NOTE ON THE SINGULAR SUBMODULE

BY
D. FIELDHOUSE

1. Introduction. One very interesting and important problem in ring theory is the determination of the position of the singular ideal of a ring with respect to the various radicals (Jacobson, prime, Wedderburn, etc.) of the ring. A summary of the known results can be found in Faith [3, p. 47 ff .] and Lambek [5, p. 102 ff .]. Here we use a new technique to obtain extensions of these results as well as some new ones.

Throughout we adopt the Bourbaki [2] conventions for rings and modules: all rings have 1, all modules are unital, and all ring homomorphisms preserve the 1.
2. The main result. Let ${ }_{A} M_{B}$ be a bimodule. For $b \in B$ define $l(b)=(m \in M \mid m b$ $=0$), an A-submodule of M. And for $m \in M$ define $l(m)=(a \in A \mid a m=0)$, a left ideal of A.
Now define $Z(B)=Z_{M}(B)=(b \in B \mid l(b) \nabla M)$ where ∇ denotes essential extension (=large submodule), and $Z(M)=Z_{A}(M)=(m \in M \mid l(m) \nabla A)$. It is easy to verify that $Z(B)$ is a two-sided ideal of B and that $Z(M)$ is an $A-B$ submodule of M. In fact Z_{A} () defined in the category of $A-B$ bimodules is a subfunctor of the identity functor, usually called the singular submodule of Johnson [4].

Note also that $Z(B)$ is invariant with respect to every ring homomorphism $\psi: B \rightarrow C$ such that ${ }_{A} M_{C}$ is also a bimodule; i.e. $\psi Z(B) \subseteq Z(C)$. Hence $\psi Z(B)$ $\subseteq Z(\psi B) \subseteq Z(C)$.

The proofs of the following two lemmas are straightforward and hence omitted. (Lemma 1 is needed for Lemma 2.)

Lemma 1. For any $m \in M$ and $b \in B$,

$$
A m \cap l(b) \simeq l(m b) / l(m) \quad \text { as } A \text {-modules }
$$

Lemma 2. With the same notation consider the following three conditions:
(i) $b \in Z(B)$
(ii) $l(m) \neq l(m b)$
(iii) $m \neq 0$.

Then any two conditions imply the third, and hence in the presence of any one the other two are equivalent.

Main theorem. Suppose A has maximum condition on left annihilator ideals and let x_{1}, x_{2}, \ldots be a sequence of elements of $Z(B)$. Define $b_{n}=x_{1} x_{2} \ldots x_{n}$. Then:
(i) $M=U l\left(b_{n}\right)$

[^0](ii) If M has maximum condition on annihilator A-submodules then there exists an integer N with $M=l\left(b_{N}\right)$
(iii) If M is also B-faithful (e.g. $B=E n{ }_{A} M$ or M is B-free) then $b_{N}=0$.

Proof. (i) For $m \in M, l\left(m b_{n}\right)$ is an ascending chain of left annihilator ideals which becomes stationary with $l\left(m b_{n}\right)=l\left(m b_{n} x_{n+1}\right)$ say. By Lemma $2 m b_{n}=0$ since $x_{n+1} \in Z(B)$. Hence $m \in l\left(b_{n}\right)$.
(ii) and (iii) are now clear.

Corollary. Under all of the above conditions $Z(B)$ is T-nilpotent in the sense of Bass (1), and hence $Z(B) \subseteq \operatorname{rad} B=$ prime radical of B. Therefore B semiprime $\Rightarrow B$ neat in the sense of Bourbaki [2].

Proof. It is easy to verify that every T-nilpotent ideal is contained in the prime radical, using the equivalent definition given by Lambek [5, p. 55].

Corollary. If the maximum length of chains of left annihilator ideals of A is N (e.g. if A is an artinian ring of length N) then $M=l\left(b_{N}\right)$ and $b_{N}=0$ if M is B-faithful. In this case $(Z(B))^{N}=0$, i.e. $Z(B)$ is nilpotent and hence contained in the Wedderburn radical ($=$ sum of all nilpotent ideals).
3. Applications. (1) Let ${ }_{A} M$ be a quasi-injective module and $B=\operatorname{End}_{A} M$. Then $Z(B)=\operatorname{Rad} B(=$ the Jacobson radical). Hence if A has maximum condition on left annihilator ideals and M has maximum condition on annihilator A-submodules then $Z(B)=\operatorname{Rad} B=\operatorname{rad} B$.
(2) If $M=B$ then condition (iii) of the theorem holds always. Thus if $M=B$ $=A G$, the group ring over a finite group G, and A has maximum condition on left annihilator ideals then $Z_{A G}(A G) \subseteq \operatorname{rad} A G$.
(3) If $A=M=B$ then $Z(B)$ is the (left) singular ideal. Thus if B has maximum condition on left annihilator ideals then $Z(B)$ is T-nilpotent and hence contained in $\operatorname{rad} B$.

References

1. H. Bass, Finitistic homological dimension and a homological generalization of semiprimary rirgs, Trans. Amer. Math. Soc. 95 (1960), 466-488.
2. N. Bourbaki, Algèbre Commutative, Ch. 1 and 2, Hermann, Paris, 1961.
3. C. Faith, Lectures on injective modules and quotient rings, Springer-Verlag, New York, 1967.
4. R. E. Johnson, The extended centralizer of a ring over a module, Proc. Amer. Math. Soc. 2 (1951), 891-895.
5. J. Lambek, Lectures on rings and modules, Blaisdell, Waltham, Mass., 1966.

Queen's University,
Kingston, Ontario
University of Guelph, Guelph, Ontario

[^0]: Received by the editors February 13, 1970 and, in revised form, April 101970.

