiclass
CDA

Morphological;
colour

− − 93.00% Hansen et al.
(2016)

Rice HIS 256 874.41–1733.91 Mutant
discrimination

2 2640 2:1 ELM − − Smoothing 91.75% Feng et al. (2017)

Rice HIS 256 975–1646 Varietal
discrimination

4 20,907 3:2 CNN − − Smoothing 87.00% Qiu et al. (2018)

Rice HIS 256 385–1000 Varietal
discrimination

90 8640 4:1 RF Morphological 85 WL
(LDA)

Normalization 79.64% Fabiyi et al. (2020)

Soybean MSI 19 365–970 Hybrid;
progenitors

3 600 BPNN Morphological − − 98.00% Liu et al. (2014a)

Soybean HIS 128 373–1043 Varietal
discrimination

10 1200 EL − CARS MSC 100.00% Zhu et al. (2019a)

Soybean HIS 200 975–1646 Varietal
discrimination

3 5670 CNN Pixel-wise − Smoothing;
normalization

98.78% Zhu et al. (2019c)

Soybean HIS 128 400–1000 10 1200 3:1:1 GS-SVM − − First derivative 97.20% Zhu et al. (2020)
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to superficial characteristics, such as pigmentation (e.g. flavo-
noids, carotenoids, chlorophyll) and oxidation. These characteris-
tics are ideal for distinguishing seeds with marked physical
characteristics, for example, tegument colour or texture. As
regards the NIR spectrum, this region is sensitive to the molecular
overtone of hydrogen-containing groups, such as C–H, N–H, O–
H chemical bonds, which represent seed starch, protein and oil
contents, and can penetrate deeper than visible light through
the subsurface layer of seed coat (Rodríguez-Pulido et al., 2013;
Li et al., 2014, 2020a; Mortensen et al., 2021). For works that
used hyperspectral cameras, there was a peak near the 1000 nm
range. In this range, the 1122, 1200 and 1314 nm bands (related
to organic C–H compounds, such as starch) stand out, while
the 1402 nm wavelength is associated with the O–H region of car-
boxylic acids, as well as regions near the 1580 nm band (Osborne
and Douglas, 1981; Lammertyn et al., 1998; Serranti et al., 2013;
Zhao et al., 2014).

Shrestha et al. (2016a), using hyperspectral image analysis in
the NIR region for the classification of four tomato seed varieties,
found that the 1417, 1901, 2102 and 2238 nm bands, associated
with protein and water content, and the 1222 and 1695 nm
bands, associated with fatty acid content, represent an important
spectral signature for this species. Rodríguez-Pulido et al. (2013),
when separating seeds of three grape cultivars, with one coming
from two different regions, using the principal component ana-
lysis (PCA) score, found that the bands at 928, 940, 1148, 1620
and 1652 nm, referring to organic compounds with C–H chem-
ical bonds, were primarily responsible for distinguishing the
seeds. Zhao et al. (2018b), based on the score of the first six prin-
cipal components of PCA, selected the bands in the 1100 and
1390 nm region and the bands at 1436, 1453 and 1554 nm
(with the latter three corresponding to the first overtone of O–
H stretching, to classify grape seeds of three cultivars). Zhang
et al. (2021), using multispectral equipment and classifying four
maize cultivars, found that the wavelength bands with the greatest
contribution to the distinction of cultivars were 450–700 nm,
related to the chlorophyll and β-carotene content of the endo-
sperm, 730 and 785 nm, related to organic compounds with O–
H and N–H bonding, and 850–950 nm, related to C–H hydrocar-
bons. Huang et al. (2016b) found 92.65% accuracy when they
classified 17 corn cultivars, using 11 wavelengths selected by the
Successive Projection Algorithm (SPA), located in the 500–
750 nm region, which are sensitive to seed starch and oil contents.
Similarly, Xia et al. (2019a) classified 17 corn cultivars based on
10 optimal wavelengths, belonging to the regions of 410–
470 nm, 524–790 and the wavelength of 988 nm, which represent
seed texture, starch and oil content, and water content,
respectively.

Thus, since the NIR region is sensitive to organic compounds
in seeds in deeper layers than visible light, this region seems to be
a good strategy to differentiate seeds with similar surface charac-
teristics (i.e. where the visible spectrum region acts more
intensely) (Williams and Norris, 2001; Rodríguez-Pulido et al.,
2013). For example, Wang et al. (2018) separated haploid from
diploid maize seeds, whose visual similarity makes it difficult to
separate them by traditional or machine vision methods. Using
hyperspectral image analysis in the NIR region (860–1700 nm),
they were able to identify differences in oil content and other
organic components, differentiating the seeds with 99.85%
accuracy.

As for the equipment, the basic difference between multispec-
tral and hyperspectral devices is in the number of wavelengths
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that each one can measure. Multispectral equipment measures up
to 20 wavelengths, while hyperspectral cameras can reach higher
values, as reported in the work of Zhou et al. (2020b) with sweet
corn and 700 wavelengths measured. The use of hyperspectral
equipment results in a larger amount of data and, consequently,
more time for processing and development of the classifier mod-
els. Therefore, all the studies that performed some form of wave-
length selection or dimensionality reduction used hyperspectral
equipment. Dimensionality reduction aims to mitigate the prob-
lem of correlation between predictor variables and model overfit-
ting (Wu et al., 2019; Amigo, 2020). For example, Gao et al.

(2013) used SPA to reduce from 256 to 10 wavelengths and
obtained 93.75% accuracy.

Classifiers

For seed classification based on the selected wavelength and other
features, the evaluated papers used machine learning and deep
learning class algorithms on 30 and 17 occasions, respectively;
in 2017, the percentage of papers that used machine learning
was 95% (Fig. 4).

In 2018 and later, the number of papers using deep learning
not only increased but was proportionally higher than the num-
ber of papers using machine learning. Deep learning is an
unsupervised classification method (the class of seeds is not pre-
viously provided to the algorithm) and brings the advantage of
identifying abstract patterns in a large amount of data that super-
vised methods would not be able to find (i.e. deep features)
(Gheisari et al., 2017; Wu et al., 2019). However, to achieve suc-
cessful classification, deep learning algorithms preferentially need
a larger volume of data, and this is represented in the average
number of seeds used in the evaluated papers that applied
machine learning: 3897, compared to 22,765 in deep learning.

The larger the amount of data, the greater the demand for
technology and processing time, which may be linked to the
low frequency of use of deep learning in previous studies. In con-
trast to processing time, this class of algorithms seems to be more
advantageous in seed classification as highlighted by Zhu et al.
(2020), who found that all tested deep learning algorithms had
higher accuracy than machine learning algorithms. Similarly,
Qiu et al. (2018), comparing the deep learning algorithm CNN
with the machine learning algorithms SVM and K-nearest neigh-
bour (K-NN), found that, as the training samples increased, the
CNN model outperformed the others. Nie et al. (2019), when
classifying hybrid okra and loofah seeds using the deep learning
model deep CNN (DCNN) and comparing it to partial
least-square discriminant analysis (PLS-DA) and SVM, found
that the number of varieties increased from two to six. The
authors reported that with increased complexity (number of

Fig. 2. Species used in each article of the review.

Fig. 3. Density plot of the wavelengths used according to the hyperspectral (HIS) or
multispectral (MSI) method.
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varieties), the accuracy of the DCNN model remains more stable
than that of the others.

Thus, the main advantage of using deep learning algorithms
lies in their ability to integrate the steps of feature learning, feature
extraction, dimensionality reduction and classification into just
one system, which brings greater convenience in the use of data
with more complexity (i.e. a larger number of features), as occurs
when hyperspectral images are used (Wu et al., 2019).

Chemometric features

The adjusted model, which was identified by the stepwise algo-
rithm with the lowest AIC (−07.9015), used the following fea-
tures: number of seeds, seed classification groups and use of
methods for wavelength selection and/or data dimensionality
reduction. Only the first feature was significant (Table 5).
According to the estimated and exponentialized coefficient (to
reverse the logarithmic scale) of the number of groups (0.998),
as the number of seed classification groups increases, the final
model accuracy tends to decrease by approximately 0.2% with
each new group.

Classification accuracy tends to naturally decrease as the num-
ber of possible groups increases, but the non-significant influence
of the other factors is due to the fact that the technique can result
in high classification models using different strategies in the pro-
cess (e.g. method, feature selection, preprocessing), that is, an iso-
lated factor is not enough to determine the accuracy of an
analysis. It must be clear that the final model only indicates a pos-
sible relationship between the variables, since other factors not
listed may be relevant to determine classification accuracy (e.g.
species, seed quality); moreover, further research is needed to
make a robust analysis.

Discussion

Overall strengths

In the 44 evaluated studies, it was clear that the information col-
lected through spectral image analysis, both reflectance and bio-
metric measures of morphology and texture, are sufficient to
classify seeds of different genotypes. Although one needs to fur-
ther explore the ability to generalize the use of the analysis

between seeds from other regions and/or harvests, as well as
make different combinations of genotypes in future work, the
fact is that well-fitted classification models have high accuracy
in several situations: between cultivars, hybrids and progenitors,
and hybrids and lines; transgenic and non-transgenic seeds.

Spectral image analysis allows the separation of genotypes even
in coated seeds, mainly by using the NIR, which penetrates
beyond the surface of the seed. Coated seeds are common in
the industry, as coating provides protection against fungi and
microorganisms, and aids germination by supplying nutrients
and amino acids, among other benefits. In the case of these trea-
ted seeds, even when dyes are applied for identification, classifica-
tion using spectral image analysis has still proved possible (Jia
et al., 2015; Zhang et al., 2020). However, for small and/or non-
uniform seeds, which are coated with thicker layers (which occurs
by the encrustation or pelleting process), the analysis may not be
applicable.

Reflectance offers sufficient information for the separation of
the seeds of different genotypes, and spectral information can
be collected quickly, through an image or set of images according
to the number of bands measured; seeds remain intact and there
is no need for prior treatment. Therefore, multispectral image
analysis has a huge advantage over conventional tests, because
its limitations refer to treatment and processing of data rather
than data collection. Traditional methods, such as molecular mar-
kers, are indeed highly reliable, robust methods; thus, they can
hardly be replaced. However, in routine work in seed analysis
laboratories, when identifying hybrid seeds in breeding pro-
grammes or in identifying cultivar mixtures in purity testing,
traditional methods are not necessary if there is an alternative
way that is reliable, fast and agile enough to meet the industry’s
demands (Shrestha et al., 2015; Bao et al., 2019; Zhang et al.,
2020).

Challenges and limitations

Phenotypic variation
The main challenge of the spectral image analysis technique
applied to seed phenotyping surely lies in the extrapolation of
the fitted model to seeds coming from other harvests/regions
(Zhu et al., 2020). The development of a prediction model is
somewhat difficult and laborious and requires professionals

Fig. 4. Proportion and absolute quantity (number in
square) of the classification algorithm classes used in
each paper over the years.
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specialized in data analysis. In the process, seeds need to be used
to train the proposed model, test different forms of data process-
ing and validate the model with new seeds. This is time-
consuming and not easily adapted to the work routine in seed-
producing companies. Thus, the model created to classify pro-
duced cultivars must be able to classify seeds over the years and
also those grown in different regions (He et al., 2016).

When it comes to biological data, there is great variation
among seeds from different years and regions, since morphophy-
siological characteristics are highly affected by climate, soil, parent
plant characteristics, among other factors. Importantly, the bio-
metric data obtained by spectral image analysis are sensitive to
morphophysiological characteristics (e.g. pigmentation and
organic compounds); therefore, variations in the characteristics
of cultivars obtained in other harvests may be enough to misclas-
sify them (Shrestha et al., 2016a,b).

The intensity of phenotypic influence varies with species and
the characteristics used for the classification of cultivars. For
some species, there are cultivars with outstanding characteristics
that facilitate differentiation, as is the case with the tegument col-
our of bean seeds or peanut seeds. However, in many species, with
subtle differences among cultivars, the influence on phenotypic
variation can be a problem. For example, in some maize cultivars,
the balance between sugar and amylopectin, which can be used as
a spectral marker, can be affected by variations in water content in
the seed from different regions, which can influence classification
(Wang et al., 2016).

An alternative would be to use seeds from cultivars from other
years and/or regions to train the classification model, but this
poses some difficulties. The first is to obtain a sufficient number
of seeds from other years and/or regions, since a large volume of
samples is needed to overcome the effect of location. In addition,
the use of seeds from a seed bank or archive samples, which were
stored in different periods, could influence the classification of
newly harvested seeds (Shrestha et al., 2016a,b).

Some studies suggest the use of model updating, which seems
to be a promising alternative. In this method, the original model,
previously prepared using seeds from the same harvest, is updated
with seeds from the following harvests, in order to have a more
accurate model, without the need to perform the whole process
of adjusting a new model. Some studies show a 10–35% increase
in overall accuracy when classifying cultivars coming from other
years, when compared to a non-updated model (Guo et al.,
2017; He et al., 2016; Huang et al., 2016a). Such a practice
would partly solve the model portability problem; however,

most model updating methods need to be updated with previ-
ously classified seeds, which requires time for sampling and clas-
sification. An alternative to updating the model is through
semi-supervised classification algorithms that use the pre-label
approach, that is, they use the original model to classify a new
seed sample (from another year) based on retraining the model
with seeds classified with a high degree of confidence. However,
these methods still need to be evaluated for different species
and situations (Guo et al., 2017).

Seed coat influence
The external structures of the seeds can cause a great influence on
the analysis, either by using the visible spectrum, which is sensi-
tive to their surface characteristics, or by using the NIR spectrum,
which can penetrate the subsurface layer and is sensitive to the
organic compounds present in these structures, for example, the
bands of 1180 and 1470 nm, which are sensitive to the presence
of lignin and fibre, commonly present in the seed coat of several
species. Thus, among species whose external structures are the
same, as occurs in palea and lemma in hybrid and self-pollinating
cereals, the influence of these structures can be a limiting factor
(Blackwell et al., 1977; Gao et al., 2013; Feng et al., 2017;
Caporaso et al., 2021).

Thus, when it comes to the differentiation of genotypes that
present external structures without enough distinguishing charac-
teristics, the use of spectral imaging is not the best choice, since it
would merely describe the composition of these structures. For
this type of seed, processing would be necessary, but the commer-
cial use of spectral image analysis requires processing, which leads
to extra costs and is time-consuming. In addition, the removal of
the husk in cereal seeds limits their use of them, since the husk
has an important protective function against fungi and insects
(Abebe et al., 2004; Mortensen et al., 2021).

Seed orientation
The area exposed to the analysis may influence classification
accuracy, given the sensitivity of the spectra used by the analysis
to seed surface and subsurface compounds. The influence of
orientation was reported in work using models fitted with mea-
surements obtained from corn caryopses with the embryo facing
up and the face facing down. The endosperm and the embryo
have different compositions; therefore, choosing between the
face of the caryopsis that has both structures (i.e. the face in
which the embryo is facing up) or the face with only the endo-
sperm can influence one’s ability to distinguish different geno-
types. The influence of orientation can vary across genotypes,
and in the case of differentiation between cultivars, there was
an average variation of 10% (Miao et al., 2018; Tang et al.,
2020). Sorting seeds with a certain orientation is a laborious
job; therefore, when seed orientation plays a role but does not
impair genotype differentiation, loss of accuracy can be accepted.

However, when the difference between genotypes is found in
the embryo, as occurs between haploid and diploid maize caryop-
ses, and separation is performed in breeding programmes of the
species for different purposes, seed orientation is essential.
Thus, seed orientation can be a limiting factor when it comes
to haploid seed identification if there is no processing before
the analysis is performed; however, on a large scale, processing
the seeds may be impractical (De La Fuente et al., 2017; Wang
et al., 2018).

Table 5. Coefficients estimated from the adjusted model identified by the
stepwise algorithm with the features that may influence the accuracy of the
spectral imaging analysis of the evaluated studies

Coefficients
Estimate (log

scale)
Std.
Error t P-value

Intercept −0.0643 0.0138 −4.651 3.02 ×
10−5

No. of
groups

−0.0020 0.0009 −2.263 0.0286

WL
Selection1a

0.0378 0.0256 1.476 0.1471

aPapers that used wavelength selection or dimensionality reduction procedure to obtain the
most accurate model.
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Specificity
Unlike other techniques, such as molecular markers, in which we
can state with great certainty that a seed belongs to a particular
genotype from a segment of its genetic code, in spectral image
analysis we cannot use reflectance as an absolute marker of spe-
cies/cultivar, because it is influenced by seed composition. In
other words, to identify an unknown seed, it must always come
from a sample in which all the possible classifications are
known, which were previously defined considering lot-specific
issues (e.g. harvest, year, storage). This is not a major limitation
in a seed-producing company, where the cultivars produced are
known, but in situations when one must identify possible seeds
and/or adulterants from an unknown sample, the use of spectral
image analysis is impractical.

Adulterant genotypes can be identified in a seed lot when this
genotype is commonly used in the trade of adulterated species. In
this case, spectral image analysis tends to have good applicability,
as the marked difference among species allows a model fitted to a
particular variety or crop of the adulterated species to be distin-
guished with some ease from the adulterant species, as reported
by Faqeerzada et al. (2020) in separating seeds of two varieties
of almonds from adulterant apricot seeds.

Perspectives

Open database and key wavelength
There has been increased interest in sharing the data collected
through spectral image analysis – be it reflectance or biometric
data regarding morphological characteristics of the seeds of the
species used in the experiments (e.g. diameter, texture) – through
online repositories. Data sharing can leverage the use of the ana-
lysis by directly allowing researchers to (1) test different chemo-
metric techniques (e.g. preprocessing, classifier algorithms) on
real data, without the need to perform a new experiment, and
(2) more accurately identify key bands in certain species and cul-
tivars when comparing different experiments.

The identification of key bands would help in the transition
from hyperspectral equipment to multispectral equipment with
more accurate and relevant bands in seed phenotyping.
Hyperspectral equipment can measure many bands. However,
many of these bands contain redundant or unnecessary informa-
tion for the classification of most species; in addition, hyperspec-
tral equipment is very expensive and more difficult to handle,
since the reflectance of the various wavelengths is usually
obtained by the point-by-point or the line-by-line system, in
which the object moves and reflectance is obtained for every
pixel or line of pixels at a time, making the process more time-
consuming (Jaillais et al., 2015; Zhou et al., 2020a).

Thus, the migration to multispectral equipment seems to be
the most obvious trend, since it requires fewer wavelengths that
are applied to all pixels of the image at once, and it is more
agile and suitable for application in the seed industry, especially
in sectors that work with large numbers of cultivars and lots. A
fast identification system is essential, especially in real time, and
multispectral equipment is ideal for this purpose (Elmasry
et al., 2019).

However, in order to efficiently develop multispectral equip-
ment with key wavelengths, a deeper understanding is needed
for the interaction of the different wavelengths with the organic
compounds of the different evaluated genotypes. To this end,
an open database would facilitate such understanding (Elmasry
et al., 2019). Some technologies greatly benefit from an open

database, for example, to share data from Raman spectrometry
and X-ray diffraction, which can be combined to identify different
materials (Mendili et al., 2019). Naturally, when it comes to seeds,
external factors have a great influence on the analysis (e.g. envir-
onment, parent plant) and consequently on their ability to be dis-
tinguished. However, with a large amount of data, one can
identify relevant patterns between genotypes and at least direct
the development of equipment, even if specific to certain species,
to obtain a system capable of providing sufficient information for
decision-making in accepting or rejecting a seed lot, which would
save a great deal of time and money (Elmasry et al., 2019; Xia
et al., 2019a,b).

Field of application
One of the areas where spectral image analysis presents great
potential is in breeding programmes, especially in the production
of hybrid seeds. Differentiating hybrid seeds from seeds generated
by unwanted pollination, either from their parents or from self-
pollination, is indispensable. This means differentiating between
a few classes from samples with high genetic purity and coming
from areas with production control and, thus with less variability
among seeds, which is ideal for applying spectral analysis (Nie
et al., 2019).

Forest species, for example, have a great lack of quality con-
trol methods. For species with great economic importance, such
as the species of the genus Eucalyptus spp., the use of seeds is
especially important in breeding programmes for the produc-
tion of hybrids. The correct hybridization must be confirmed,
given the difficulties of controlling pollination, either in
indoor orchards or in the field. Thus, spectral image analysis
has great potential to meet this need and bring great advances
to forest improvement programmes (Ribeiro-Oliveira and
Ranal, 2014).

Another relevant point that makes spectral image analysis an
important tool in breeding programmes is that images show indi-
vidual morphological features of seeds, since the analysis allows
the collection of both reflectance and spatial biometric data.
The use of morphological features is especially important to
check the homogeneity of seed morphological descriptors,
because morphology is an attribute relatively unaffected by envir-
onmental issues and could be used to evaluate the genetic quality
of a lot, which decreases with every generation (Mortensen et al.,
2021).

Online and real-time sorting systems
Probably the most promising aspect of spectral image analysis is
the possibility of integration with an online system that allows
real-time estimation of the quality of a seed lot. According to
the International Seed Testing Association (ISTA, 2020), a certain
amount of mixing of other cultivars is allowed in a seed lot. This
is evaluated through purity analysis; however, there is great diffi-
culty in determining the presence of other cultivars mixed in a lot
in certain species, since the analysis depends on the analysts
experience and their ability to identify cultivars by eye (Elmasry
et al., 2019).

Although each company presents a specific situation (i.e. dif-
ferent combinations of genotypes, number of genotypes, presence
of different years and/or regions) and it is not clear to what extent
spectral image analysis can handle these different situations, the
fact is that in the studies identified in the present review, the ana-
lysis was effective. This means that, at least in certain situations,
the analysis could be integrated into a system to estimate the
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genetic quality of a seed lot, since the alternative way (i.e. through
purity analysis) is extremely laborious and, in many situations,
impractical (Elmasry et al., 2019).

Some researchers, such as Faqeerzada et al. (2020), reported
the feasibility of an online system for real-time classification of
seeds moved by a conveyor belt, in which the classification
model previously adjusted using hyperspectral images in the
infrared region was transferred to an online system. However,
some problems still need to be overcome; for example, the
speed of the conveyor belt, the variation in light, the overlapping
of the seeds on the belt, among other points described by the
authors.

Several studies have shown that the models developed from
spectral information of seeds are robust enough for large-scale
application of the analysis in real-time seed phenotyping through
the design of classification maps. In this way, the seeds are deter-
mined in real time as to the probability of belonging to a certain
class based on the colour scale stipulated for each class. This
approach enables decision-making by the analyst and would act
as a powerful tool to differentiate cultivars that would hardly be
identified with the naked eye (Wang et al., 2016; Zhao et al.,
2018a, b; Zhang et al., 2021).

Conclusions

The present review evaluated 44 papers that applied spectral
image analysis in seed phenotyping; they were selected among
1304 papers identified in the main journal databases. The review
sought to identify the main characteristics of the experiments
described in the published papers, as well as to guide researchers
in the choice of strategies for experimental design and data ana-
lysis, since there are many ways to obtain a highly accurate clas-
sification model. Thus, after analysing the papers, the following
points summarize the main findings:

• All the evaluated studies presented satisfactory final accuracy;
however, few used test data, as well as test and/or validation
lots, which may have contributed to the high accuracy reported.

• As the application of multispectral analysis is relatively new in
seed phenotyping, the works are still focused on agricultural
species with a greater economic appeal.

• Most studies have focused on the use of hyperspectral equip-
ment, which works mainly in the NIR region and is sensitive
to seed organic compounds and able to penetrate the subsurface
layer. The use of the NIR region seems to be a good strategy to
identify differences between genotypes with similar surface
structures, where visible light acts with greater intensity.

• The use of deep learning algorithms has been a trend in recent
years, mostly because of its ability to work with more complex
data, for example, data collected by using hyperspectral
cameras.

• Reflectance and biometric data on seed morphology provide
sufficient information to separate different genotypes in several
situations: among cultivars; hybrids and progenitors; and
hybrids and lines, as well as in the separation of coated seeds.

• The main challenge of the analysis is certainly the phenotypic
variation of the seeds, which implies the difficulty of using
the adjusted model in the classification of cultivars from
other harvest, years and/or regions. The main limitations refer
to the sensitivity of reflectance to seed compounds, which are
highly influenced by environmental issues; the influence of
seed coat on the classification of genotypes with similar external

characteristics and the influence of seed orientation when the
information needed for classification is on a certain face of
the seed (e.g. face with the embryo).

Thus, the present review allowed a critical analysis of the use of
spectral imaging in seed phenotyping, as well as a thorough evalu-
ation of the limitations of this method. The practical application
of this technique needs to be developed for use in laboratories
with large volumes of analyses, lots, genotypes and harvests.
However, research has been accelerated to overcome the practical
challenges of this method, as seen in work using model update
algorithms, online classification systems, real-time classification
maps; also, spectral information of genotypes is being shared
through online repositories. Thus, there are strong indications
that the application of multispectral image analysis will become
a part of the routine of seed analysis laboratories.
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