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NOTE ON THE SINGULAR SUBMODULE 
BY 

D. FIELDHOUSE 

1. Introduction. One very interesting and important problem in ring theory is 
the determination of the position of the singular ideal of a ring with respect to the 
various radicals (Jacobson, prime, Wedderburn, etc.) of the ring. A summary of 
the known results can be found in Faith [3, p. 47 ff.] and Lambek [5, p. 102 ff.]. 
Here we use a new technique to obtain extensions of these results as well as some 
new ones. 

Throughout we adopt the Bourbaki [2] conventions for rings and modules: all 
rings have 1, all modules are unital, and all ring homomorphisms preserve the 1. 

2. The main result. Let AMB be a bimodule. For b e B define 1(b) = (m eM\mb 
=0), an yi-submodule of M. And for me M define l(m) = (a e A | am=0)9 a left 
ideal of A. 

Now define Z(B)=ZM(B) = (b e B | 1(b) V M) where V denotes essential exten
sion (=large submodule), and Z(M)=ZA(M) = (m e M \ l(m)V A). It is easy to 
verify that Z(B) is a two-sided ideal of B and that Z(M) is an A—B submodule of 
M. In fact ZA( ) defined in the category of A-B bimodules is a subfunctor of the 
identity functor, usually called the singular submodule of Johnson [4]. 

Note also that Z(B) is invariant with respect to every ring homomorphism 
I/J:B-*C such that AMC is also a bimodule; i.e. I/JZ(B)^Z(C). Hence I/JZ(B) 

^Z(ifsB)^Z(C). 
The proofs of the following two lemmas are straightforward and hence omitted. 

(Lemma 1 is needed for Lemma 2.) 

LEMMA 1. For any me M and beB, 

Am n 1(b) ~ l(mb)/l(m) as A-modules. 

LEMMA 2. With the same notation consider the following three conditions: 

(ï)beZ(B) 
(ii) l(m) * l(mb) 

(iii) m # 0. 

Then any two conditions imply the third, and hence in the presence of any one the 
other two are equivalent. 

MAIN THEOREM. Suppose A has maximum condition on left annihilator ideals and 

let xl9 x2,... be a sequence of elements ofZ(B). Define bn = x1x2.. .xn. Then: 

(i) M=Ul(bn) 
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(ii) If M has maximum condition on annihilator A-submodules then there exists 
an integer N with M=l(bN) 

(iii) If M is also B-faithful (e.g. B=End AM or M is B-free) then bN = 0. 

Proof, (i) For meM, l(mbn) is an ascending chain of left annihilator ideals 
which becomes stationary with l(mbn) = l(mbnxn + 1) say. By Lemma 2 mbn = 0 since 
xn + 1 e Z(B). Hence m e l(bn). 

(ii) and (iii) are now clear. 

COROLLARY. Under all of the above conditions Z(B) is T-nilpotent in the sense of 
Bass (1), and hence Z(i?)çrad B= prime radical of B. Therefore B semiprime =>B 
neat in the sense of Bourbaki [2]. 

Proof. It is easy to verify that every T-nilpotent ideal is contained in the prime 
radical, using the equivalent definition given by Lambek [5, p. 55]. 

COROLLARY. If the maximum length of chains of left annihilator ideals of A is 
N (e.g. if A is an artinian ring of length N) then M=l(bN) and bN = 0 if M is B-faith
ful. In this case (Z(B))N = 0, i.e. Z(B) is nilpotent and hence contained in the Wedder-
burn radical (=sum of all nilpotent ideals). 

3. Applications. (1) Let AM be a quasi-injective module and B=End AM. Then 
Z(i?) = Rad B (=the Jacobson radical). Hence if A has maximum condition on left 
annihilator ideals and M has maximum condition on annihilator ^4-submodules 
then Z(B) = Rad B=rad B. 

(2) If M=B then condition (iii) of the theorem holds always. Thus if M=B 
= AG, the group ring over a finite group G, and A has maximum condition on left 
annihilator ideals then ZAG(AG)^md AG. 

(3) If A = M=B then Z(B) is the (left) singular ideal. Thus if B has maximum 
condition on left annihilator ideals then Z(B) is T-nilpotent and hence contained 
in rad B. 
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