Canad. Math. Bull. Vol. 13 (4), 1970

NOTE ON THE SINGULAR SUBMODULE

BY

D. FIELDHOUSE

1. Introduction. One very interesting and important problem in ring theory is the determination of the position of the singular ideal of a ring with respect to the various radicals (Jacobson, prime, Wedderburn, etc.) of the ring. A summary of the known results can be found in Faith [3, p. 47 ff.] and Lambek [5, p. 102 ff.]. Here we use a new technique to obtain extensions of these results as well as some new ones.

Throughout we adopt the Bourbaki [2] conventions for rings and modules: all rings have 1, all modules are unital, and all ring homomorphisms preserve the 1.

2. The main result. Let $_{A}M_{B}$ be a bimodule. For $b \in B$ define $l(b) = (m \in M \mid mb = 0)$, an A-submodule of M. And for $m \in M$ define $l(m) = (a \in A \mid am = 0)$, a left ideal of A.

Now define $Z(B) = Z_M(B) = (b \in B | l(b) \nabla M)$ where ∇ denotes essential extension (=large submodule), and $Z(M) = Z_A(M) = (m \in M | l(m) \nabla A)$. It is easy to verify that Z(B) is a two-sided ideal of B and that Z(M) is an A-B submodule of M. In fact Z_A () defined in the category of A-B bimodules is a subfunctor of the identity functor, usually called the singular submodule of Johnson [4].

Note also that Z(B) is invariant with respect to every ring homomorphism $\psi: B \to C$ such that ${}_{A}M_{C}$ is also a bimodule; i.e. $\psi Z(B) \subseteq Z(C)$. Hence $\psi Z(B) \subseteq Z(Q)$.

The proofs of the following two lemmas are straightforward and hence omitted. (Lemma 1 is needed for Lemma 2.)

LEMMA 1. For any $m \in M$ and $b \in B$,

 $Am \cap l(b) \simeq l(mb)/l(m)$ as A-modules.

LEMMA 2. With the same notation consider the following three conditions:

- (i) $b \in Z(B)$
- (ii) $l(m) \neq l(mb)$
- (iii) $m \neq 0$.

Then any two conditions imply the third, and hence in the presence of any one the other two are equivalent.

MAIN THEOREM. Suppose A has maximum condition on left annihilator ideals and let x_1, x_2, \ldots be a sequence of elements of Z(B). Define $b_n = x_1 x_2 \ldots x_n$. Then:

(i) $M = Ul(b_n)$

Received by the editors February 13, 1970 and, in revised form, April 10 1970.

441

D. FIELDHOUSE

- (ii) If M has maximum condition on annihilator A-submodules then there exists an integer N with $M = l(b_N)$
- (iii) If M is also B-faithful (e.g. $B = \text{End}_A M$ or M is B-free) then $b_N = 0$.

Proof. (i) For $m \in M$, $l(mb_n)$ is an ascending chain of left annihilator ideals which becomes stationary with $l(mb_n) = l(mb_n x_{n+1})$ say. By Lemma 2 $mb_n = 0$ since $x_{n+1} \in Z(B)$. Hence $m \in l(b_n)$.

(ii) and (iii) are now clear.

COROLLARY. Under all of the above conditions Z(B) is T-nilpotent in the sense of Bass (1), and hence $Z(B) \subseteq \operatorname{rad} B =$ prime radical of B. Therefore B semiprime $\Rightarrow B$ neat in the sense of Bourbaki [2].

Proof. It is easy to verify that every *T*-nilpotent ideal is contained in the prime radical, using the equivalent definition given by Lambek [5, p. 55].

COROLLARY. If the maximum length of chains of left annihilator ideals of A is N (e.g. if A is an artinian ring of length N) then $M = l(b_N)$ and $b_N = 0$ if M is B-faithful. In this case $(Z(B))^N = 0$, i.e. Z(B) is nilpotent and hence contained in the Wedderburn radical (=sum of all nilpotent ideals).

3. Applications. (1) Let $_AM$ be a quasi-injective module and $B = \text{End }_AM$. Then Z(B) = Rad B (= the Jacobson radical). Hence if A has maximum condition on left annihilator ideals and M has maximum condition on annihilator A-submodules then Z(B) = Rad B = rad B.

(2) If M=B then condition (iii) of the theorem holds always. Thus if M=B= AG, the group ring over a finite group G, and A has maximum condition on left annihilator ideals then $Z_{AG}(AG) \subseteq \operatorname{rad} AG$.

(3) If A=M=B then Z(B) is the (left) singular ideal. Thus if B has maximum condition on left annihilator ideals then Z(B) is T-nilpotent and hence contained in rad B.

References

1. H. Bass, Finitistic homological dimension and a homological generalization of semiprimary rirgs, Trans. Amer. Math. Soc. **95** (1960), 466–488.

2. N. Bourbaki, Algèbre Commutative, Ch. 1 and 2, Hermann, Paris, 1961.

3. C. Faith, Lectures on injective modules and quotient rings, Springer-Verlag, New York, 1967.

4. R. E. Johnson, *The extended centralizer of a ring over a module*, Proc. Amer. Math. Soc. 2 (1951), 891–895.

5. J. Lambek, Lectures on rings and modules, Blaisdell, Waltham, Mass., 1966.

QUEEN'S UNIVERSITY, KINGSTON, ONTARIO

UNIVERSITY OF GUELPH, GUELPH, ONTARIO

442