
GROUPS WITH METACYCLIC SYLOW 2-SUBGROUPS 

A. R. CAMINA AND T. M. GAGEN 

A group S is said to be metacyclic if it contains a normal cyclic subgroup N 
such that S/N is cyclic. In this note the following theorem is proved. 

THEOREM. Let G be a group, S a metacyclic Sylow 2-subgroup of G. If S has a 
cyclic normal subgroup N such that S/N is cyclic of order greater than 2, then G 
is soluble. 

Remark. We show that such a group G contains a 2-nilpotent normal sub
group of index a divisor of 6. The solubility of these groups requires the solu
bility of groups of odd order unavoidably. 

Notation. All groups considered will be finite. Let G be a group, 5 a subset 
of 0, A and B subgroups of 0, N a normal subgroup of G. 

(S): the subgroup of G generated by S. 
NG(S): the normalizer of 6* in G. 
CG(S): the centralizer of S in G. 
When it is clear which group G we are considering we write C(S), N(S). 
[A, B]: <[a, b] = a^b^ab: a G A,b G B). 

f(G mod N): the preimage in G oîf(G/N). H e r e / is a function from groups 
to subgroups. 

02(G): the maximal normal 2-subgroup of G. 
02' (G) : the maximal normal odd order subgroup of G. 
Or,2(0): 02(0 mod 0r(G)). 
5p-subgroup: Sylow ^-subgroup of G. 
Z(G): the centre of 0. 
&i(5): If 5 is a ^-group, then fii(S) denotes the group generated by all 

elements of S of order p. 
<t>(S): The Frattini subgroup of S. 

LEMMA 1. Let S be a metacyclic 2-group and suppose that the automorphism 
group of S is not a 2-group. Then either S is abelian of type (2a, 2a) or quaternion 
of order 8. 

We would like to thank the referee for pointing out to us that this lemma 
appears in (12, Lemma 5.27). 

LEMMA 2. Let G be a soluble group, S an S 2-sub group of G. Suppose that 
S = (x, y: x2a = 1, y2 = xu, y~~lxy = xr) is metacyclic. Then |0/02',2(0)| = 6. 
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Proof. Let G = G/02>AG). By (4, Lemma 1.2.3), G is a subgroup of the 
group of automorphisms of Or,2(G)/Or (G), a metacyclic group. By Lemma 1, 
if G y£ 1, an 52-subgroup 02',2(G) is abelian of type (2C, 2C) or quaternion of 
order 8. Thus |G| = 3 • 2s, s ^ 0. Since 02(ô) = 1, s ^ 1 and the lemma is 
proved. 

LEMMA 3. Let S be a metacyclic 2-group. Then S satisfies one of the following 
conditions: 

(i) Z(S) is non-cyclic. Then S has precisely three involutions; 
(ii) S has just one involution and then S is cyclic or generalized quaternion, 

by (3, p. 189); 
(iii) S has just three involutions and Z(S) is cyclic; 
(iv) S has at least five involutions and Z(S) is cyclic. 

Proof. Trivial. Note that if 

S = (x, y: x2<l = 1, y2b = xu, y~lxy = xr), 

then all the involutions in S are contained in (x, y2h~l) = T, and T has a cyclic 
subgroup of index 2. Thus T is a very well-known group (see, for example, 
3, p. 187). 

LEMMA 4. Let G be a group, S — (x, y: x2<l = 1, y2b = xw, y~lxy = xr) an 
Sr-subgroup of G. Suppose that \S/(x)\ ^ 4 and also that Z(S) is non-cyclic. 
Then G is soluble. 

Proof. Let G be a minimal counterexample. We show that G has no subgroup 
G\ of index 2. For such a group is either soluble, in which case we have G is 
soluble, or an S2-subgroup T of d has a cyclic subgroup of index 2 and no 
cyclic factor group of order greater than 2. Now 5 contains precisely three 
involutions by Lemma 3 and hence T has just one or three involutions. I t 
follows that T is either generalized quaternion or abelian of type (2, 2). Since 
S has just three involutions, if T is generalized quaternion, S = T X (̂ 1), 
where h is a central involution of S not in T. But then 5 is not 2-generated, 
a contradiction. If S has order 8, it is abelian since S/(x) is cyclic of order at 
least 4. But then G has a normal 2-complement, applying Burnside's theorem 
(3, p. 203). Hence G has no subgroup of index 2. 

Consider U = Qi(Z(5)) and N(U). If N(U) < G, it is soluble by induction. 
If N(U) has a subgroup of index 2, so does G, by (3, Theorem 14.4.2). This 
is not the case and thus N(U) has no subgroup of index 2. 

By Lemma 2, N(U) contains a normal subgroup K of index 3 precisely. By 
Lemma 1, an 52-subgroup of N{U) and also of G is abelian of type (2a, 2a) 
since it has a non-cyclic centre. By induction, Or (G) = 1 if G is non-soluble. 
Thus by (1, Theorem 1), G is soluble. 

Thus we may assume that N(U) = G. Then either C(U) = G or [G: C(U)] 
is a divisor of 6. If C(U) < G, [G: C(U)] — 3 since G has no subgroup of 
index 2. But then C(U) is soluble by induction. This contradiction shows that 
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G — C(U). Let t be the involution in {%) C\ U. Then S = S/{t) is a metacyclic 
group and S/{x) is cyclic of order at least 4, where (x) = {x)/{t). Also Z(S) 
is non-cyclic since Z(S) C\ (x) ^ 1. By induction, G/{t) is soluble. This 
contradiction completes the proof. 

LEMMA 5. Let 5 = {x, y: x1<L — 1, y2 — xu, y~1xy = xT) be an Si-subgroup of 
a group G and suppose that \S/(x)\ à 4. Then G is soluble. 

Proof. Let G be a minimal counterexample. Then by Lemma 4 we may 
assume that Z(S) is cyclic. Let / Ç Z(S) be an involution. We show that 
t £ Z*(G), where Z*(G) = Z(G mod 02'(G)). Since an 52-subgroup of 
G = G/(t)Or(G) has a cyclic factor group of order at least 4, G is soluble by 
induction. To show that t £ Z*(G) we use (2, Theorem 4). Thus there exists 
a subgroup U containing /, U = 5, and an element g £ G of odd order such 
that rt ^ / and g G #(£ / ) H N(C8(U)), if * « Z*(G). 

If 5 has precisely three involutions, then N(U) = S. If N(U) < G, then 
N(U) is soluble by induction. There are two cases. If N(U) has no subgroup 
of index 2, then by Lemma 1 an 52-subgroup S of G is abelian. This is not 
the case since Z(S) is cyclic, as already remarked. Now N( U) is not a 2-group, 
since g € N(U), and hence N(U) contains a subgroup K of index 2 and 
g £ K. By Lemmas 1 and 2, an 52-subgroup of i£ is abelian of type (2C, 2C) 
since [/ ^ i£. For if U ^ K, then [g, K P\ [/] = 1, a contradiction. But if 5 
contains an abelian subgroup V of type (2C, 2C) with index 2, 5 = (x, ;y) has 
order 22c+1. Either x has order 2C when 3/ has order precisely 2C+1, since its 
order is no larger than this, or x has order 2C+1, when we can choose y G V of 
order 2C. In either case, the centre of S is non-cyclic since the automorphism 
group of a cyclic group of order 2n has exponent 2n~2 if » è 3, by (7, p. 146). 
Of course £ > 1, since if c = 1, we have |5 | = 8 and then 5 has more than 
three involutions. This is a contradiction. 

Thus N(U) = G and C(U) < G since CS(U) < S. By induction, an 
52-subgroup T of C{U) has a cyclic subgroup of index 2 since N(U)/C(U) is 
soluble. Also T g C(£/) implies that U ^ Z(T). The only group T which has 
a non-cyclic centre and a cyclic subgroup of index 2 is the 4-group by Lemma 3. 
Note that T has no cyclic factor group of order greater than or equal to 4. 
But then T = U and C(U) is soluble as the 52-subgroup of C(U) is normal. 

Thus we have that 5 has at least five involutions by Lemma 3 and, if 
R = (x, 3>26-1), R contains all the involutions of 5. Hence R is either dihedral 
of order greater than or equal to 8 or semi-dihedral of order greater than or 
equal to 16. Since U Û R, it follows that CR(U) = U. Let U = </, h), where 
t G Z(S) is an involution and h is a non-central involution. Then 
Cs(U) = C*(/i). Now Cs(h)/(t) = Ca(h)/Cs(h) H <*> S Cs(h)(x)/(x) is 
cyclic since 5/(x) is. Now / 6 Z(C<s(/i)), since ^ 6 Z(5), and thus Gs(/i) is 
abelian. Now by (1, Lemma 4), |Cs(^i)| ^ 4 since then 5 is dihedral or semi-
dihedral and so has no cyclic factor group of order greater than 2. Thus 
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Cs(h) = Cs(U) is abelian of type (2d, 2) and d > 1. This is impossible since 
then g 6 C(CS(U)) because g has odd order. But then g G C(U) a n d g - 1 ^ = t. 
This is a contradiction and the Theorem is proved. 

Added in proof. It has been brought to our attention that P. L. Chabot has 
proved some similar and more general results in this direction in his thesis 
"Sylow 2-groups with cyclic commutator groups" (University of Notre Dame, 
Notre Dame, Indiana, September, 1969). 
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