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Abstract

We introduce the process of symplectic reduction along a submanifold as a uniform
approach to taking quotients in symplectic geometry. This construction holds in the cat-
egories of smooth manifolds, complex analytic spaces, and complex algebraic varieties,
and has an interpretation in terms of derived stacks in shifted symplectic geometry.
It also encompasses Marsden–Weinstein–Meyer reduction, Mikami–Weinstein reduc-
tion, the pre-images of Poisson transversals under moment maps, symplectic cutting,
symplectic implosion, and the Ginzburg–Kazhdan construction of Moore–Tachikawa
varieties in topological quantum field theory. A key feature of our construction is a con-
crete and systematic association of a Hamiltonian G-space MG,S to each pair (G,S),
where G is any Lie group and S ⊆ Lie(G)∗ is any submanifold satisfying certain non-
degeneracy conditions. The spaces MG,S satisfy a universal property for symplectic
reduction which generalizes that of the universal imploded cross-section. Although these
Hamiltonian G-spaces are explicit and natural from a Lie-theoretic perspective, some
of them appear to be new.
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1. Introduction

1.1 Informal context
Noether’s approach to symmetries and conserved quantities in classical mechanics naturally gives
rise to quotient constructions in symplectic geometry. The most basic of these constructions is
Marsden–Weinstein–Meyer reduction [Mey73, MW74] for Hamiltonian Lie group actions, a cor-
nerstone of symplectic geometry [GS82a, SL91, Sja95, MS99] with wide-ranging implications for
algebraic geometry [AB83, Kir84, Hit87, Los09] and geometric representation theory [KKS78,
Nak98, EG02, GG04, BFM05, BFN19, Băl21]. This construction applies to a Hamiltonian
G-space, i.e. a symplectic manifold M equipped with a Hamiltonian action of a Lie group G
and a moment map μ : M −→ g∗, where g is the Lie algebra of G. Each element ξ ∈ g∗ has a
G-stabilizer Gξ ⊆ G and determines a topological quotient

M//ξ G := μ−1(ξ)/Gξ, (1.1)

called the Marsden–Weinstein–Meyer reduction of M by G at level ξ. The space M//ξ G is a
symplectic manifold under certain hypotheses.

Motivated by recent advances in topological quantum field theory [MT12, GK], we intro-
duce and study a generalization of Marsden–Weinstein–Meyer reduction. Our starting point is
the work of Mikami–Weinstein [MW88], which defines the notion of a Hamiltonian action of
a symplectic groupoid G ⇒ X on a symplectic manifold M with moment map μ : M −→ X.
These authors proceed to define the symplectic reduction M//x G := μ−1(x)/Gx of M by G at
level x ∈ X, where Gx is the isotropy group at x. Our construction upgrades the level x ∈ X and
subgroup Gx ⊆ G to a submanifold S ⊆ X and subgroupoid GS ⊆ G, respectively, in such a way
that the quotient M//S G := μ−1(S)/GS is a symplectic manifold.

The equivalence between usual Hamiltonian G-spaces and Hamiltonian spaces for the cotan-
gent groupoid T ∗G ⇒ g∗ (see [MW88]) then allows us to generalize (1.1) by replacing the level
ξ ∈ g∗ with a submanifold S ⊆ g∗. In other words, given a Hamiltonian G-space M with moment
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map μ : M −→ g∗, we obtain a notion of symplectic reduction

M//S G := μ−1(S)/GS (1.2)

of M by G at level S ⊆ g∗, where GS is a certain subgroupoid of T ∗G determined by S. As with
(1.1), the space (1.2) is a symplectic manifold under reasonable hypotheses. As GS replaces the
stabilizer subgroup Gξ in (1.1), we call it the ‘stabilizer subgroupoid’ of S.

To be somewhat more precise, let us address the class of submanifolds S ⊆ X for which our
construction can be performed; these are the so-called pre-Poisson submanifolds of X, as defined
and studied by Cattaneo and Zambon [CZ07, CZ09]. Poisson transversals and Poisson submani-
folds are automatically pre-Poisson, and there is a reasonable sense in which generic submanifolds
of X are pre-Poisson. At the same time, each pre-Poisson submanifold S ⊆ X canonically deter-
mines a Lie subalgebroid LS −→ S of the Lie algebroid of G. The notion of a stabilizer subgroupoid
for S is then transparent; it refers to any isotropic immersed Lie subgroupoid H ⇒ S of G inte-
grating LS . One has a non-empty, discrete family of stabilizer subgroupoids for S, exactly one
of which is source-connected and source-simply-connected (ssc).

Our generalization of Marsden–Weinstein–Meyer reduction amounts to the topological
space

M//S,H G := μ−1(S)/H
being a symplectic manifold under reasonable hypotheses, where μ : M −→ X is the moment
map. Any two source-connected choices of H ⇒ S yield the same quotient M//S,H G, allowing us
to define

M//S G := M//S,H G for any source-connected H ⇒ S. (1.3)

We use the nomenclature symplectic reduction along a submanifold for the construction described
in these last two sentences. In very general terms, the following are some features that it enjoys.
The reader is referred to § 1.2 for more precise descriptions of these features.

Categories. Our construction has analogs in the categories of complex analytic spaces, com-
plex algebraic varieties, and derived Artin stacks, all of which are developed and proved in this
paper.

Relation to other constructions. Several well-studied quotient constructions in symplec-
tic geometry can be realized as special cases of symplectic reduction along a submanifold.
Such constructions include Marsden–Weinstein–Meyer reduction, Mikami–Weinstein reduction
for Hamiltonian symplectic groupoid actions [MW88], the pre-images of Poisson transversals
under moment maps [Bie97, FM17, CR20, CP21], and the Ginzburg–Kazhdan presentation [GK]
of Moore–Tachikawa varieties [MT12]. We also find that symplectic cutting [Ler95, LMTW98,
Wei01, MT12, FR16] and symplectic implosion [GJS02, DKS13, DKR16, Saf17] may be described
more simply as reduction along a polyhedral set and reduction along a closed Weyl chamber,
respectively. Our work also has an interpretation in shifted symplectic geometry [PTVV13] as a
derived intersection of two Lagrangians.

Universal reduced spaces. Our construction yields a very simple, systematic, Lie-theoretic
technique for producing Hamiltonian Lie group spaces. One begins with a Lie group G
and pre-Poisson submanifold S ⊆ g∗, e.g. S could be any G-invariant submanifold or any
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Poisson transversal. If the pair (G,S) satisfies some non-degeneracy conditions, we show that it
determines a universal Hamiltonian G-space MG,S ; the precise meaning of ‘universal’ is given in
§ 1.2.

We realize several Hamiltonian G-spaces in this way, including products of coadjoint orbits,
open Moore–Tachikawa varieties [Bie21, GK], universal imploded cross-sections [GJS02], and
some spaces that appear to be new. We also show MG,S to be a symplectic groupoid when
S ⊆ g∗ is G-invariant and appropriate non-degeneracy conditions are imposed.

Remark 1.1. Some follow-up work (by Bălibanu and Mayrand) will address a few general-
izations of our construction in the smooth category; it will concern Hamiltonian actions
of quasi-symplectic groupoids on Dirac manifolds, as well as quotients by more general
subgroupoids.

1.2 Statement of main results
We now give precise formulations of our main results.

1.2.1 The smooth category. Let (X,σ) be a Poisson manifold with Poisson bivector field
σ : T ∗X −→ TX. A submanifold S ⊆ X is called pre-Poisson if σ−1(TS) ∩ TS◦ has constant
rank over S, where TS◦ ⊆ T ∗X is the annihilator of TS ⊆ TX. Any symplectic groupoid G ⇒ X
has the property that X is Poisson, and we may therefore consider a pre-Poisson submanifold
S ⊆ X. One then has a Lie subalgebroid

LS := σ−1(TS) ∩ TS◦

of the Lie algebroid of G ⇒ X. We use the term stabilizer subgroupoid of S for any isotropic Lie
subgroupoid1 H ⇒ S of G ⇒ X having LS as its Lie algebroid.

On the other hand, Mikami and Weinstein [MW88] define what it means for G ⇒ X to act in
a Hamiltonian fashion on a symplectic manifold (M,ω). Any stabilizer subgroupoid H ⇒ S then
acts on N := μ−1(S), where μ : M −→ X is the moment map realizing the Hamiltonian action
of G ⇒ X on M . We call the quotient topological space

M//S,H G := N/H
the symplectic reduction of M by G along S with respect to H. This space features in the following
result.

Theorem A (Smooth category). Suppose that a symplectic groupoid G ⇒ X acts on a sym-
plectic manifold (M,ω) in a Hamiltonian fashion with moment map μ : M −→ X. Let H ⇒ S
be a stabilizer subgroupoid of a pre-Poisson submanifold S ⊆ X and set N := μ−1(S).

(i) Assume that S intersects μ cleanly and that M//S,H G := N/H has a smooth manifold
structure for which the quotient map π : N −→M//S,H G is a submersion. The manifold
M//S,H G then carries a unique symplectic form ω̄ for which

π∗ω̄ = i∗ω,

where i : N −→M is the inclusion map.
(ii) If H acts freely on N , then S is transverse to μ. The hypotheses of part (i) are therefore

satisfied if H acts freely and properly on N .
(iii) Let σ : T ∗X −→ TX denote the Poisson bivector field on X. Assume that the hypothe-

ses of part (i) are satisfied and that S/H has a smooth manifold structure for which

1 Our convention is that a Lie subgroupoid is a Lie groupoid with a possibly non-injective immersion; see § 2.2.
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the quotient map ρ : S −→ S/H is a submersion. The manifold S/H then has a unique
Poisson structure satisfying the following condition: if x ∈ S, f, g are smooth functions
on S/H defined near ρ(x), and F,G are smooth functions on X defined near x with
dF (σ(TS◦)) = 0 = dG(σ(TS◦)), then

ρ∗{f, g}S/H = {F,G}X |S .
Furthermore, the moment map μ : M −→ X descends to a Poisson map M//S,H G −→ S/H.

This result appears in the main text as Theorems 2.14, 2.20, and 2.24.
Let us suppose that S = {x} is a singleton and that H is the isotropy group at x. In this

case, M//S,H G is precisely the Mikami–Weinstein reduction of M at level x (see [MW88]). In
other words, Mikami–Weinstein reduction is a special case of Theorem A. The same is there-
fore true of Marsden–Weinstein–Meyer reduction, as it is a special case of Mikami–Weinstein
reduction.

It is also illuminating to apply Theorem A in the case of a Poisson transversal S ⊆ X. The
trivial groupoid H ⇒ S is then a stabilizer subgroupoid of S in G, and one obtains the symplectic
submanifold M//S,H G = μ−1(S) ⊆M .

1.2.2 The complex analytic and algebraic categories. Theorem A and its consequences have
natural counterparts in the category of complex analytic spaces. To this end, call a complex
analytic space (X,OX) Poisson if OX is a sheaf of complex Poisson algebras. Now assume
that X is a holomorphic Poisson manifold and denote its Poisson bivector field by σ : T ∗X −→
TX. We call a complex submanifold S ⊆ X a pre-Poisson complex submanifold if σ−1(TS) ∩
TS◦ has constant rank over S. The base space of a holomorphic symplectic groupoid G ⇒ X
is a holomorphic Poisson manifold, in which context we may consider a pre-Poisson complex
submanifold S ⊆ X. In analogy with § 1.2.1, we may define what it means for H ⇒ S to be
a holomorphic stabilizer subgroupoid of S. Hamiltonian actions are also defined analogously,
i.e. one has an analogous notion of G ⇒ X acting on a holomorphic symplectic manifold M
in a Hamiltonian fashion with moment map μ : M −→ X. Let us assume that N := μ−1(S) is
reduced. Let us also consider a complex analytic quotient π : N −→ Q of N by H; by this, we
mean that Q is a complex analytic space, that π is holomorphic, and that the canonical map
OQ −→ (π∗ON )H is an isomorphism. We refer to Q as the symplectic reduction of M by G along
S with respect to H and π and write

M//S,H,π G := Q.

These considerations yield the following counterpart of Theorem A.

Theorem B (Complex analytic category). Let a holomorphic symplectic groupoid G ⇒ X act
on a holomorphic symplectic manifold (M,ω) in a Hamiltonian fashion with moment map μ :
M −→ X. Suppose that H ⇒ S is a holomorphic stabilizer subgroupoid of a pre-Poisson complex
submanifold S ⊆ X and that N := μ−1(S) is reduced. Let us also suppose that π : N −→ Q is a
complex analytic quotient of N by H.

(i) If p ∈ N and f ∈ OQ,π(p), then there exists F ∈ OM,p satisfying π∗f = F |N and dF (TNω) =
0, where TNω is the annihilator of TN with respect to ω.

(ii) The complex analytic space Q has a unique Poisson structure with the following property:
if p ∈ N , f, g ∈ OQ,π(p), and F,G ∈ OM,p satisfy π∗f = F |N , π∗g = G|N , and dF (TNω) =
0 = dG(TNω), then

π∗{f, g}Q = {F,G}M |N .
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(iii) Assume that there exists p ∈ N such that dπp is surjective, π−1(π(p)) is an H-orbit, and
π(p) is a smooth point of Q. The Poisson structure in part (ii) is then non-degenerate on
an open dense subset of the smooth locus of Q containing π(p).

(iv) Suppose that S intersects μ cleanly, and that the topological quotient Q = N/H has a com-
plex manifold structure such that π : N −→ Q is a holomorphic submersion. The Poisson
structure on Q is then induced by a holomorphic symplectic form ω̄ satisfying

π∗ω̄ = i∗ω,

where i : N −→M is the inclusion map.
(v) If H acts freely on N , then S is transverse to μ. The hypotheses of part (iv) are therefore

satisfied if H acts freely and properly on N .
(vi) Let σ : T ∗X −→ TX denote the Poisson bivector field on X. If ρ : S −→ R is a complex

analytic quotient of S by H, then there is a unique holomorphic Poisson structure on R
such that

ρ∗{f, g}R = {F,G}X |S
for all x ∈ S, f, g ∈ OR,ρ(x), and F,G ∈ OX,x satisfying ρ∗f = F |S , ρ∗g = G|S , and
dF (σ(TS◦)) = 0 = dG(σ(TS◦)).

(vii) Assume that the hypothesis of part (vi) holds. If μ : M −→ X descends to a holomorphic
map μ̄ : Q −→ R, then μ̄ is Poisson with respect to the Poisson structures in parts (ii) and
(vi).

This result appears in the main text as Theorem 3.10, Propositions 3.14, 3.15, and
Theorem 3.16.

Theorem B has incarnations in complex algebraic geometry. The setup is entirely analogous
to that outlined in the paragraph preceding Theorem B; one simply replaces each complex ana-
lytic notion with its algebro-geometric counterpart, e.g. holomorphic symplectic groupoids with
algebraic symplectic groupoids, holomorphic Poisson manifolds with smooth Poisson varieties,
and complex analytic quotients with algebraic quotients.2 The algebro-geometric definition of
M//S,H,π G is then analogous to that given in the complex analytic setting.

Theorem C (Complex algebraic category). Let an algebraic symplectic groupoid G ⇒ X act on
a symplectic variety (M,ω) in a Hamiltonian fashion with moment map μ : M −→ X. Suppose
that H ⇒ S is a stabilizer subgroupoid of a pre-Poisson subvariety S ⊆ X and that N := μ−1(S)
is reduced. Suppose also that π : N −→ Q is an algebraic quotient of N by H. Let Oan

M denote
the structure sheaf of M as a complex analytic space.

(i) If p ∈ N and f ∈ OQ,π(p), then there exists F in Oan
M,p satisfying π∗f = F |N and

dF (TNω) = 0.
(ii) The variety Q has a unique algebraic Poisson structure with the following property: if

p ∈ N , f, g ∈ OQ,π(p), and F,G ∈ Oan
M,p satisfy π∗f = F |N , π∗g = G|N , and dF (TNω) =

0 = dG(TNω), then

π∗{f, g}Q = {F,G}M |N .
(iii) Assume that there exists p ∈ N such that dπp is surjective, π−1(π(p)) is an H-orbit, and

π(p) is a smooth point of Q. The Poisson structure in part (ii) is then non-degenerate on a
Zariski-open subset of the smooth locus of Q containing π(p).

2 We refer the reader to Definition 5.1 for the precise meaning of this term.
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Theorem C appears in the main text as Theorem 5.3.

1.2.3 Symplectic reduction by a Lie group along a submanifold. Our results have implications
for classical Hamiltonian G-spaces in both the smooth and complex analytic categories, where
G is any real or complex Lie group with Lie algebra g. We develop the implications for smooth
Hamiltonian G-spaces in parallel with those for holomorphic Hamiltonian G-spaces, allowing
context to resolve any ambiguities that this may create.

Recall the identification of Hamiltonian G-spaces with Hamiltonian spaces for the cotan-
gent groupoid T ∗G ⇒ g∗ described in [MW88] and mentioned in § 1.1. This gives rise to the
notation

M//S,H G := M//S,H T ∗G

for the reduction of a Hamiltonian G-space M along a pre-Poisson submanifold S ⊆ g∗ with
respect to a stabilizer subgroupoid H ⇒ S in T ∗G. As per (1.3) and the discussion preceding it,
we may write

M//S G := M//S,H G for any source-connected H ⇒ S.

On the other hand, we call the pair (S,H) a clean reduction datum if it satisfies the hypotheses
of Theorems A(i) or B(iv). Note that M//S,H G is a symplectic manifold in this case.

One may specialize this discussion to the Hamiltonian G-space M = T ∗G, where G acts on
T ∗G by right translations. Let us begin by considering

MG,S,H := T ∗G//S,H G and MG,S := MG,S,H for any source-connected H ⇒ S.

Note that MG,S,H is a symplectic manifold if (S,H) is a clean reduction datum for the right
translation action of G on T ∗G. In this case, the left translation action descends to a Hamiltonian
G-action on MG,S,H, i.e. MG,S,H is a Hamiltonian G-space. Part (i) of the following result justifies
our calling MG,S,H the universal reduced space associated to (G,S,H).

Theorem D (Reduction by a Lie group). Let S ⊆ g∗ be a pre-Poisson submanifold.

(i) Suppose that (S,H) is a clean reduction datum for both a Hamiltonian G-space M and the
right translation action of G on T ∗G. We then have a canonical symplectomorphism

M//S,H G ∼= (M × M−
G,S,H)//0 G,

where M−
G,S,H is MG,S,H with the negated symplectic form, G acts diagonally on M ×

M−
G,S,H, and //0 denotes Marsden–Weinstein–Meyer reduction at level 0.

(ii) Suppose that the Lie subalgebroid LS := σ−1(TS) ∩ TS◦ ⊆ T ∗g∗ is contained in the kernel
of the Kirillov–Kostant–Souriau Poisson structure σ : T ∗g∗ −→ Tg∗. The subspace

hξ := (TξS)◦ ∩ gξ

is then a Lie subalgebra of g for all ξ ∈ S, where (TξS)◦ ⊆ g is the annihilator of TξS ⊆ g∗

and gξ ⊆ g is the centralizer of ξ. Furthermore, we have

LS = {(x, ξ) ∈ g × S : x ∈ hξ}.
(iii) Retain the hypothesis of part (ii). Let Hξ ⊆ G be the connected Lie subgroup with Lie

algebra hξ for all ξ ∈ S, and suppose that

H := {(g, ξ) ∈ G× S : g ∈ Hξ}
is closed in G× S. The subset H is then a stabilizer subgroupoid of S in T ∗G ⇒ g∗ if one
uses the left trivialization to identify T ∗G with G× g∗.
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(iv) Suppose that S is a G-invariant submanifold of g∗. The hypothesis of part (ii) is then
satisfied. Let us also assume that the hypotheses of part (iii) are satisfied. Then (S,H) is
a clean reduction datum for the right translation action of G on T ∗G, and the symplectic
manifold MG,S inherits the structure of a symplectic groupoid integrating S.

Theorem D appears in the main text as Proposition 4.10 and Theorems 4.11, 4.17, and 4.21.
We proceed to obtain the following specific examples of universal reduced spaces.

Theorem E (Specific examples of universal reduced spaces). Let G be a connected complex
semisimple Lie group with Lie algebra g.

(i) If G is of adjoint type, S ⊆ g∗ is a principal Slodowy slice, and ΔnS ⊆ (g∗)n is the diag-
onally embedded copy of S, then MGn,ΔnS is the nth open Moore–Tachikawa variety. Its
affinization is the nth Moore–Tachikawa variety constructed by Ginzburg–Kazhdan, and
the Poisson structure on this variety can be recovered from Theorem C.

(ii) If (g∗irr)
◦ is the set of subregular semisimple elements in g∗, then

MG,(g∗irr)◦ =
⊔

ξ∈(g∗irr)◦
G/[Gξ, Gξ],

where Gξ is the G-stabilizer of ξ ∈ g∗. Furthermore, this space has the structure of a holo-
morphic symplectic groupoid integrating (g∗irr)

◦. Its symplectic form, Hamiltonian G-action,
and groupoid structure are described in Example 4.36.

Theorem E appears in the main text as Example 4.36 and Theorem 5.10.
A few brief comments are warranted. We first note that the stabilizer subgroupoid used

to construct MGn,ΔnS is a genuine group scheme, i.e. a group scheme whose fibers are not all
isomorphic to one another. This contrasts with the more familiar construction of reduced spaces
as quotients by Lie group actions. The Ginzburg–Kazhdan construction of Moore–Tachikawa
varieties thereby inspired much of the setup in this paper. In particular, this construction was
the main motivation for our work.

Our second comment is that Theorem E(ii) holds in greater generality; one can reduce
along any decomposition class D ⊆ g∗ (see [BK79]) and obtain an explicit description of the
Hamiltonian G-space MG,D. The Hamiltonian G-spaces MG,D do not seem to appear in the
literature.

1.2.4 Examples of symplectic reduction along a submanifold. In addition to Marsden–
Weinstein–Meyer reduction, Mikami–Weinstein reduction, and the pre-images of Poisson
transversals under moment maps, we realize each of the following as special cases of symplectic
reduction along a submanifold. Retain the notation used in § 1.2.3 and identify T ∗G with G× g∗

via the left trivialization as appropriate. Write Gξ for the G-stabilizer of ξ ∈ g∗.

Theorem F (General examples). Let G be a Lie group with Lie algebra g. Suppose that G acts
on a symplectic manifold M in a Hamiltonian fashion and with moment map μ : M −→ g∗.

(i) If O ⊆ g∗ is a coadjoint orbit, H = {(g, ξ) ∈ G×O : g ∈ Gξ}, (O,H) is a clean reduction
datum, and O− is O with the negated symplectic form, then M//O,H G = μ−1(O)/G×O−.

(ii) If G is compact and connected and t∗+ ⊆ g∗ is a closed fundamental Weyl chamber, then
M//t∗+

G is the imploded cross-section of M .

(iii) If G = T is a compact torus and P ⊆ g∗ = t∗ is a polyhedral set, then M//P T is the
symplectic cut of M with respect to P .
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Although t∗+ and P are not submanifolds, each is stratified into pre-Poisson submanifolds.
This allows one to form each of M//t∗+

G and M//P T on a stratum-by-stratum basis. We refer
the reader to Remark 2.17 for further details.

Theorem F appears in the main text as Propositions 4.26, 4.29, and 4.32.

1.2.5 Shifted symplectic interpretation. The notion of symplectic reduction along a subman-
ifold can be interpreted as a construction in shifted symplectic geometry [PTVV13] similar to
that for Marsden–Weinstein–Meyer reduction [Cal20, § 2.1.2] and quasi-Hamiltonian reduction
[Saf16]. More precisely, we obtain it as a derived intersection of two Lagrangian morphisms
[PTVV13, Theorem 2.9] in the 1-shifted symplectic stack [X/G] associated to a symplectic
groupoid G ⇒ X. One consequence is that most of the assumptions of Theorem C can be dropped
at the expense of obtaining a derived stack [M//S,H G] endowed with a 0-shifted symplectic struc-
ture. This picture also explains the definition of a stabilizer subgroupoid, as shown by part (i)
of the following theorem.

Theorem G (Shifted symplectic interpretation). Let G ⇒ X be an algebraic symplectic
groupoid.

(i) An algebraic subgroupoid H ⇒ S of G ⇒ X is a stabilizer subgroupoid of a pre-Poisson
subvariety if and only if the zero 2-form on S is a Lagrangian structure on the morphism
of quotient stacks [S/H] −→ [X/G].

(ii) Suppose that G ⇒ X acts on a symplectic variety M in a Hamiltonian fashion with moment
map μ : M −→ X, and let H ⇒ S be a stabilizer subgroupoid of a pre-Poisson subvariety S
in G ⇒ X. We then have two Lagrangian morphisms [S/H] −→ [X/G] and [μ] : [M/G] −→
[X/G] on the 1-shifted symplectic stack [X/G], inducing a 0-shifted symplectic structure on
the derived fiber product

[M//S,H G] := [S/H] ×h
[X/G] [M/G].

This result appears in the main text as Proposition 6.1 and Theorem 6.2.

1.3 Organization
Our paper is organized as follows. Sections 2, 3, 4, 5, and 6 are based around the discussions,
proofs, and implications of Theorems A, B, D, C, and G, respectively. Theorem E is divided
between §§ 4 and 5, whereas Theorem F appears in § 4. Each of the sections in this paper begins
with an outline of its content and structure. Section 6 is followed by a list of recurring notation
in our paper.

2. Main construction: smooth version

The present section is devoted to the discussion, proof, and implications of Theorem A. We begin
with an overview of the Lie groupoid-theoretic preliminaries in § 2.1. This leads to treatment of
pre-Poisson submanifolds and stabilizer subgroupoids in § 2.2. The proofs of parts (i), (ii), and
(iii) in Theorem A then appear in §§ 2.3, 2.4, and 2.5, respectively. We conclude with § 2.6, which
briefly outlines some special cases of Theorem A.

2.1 Preliminaries
We begin by assembling the concepts and conventions needed to define and study symplectic
reduction along a submanifold.
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2.1.1 Actions of Lie groupoids. Let G ⇒ X be a Lie groupoid. We denote the source and
target maps by s : G −→ X and t : G −→ X, respectively. Our convention is that, given g, h ∈ G,
the product gh is defined if and only if t(g) = s(h). The base X is identified as a subman-
ifold of G via the identity bisection 1 : X ↪→ G. We say that G ⇒ X is an ssc Lie groupoid
if every fiber of s is connected and simply-connected. The Lie algebroid of G ⇒ X shall
be denoted Lie(G) and realized as the vector bundle (ker dt)|X −→ X with anchor map ds :
(ker dt)|X −→ TX.

Now consider a smooth manifold M , a smooth map μ : M −→ X, and the fibered product

G t×μM := {(g, p) ∈ G ×M : t(g) = μ(p)}.
Recall that an action of G ⇒ X on M with moment map μ is a smooth map

G t×μM −→M, (g, p) �−→ g · p,
such that μ(g · p) = s(g), (g · h) · p = g · (h · p), and 1μ(p) · p = p for all p ∈M and g, h ∈ G for
which these expressions are defined. The G-orbit of a point p ∈M is the set

G · p := {g · p : (g, p) ∈ G t×μM},
an immersed submanifold of M . The quotient of M by G, denoted M/G, is the space of orbits
with the quotient topology. We say that the action is free if g · p = p for (g, p) ∈ G t×μM implies
g = 1μ(p), and proper if the map

G t×μM −→M ×M, (g, p) �−→ (p, g · p) (2.1)

is proper. As for Lie group actions, if the action is free and proper, or more generally the image
of (2.1) is a closed embedded submanifold, then the quotient M/G is a topological manifold with
a unique smooth structure such that the quotient map M −→M/G is a smooth submersion
[Mac05, Theorem 1.6.20].

2.1.2 Hamiltonian systems. Let us recall the notion of a Hamiltonian action of a symplectic
groupoid on a symplectic manifold, following Mikami–Weinstein [MW88].

A Poisson bivector field on a smooth manifold P is a bundle map σ : T ∗P −→ TP such that
the bilinear map {f, g} := σ(df)g on smooth functions f, g ∈ C∞(P ) is a Lie bracket. In this
case, we call the pair (P, σ) a Poisson manifold. For a smooth function f on P , we denote by
Xf the Hamiltonian vector field Xf := σ(df). We denote by P− the Poisson manifold with the
opposite Poisson structure −σ. We say that a submanifold Q ⊆ P is coisotropic if σ(TQ◦) ⊆ TQ,
where TQ◦ is the annihilator of TQ in T ∗P .

A symplectic groupoid [CDW87, Wei87] is a Lie groupoid G ⇒ X together with a symplectic
form Ω on G, such that the graph

ΓG := {(g, h, gh) : (g, h) ∈ G t×sG}
of multiplication is Lagrangian in G × G × G−. In this case, there is a canonical vector bundle
isomorphism Lie(G) ∼= T ∗X given by

ker dtx −→ T ∗
xX, v �−→ Ω(v)|TxX (2.2)

for all x ∈ X, where Ω is viewed as a bundle map TG −→ T ∗G. The anchor map σ : Lie(G) ∼=
T ∗X −→ TX is then a Poisson bivector field on X such that the source and target maps are
Poisson and anti-Poisson, respectively.
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Definition 2.1 (Mikami–Weinstein [MW88]). An action of a symplectic groupoid G ⇒ X on a
Poisson manifold M with moment map μ : M −→ X is Hamiltonian if its graph

Γ := {(g, p, q) ∈ G ×M ×M : t(g) = μ(p) and q = g · p}
is coisotropic in G ×M ×M−. If the Poisson structure on M is induced by a symplectic form
ω, we call ((M,ω),G ⇒ X,μ) a Hamiltonian system.

Remark 2.2. The moment map μ : M −→ X of a Hamiltonian system is automatically Poisson
[MW88, Theorem 3.8]. Conversely, any Poisson map μ : M −→ X from a symplectic manifold
M to a Poisson manifold X uniquely determines an action of the symplectic local groupoid
integrating X (see [CDW87, Chapitre III, Théorème 1.1]).

Remark 2.3. Each Lie group G with Lie algebra g has an associated symplectic groupoid T ∗G ⇒
g∗. It has the property that Hamiltonian systems ((M,ω), T ∗G ⇒ g∗, μ) are equivalent to the
more familiar Hamiltonian G-spaces. We refer the reader to § 4.1 for further details.

2.2 Pre-Poisson submanifolds and stabilizer subgroupoids
For a submanifold S of a Poisson manifold (X,σ), consider the subset of T ∗X given by

LS := σ−1(TS) ∩ TS◦, (2.3)

where TS◦ is the annihilator of TS in T ∗X. Our reduction procedure is based on the following
class of submanifolds.

Definition 2.4 (Cattaneo–Zambon [CZ07] and [CZ09, Definition 2.2]). A submanifold S of a
Poisson manifold (X,σ) is called pre-Poisson if (2.3) has constant rank over S.

Remark 2.5. In [CZ07, CZ09], pre-Poisson submanifolds are defined by the condition that
σ(TS◦) + TS has constant rank. The two definitions are equivalent because (σ(TS◦) + TS)◦ =
σ−1(TS) ∩ TS◦.

Note that there is no constraint on the dimension of S. In fact, a generic submanifold is
pre-Poisson in the following sense.

Proposition 2.6. For a generic point x ∈ X, a generic subspace V ⊆ TxX, and an arbitrary
submanifold S ⊆ X with x ∈ S and TxS = V , S is pre-Poisson in a neighborhood of x.

Proof. The term ‘generic’ used in this statement refers to an element of some fixed open dense
set. The set of x ∈ X such that σ has constant rank in a neighborhood of x is open and dense, so
this reduces to the case of a Poisson vector space (W,σ). The proposition then follows from the
fact that the set of k-dimensional subspaces V ⊆W such that V + σ(V ◦) has maximal dimension
is open and dense in the Grassmannian of k-planes in W . �

We have the following important result on pre-Poisson submanifolds.

Theorem 2.7 (Cattaneo–Zambon [CZ09, Proposition 3.6 and Proposition 7.2]). Let G ⇒ X be
a symplectic groupoid and S ⊆ X a pre-Poisson submanifold.

(i) The subset LS of T ∗X given by (2.3) is a Lie subalgebroid of Lie(G) = T ∗X.
(ii) The ssc Lie groupoid GS ⇒ S with Lie algebroid LS is isotropic in G.

Part (ii) requires further explanation. First, recall that a Lie subalgebroid of an integrable
Lie algebroid is integrable [MM02, Proposition 3.4]. It follows from part (i) that LS integrates to
an ssc Lie groupoid GS ⇒ S together with an immersion GS −→ G (see [MM02, Proposition 3.5]).
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The condition that GS is isotropic in G then means that the pullback of the symplectic form on
G to GS vanishes.

In this paper, we follow the convention that a Lie subgroupoid of a Lie groupoid G is a Lie
groupoid H together with a possibly non-injective immersion H −→ G that is also a Lie groupoid
homomorphism. The groupoid GS ⇒ S in Theorem 2.7 is therefore an isotropic Lie subgroupoid
of G ⇒ S. These considerations motivate the following definition.

Definition 2.8. Let G ⇒ X be a symplectic groupoid and S ⊆ X a pre-Poisson submanifold.
The Lie algebroid LS defined in (2.3) is called the stabilizer subalgebroid of S. A stabilizer
subgroupoid of S in G is any (possibly non-source-connected) isotropic Lie subgroupoid H ⇒ S
of G ⇒ X with Lie algebroid LS . The unique ssc stabilizer subgroupoid of S in G is denoted
GS ⇒ S.

Remark 2.9. (i) This terminology is justified by the fact that stabilizer subgroupoids generalize
stabilizer subgroups in Marsden–Weinstein–Meyer reduction, which we explain in § 4.2.

(ii) By [CZ09, Proposition 7.2], any source-connected Lie subgroupoid H ⇒ S of G ⇒ X
with Lie algebroid LS is isotropic, and hence a stabilizer subgroupoid. More generally, if H is
source-connected over an open dense subset of S, then it is isotropic.

(iii) On the other hand, a non-source-connected Lie subgroupoid H ⇒ S with Lie algebroid
LS might not be isotropic. For example,3 let X be a smooth manifold with the zero Poisson
structure σ = 0. Then G = T ∗X with its canonical symplectic form is a symplectic groupoid
integrating X (see [CDW87, Ch. II, Example 3.3]). Consider S = X, so that LS is trivial. For
any non-vanishing 1-form α on X,

H := {kαx : x ∈ X, k ∈ Z}
is a Lie subgroupoid of G = T ∗X with Lie algebroid LS = 0. However, the pullback of the canon-
ical symplectic form on T ∗X by α : X −→ T ∗X is dα. It follows that H is isotropic if and only
if α is closed.

(iv) One explanation for the isotropy condition is that stabilizer subgroupoids are precisely
the Lie subgroupoids of G for which the map of quotient stacks [S/H] −→ [X/G] has a canonical
Lagrangian structure. This is explained in § 6.

Another important result of [CZ09] is that pre-Poisson submanifolds can be embedded
coisotropically in Poisson transversals, as we now recall.

We begin by recalling that a submanifold Y of a Poisson manifold (X,σ) is called a
Poisson transversal (or sometimes a cosymplectic submanifold) if Y intersects every symplectic
leaf transversally and in a symplectic submanifold of the leaf [FM17]. Equivalently, Y is Poisson
transversal if

TX|Y = TY ⊕ σ(TY ◦).

In this case, Y inherits a canonical Poisson structure from X (see [FM17, Lemma 3]). To describe
this Poisson structure as a bivector field σY : T ∗Y −→ TY , note that the restriction of linear
functionals defines an isomorphism σ−1(TY ) −→ T ∗Y . One then defines σY by σY (ξ) = σ(ξ̂),
where ξ̂ is the unique element of σ−1(TY ) mapping to ξ ∈ T ∗Y .

Cattaneo and Zambon [CZ09] prove that every pre-Poisson submanifold S of a Poisson
submanifold (X,σ) can be embedded in a Poisson transversal Y ⊆ X such that S is coisotropic
in Y (see [CZ09, Theorem 3.3]).

3 We thank Marco Zambon for pointing this out.
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2.3 Symplectic reduction along a submanifold
Let μ : M −→ X be a smooth map between smooth manifolds. We say that a submanifold S ⊆ X
intersects μ cleanly if μ−1(S) is a submanifold of M satisfying

Tpμ
−1(S) = dμ−1

p (Tμ(p)S)

for all p ∈ μ−1(S). Recall that this condition is satisfied if S is transverse to μ, i.e. if

Tμ(p)S + im dμp = Tμ(p)X

for all p ∈ μ−1(S).
We are now equipped to begin proving Theorem A from the introduction. The main idea is

that for a Hamiltonian system ((M,ω),G ⇒ X,μ), pre-Poisson submanifold S ⊆ X, and stabilizer
subgroupoid H ⇒ S, the distribution defined by the kernel of the restriction of ω to μ−1(S)
coincides with the orbits of the H-action. This result can be stated more generally for Poisson
manifolds.

Theorem 2.10. Let G ⇒ X be a symplectic groupoid acting on a Poisson manifold (M, τ) in
a Hamiltonian way with moment map μ : M −→ X. Let S ⊆ X be a pre-Poisson submanifold
intersecting μ cleanly, let H ⇒ S be a stabilizer subgroupoid of S in G, and let N := μ−1(S). We
then have

Tp(H · p) = TpN ∩ τ(TpN◦)

for all p ∈ N .

To prove this theorem, we begin with a few lemmas. Let ((M, τ),G ⇒ X,μ), H ⇒ S, and N
be as in Theorem 2.10.

Lemma 2.11. We have

TxH = ds−1
x (TxS) ∩ dt−1

x (TxS) ∩ (TxS)Ω

for all x ∈ S, where Ω is the symplectic form on G.

Proof. Let ϕ : (ker dt)|X −→ T ∗X be the isomorphism given by (2.2), so that

σ ◦ ϕ = ds : (ker dt)|X −→ TX.

Let x ∈ S. The definition of H then implies that

ker dtx ∩ TxH = ϕ−1(σ−1(TxS) ∩ TxS◦) = ker dtx ∩ ds−1
x (TxS) ∩ TxSΩ.

It follows that

TxH = TxS ⊕ (ker dtx ∩ TxH) = TxS ⊕ (ker dtx ∩ ds−1
x (TxS) ∩ TxSΩ).

However, TxS ⊆ TxS
Ω because X is Lagrangian in G, so

TxH = (TxS ⊕ (ker dtx ∩ ds−1
x (TxS))) ∩ TxSΩ = ds−1

x (TxS) ∩ dt−1
x (TxS) ∩ TxSΩ. �

Denote the action map by ψ : G t×μM −→M and the orbit map at a point p ∈M over
x := μ(p) ∈ X by

ψp : Gx −→M, g �−→ g · p,
where Gx := t−1(x). If p ∈ N , then Tp(H · p) is the image of TxHx under dψp.

Lemma 2.12. For all f ∈ C∞(X) and (g, p) ∈ G ×X M , we have

dψp(Xs∗f (g)) = Xμ∗f (g · p).
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Proof. Consider the map

F : G ×M ×M− −→ R, F (g, p, q) = f(s(g)) − f(μ(q)).

The graph Γ of the action is coisotropic and F |Γ = 0, so XF is tangent to Γ. However,

dF = (d(s∗f), 0,−d(μ∗f)),

so XF = (Xs∗f , 0, Xμ∗f ). Hence,

(Xs∗f (g), 0, Xμ∗f (g · p)) = (u, v, dψ(u, v))

for some (u, v) ∈ T(g,p)(G ×X M), which implies that v = 0 and u = Xs∗f (g). We conclude that

Xμ∗f (g · p) = dψ(u, 0) = dψp(Xs∗f (g)). �

Lemma 2.13. Let x ∈ S and v ∈ TxG. Then v ∈ TxHx if and only if v = Xs∗f (x) for some f ∈
C∞(X) such that f |S = 0 and Xf (x) ∈ TxS.

Proof. By Lemma 2.11, we have

TxHx = ker dtx ∩ ds−1
x (TxS) ∩ (TxS)Ω. (2.4)

Let v = Xs∗f (x) be as stated. Then dt(v) = 0 (see [MW88, Theorem 1.6(i)]), ds(v) = Xf (x) ∈
TxS because s is a Poisson map, and

Ω(v, TxS) = df(ds(TxS)) = df(TxS) = 0.

Hence, v ∈ TxHx by (2.4).
Conversely, let v ∈ TxHx. By (2.4), we have dt(v) = 0, ds(v) ∈ TxS and Ω(v)|TxX ∈ TxS

◦.
The latter implies that Ω(v)|TxX = dfx for some f ∈ C∞(X) such that f |S = 0. Then Ω(v) =
df ◦ dsx because TxG = TxX ⊕ ker dsx and (ker dsx)Ω = ker dt. It follows that v = Xs∗f (x) and
Xf (x) = ds(v) ∈ TxS. �

We now prove Theorem 2.10.

Proof of Theorem 2.10. To show that

Tp(H · p) ⊆ TpN ∩ τ(TpN◦),

let x := μ(p) and v ∈ TxHx. Note that

u := dψp(v) ∈ Tp(H · p).
Then u ∈ TpN because H acts on N . By Lemma 2.13, we have v = Xs∗f (x) for some f ∈ C∞(X)
with f |S = 0 and Xf (x) ∈ TxS, and by Lemma 2.12,

u = dψp(v) = Xμ∗f (p).

However, dμ(Xμ∗f (p)) = Xf (x) ∈ TxS since μ is a Poisson map; this follows from [MW88,
Theorem 3.8], as explained in [BC05, § 4.2]. Hence, u ∈ TpN . We also have

d(μ∗f)(TpN) = df(dμ(TpN)) ⊆ df(TxS) = 0,

so u = Xμ∗f (p) ∈ τ(TpN◦).
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Conversely, let v ∈ TpN ∩ τ(TpN◦). As

TpN
◦ = (dμ−1(TxS))◦ = dμ∗(TxS◦),

we have v = Xμ∗f (p) for some f ∈ C∞(X) with f |S = 0. We also have

Xf (x) = dμ(v) ∈ TxS.

We thus have Xs∗f (x) ∈ TxHx by Lemma 2.13 and v = dψp(Xs∗f (x)) by Lemma 2.12, so
v ∈ Tp(H · p). �

The main theorem of this section is the following generalization of Mikami–Weinstein
reduction.

Theorem 2.14 (Theorem A(i)). Let ((M,ω),G ⇒ X,μ) be a Hamiltonian system, S ⊆ X a pre-
Poisson submanifold, H ⇒ S a stabilizer subgroupoid of S in G, and N := μ−1(S). Suppose that
S intersects μ cleanly and that N/H has the structure of a smooth manifold for which the
quotient map π : N −→ N/H is a smooth submersion. Then there is a unique symplectic form
ω̄ on N/H satisfying π∗ω̄ = i∗ω, where i : N −→M is the inclusion map.

Proof. We have ker dπp = Tp(H · p) for all p ∈ N by assumption. Hence, as in standard symplectic
reduction [MW74, MW88], it suffices to show that the distribution ker(i∗ω) = TN ∩ TNω on N
coincides with that induced by the H-orbits. This is precisely the content of Theorem 2.10. �
Definition 2.15. Let ((M,ω),G ⇒ X,μ) be a Hamiltonian system. A reduction datum is a pair
(S,H), where S is a pre-Poisson submanifold of X and H ⇒ S is a stabilizer subgroupoid of S in
G. The quotient topological space μ−1(S)/H is called the symplectic reduction of M by G along
S with respect to H and denoted

M//S,H G := μ−1(S)/H.
We say that the reduction datum (S,H) is clean if the assumptions of Theorem 2.14 are satisfied,
in which case M//S,H G is a symplectic manifold. If H is source-connected, we use the simplified
notation

M//S G := M//S,H G
and terminology symplectic reduction of M by G along S.

Remark 2.16. The quotient M//S,H G depends on H only up to its image in G. In particular,
M//S,H G = M//S,GS

G for any source-connected stabilizer subgroupoid H of S in G. This explains
and justifies the simplified notation M//S G.

Remark 2.17. More generally, let S ⊆ X be a stratified space whose strata are pre-Poisson
submanifolds Si of X. For a collection of stabilizer subgroupoids H = (Hi ⇒ Si)i, we may define

M//S,H G :=
⋃
i

μ−1(Si)/Hi,

and regard it as a topological quotient of μ−1(S). This notion will be useful when discussing
symplectic implosion (§ 4.7) and symplectic cutting (§ 4.8).

Remark 2.18. Suppose that we had assumed H to be source-connected in Theorem 2.14. The
theorem could then be viewed as a special case reduction along a pre-symplectic submanifold,
i.e. a submanifold i : N ↪→M such that i∗ω has constant rank. The distribution ker(i∗ω) ⊆ TN
would then necessarily be integrable, so that the leaf space would symplectic when smooth [GS84,
Theorem 25.2]. The essence of Theorem 2.14 is as follows: if μ : M −→ X is a Poisson map, then
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for any pre-Poisson submanifold S ⊆ X, the leaves in N := μ−1(S) are explicitly realized as the
orbits of a groupoid action.

2.4 A sufficient condition for smoothness
In the context of Marsden–Weinstein–Meyer reduction, one knows that zero is a regular value
of the moment map if the Hamiltonian action in question is free. The goal of this section is to
generalize this classical fact to our setting.

Let ((M,ω),G ⇒ X,μ) be a Hamiltonian system, let (S,H) be a reduction datum, and let
N := μ−1(S).

Proposition 2.19. Let p ∈ N , let x := μ(p), and let ϕp : Hx −→ N be the orbit map ϕp(h) =
h · x. We have

TxS + im dμp = (ker(dϕp)x)◦,

where ker(dϕp)x is viewed as a subspace of T ∗
xX via the isomorphism (2.2).

Proof. Regarding ker(dϕp)x as a subspace of TxHx ⊆ TxG, the statement can be reformulated as

TxS + im dμp = TxX ∩ (ker(dϕp)x)Ω.

We prove this reformulated version in the following.
Lemma 2.11 tells us that

ker(dϕp)x ⊆ TxH ⊆ (TxS)Ω,

so
TxS ⊆ TxX ∩ (ker(dϕp)x)Ω.

To show that im dμp ⊆ (ker(dϕp)x)Ω, let v ∈ TpM and w ∈ ker(dϕp)x. By Lemma 2.13, w =
Xs∗f (x) for some f ∈ C∞(X) such that f |S = 0 and Xf (x) ∈ TxS. Lemma 2.12 then shows that
Xμ∗f (p) = dϕp(w) = 0, so d(μ∗f)p = 0. It follows that

Ω(dμ(v), w) = −df(ds(dμ(v))) = −df(dμ(v)) = 0.

It remains only to show that

TxS
◦ ∩ (im dμp)◦ ⊆ TxX

◦ + Ω(ker(dϕp)x),

where all annihilators are taken in T ∗
xG. To this end, let ξ ∈ TxS

◦ ∩ (im dμp)◦ and write ξ|TxX =
Ω(v)|TxX with v ∈ ker dtx. It then suffices to prove that v ∈ TxHx and dϕp(v) = 0. We begin
by verifying that v ∈ TxHx. First note that v ∈ ker dtx ∩ (TxS)Ω. By Lemma 2.11, showing that
ds(v) ∈ TxS would suffice to prove that v ∈ TxHx. As μ is Poisson, we have

ds(v) = σ(ξ|TxX) = dμ(ω−1(dμ∗(ξ|TxX))),

and the latter is 0 because ξ ∈ (im dμp)◦. It follows that v ∈ TxHx. To show that dϕp(v) = 0,
first note that Lemma 2.13 implies that v = Xs∗f (x) for some f ∈ C∞(X) such that f |S = 0 and
Xf (x) ∈ TxX. However,

dfx = Ω(v)|TxX = ξ|TxX ∈ (im dμp)◦,

so d(μ∗f)p = 0 and hence dϕp(v) = Xμ∗f (p) = 0 by Lemma 2.12. �
We then deduce the following sufficient conditions for M//S,H G to be smooth.

Theorem 2.20 (Theorem A(ii)). If H acts freely on N , then S is transverse to μ. Hence, if
the action of H on N is also proper, then (S,H) is a clean reduction datum and M//S,H G is a
symplectic manifold.
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Proof. This follows from Proposition 2.19 using the fact that ker(dϕp)x = 0 if H acts freely. �
Recall that the restriction of G to S is the topological groupoid

G|S := s−1(S) ∩ t−1(S).

The following criterion will be useful for investigating the properness of the action of H on N .

Proposition 2.21. If G acts properly on M and H is closed in G|S , then H acts properly on N .

Proof. As H is closed in G|S , it suffices to show that the action of G|S on N is proper. By
assumption, the map θ : G t×μM −→M ×M defined by (2.1) is proper.

Consider the pullback of θ by the inclusion ι : N ×N ↪→M ×M , i.e.

(G t×μM) ×M×M (N ×N) −→ N ×N. (2.5)

As (G t×μM) ×M×M (N ×N) is closed in (G t×μM) ×N ×N and θ is proper, (2.5) is proper.
Note that

(G t×μM) ×M×M (N ×N) = (G|N ) t×μN

and that (2.5) is the action map (G|N ) t×μN −→ N ×N . This shows that the action of G|S on
N is proper, as desired. �
Remark 2.22. The stabilizer subgroupoid H may not be closed in G|S , even when S is closed in
X. See Remark 4.9 for a specific example. This is in contrast to the case of Hamiltonian group
actions, where stabilizer subgroups are always closed.

2.5 A Poisson map on the reduced space
Let G ⇒ X be a symplectic groupoid and S ⊆ X a pre-Poisson submanifold. Note that the
distribution on S induced by the orbits of the ssc stabilizer subgroupoid GS ⇒ S (i.e. the image
of the anchor map) is TS ∩ σ(TS◦). Hence, if S/GS is smooth, it inherits a Poisson structure via
Marsden–Ratiu reduction applied to the triple (X,S, σ(TS◦)) (see [MR86, Example D]). This
holds more generally for any stabilizer subgroupoid, as the following proposition shows.

Proposition 2.23. Consider a symplectic groupoid G ⇒ X, pre-Poisson submanifold S ⊆ X,
and stabilizer subgroupoid H ⇒ S of S in G. Suppose that S/H has the structure of a smooth
manifold such that the quotient map ρ : S −→ S/H is a smooth submersion. Let i : S −→ X be
the inclusion map. Then there is a unique Poisson structure on S/H such that for any locally
defined smooth functions f, g on S/H, and locally defined smooth functions F,G on X such that
ρ∗f = i∗F , ρ∗g = i∗G, and dF (σ(TS◦)) = dG(σ(TS◦)) = 0, we have

ρ∗{f, g}S/H = {F,G}X |S .
Proof. Recall that if H is source-connected, then S/H is the Marsden–Ratiu reduction of the
triple (X,S, σ(TS◦)) (see [MR86, Example D]). We are thereby reduced to proving the following
claim: if f, g, F,G are as in the statement, then {F,G}X is H-invariant. In other words, we want
to show that j∗s∗{F,G}X = j∗t∗{F,G}X , where j : H −→ G is the immersion of H in G.

Recall from § 2.2 that there is a Poisson transversal Y in X containing S as a coisotropic
submanifold. The restriction G|Y := s−1(Y ) ∩ t−1(Y ) is then a symplectic subgroupoid of G (see
[CZ09, Lemma 7.1]) and H is an isotropic Lie subgroupoid of G|Y . By [Cat04, § 5], H is Lagrangian
in G|Y . We therefore have

ThH = ThHΩ ∩ Tj(h)(G|Y ) (2.6)
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for all h ∈ H, where Ω is the symplectic form on G and ThH is identified as subspace of Tj(h)G
via the immersion j : H −→ G.

As TX|Y = TY ⊕ σ(TY ◦), there is a locally defined smooth function F̃ on X such that
ρ∗f = i∗F̃ and dF̃ (σ(TY ◦)) = 0. Note that σ(TxS◦) ∩ TxY ⊆ TxS for all x ∈ S because S is
coisotropic in Y . We therefore have

σ(TxS◦) = (σ(TxS◦) ∩ TxS) ⊕ σ(TxY ◦),

so dF̃ (σ(TS◦)) = 0. On the other hand, we have i∗{F̃ , G}X = i∗{F,G}X as i∗F̃ = i∗F . We may
then assume without loss of generality that dF (σ(TY ◦)) = 0, i.e. XF is tangent to Y .

We claim that Xs∗F −Xt∗F is tangent to H. A first observation is that j∗s∗F = j∗t∗F ,
because

j∗s∗F = s∗i∗F = s∗ρ∗f = t∗ρ∗f = t∗i∗F = j∗t∗F.

This implies that

Ω(Xs∗F −Xt∗F , TH) = (d(s∗F ) − d(t∗F ))(TH) = 0,

so Xs∗F −Xt∗F takes values in THΩ. Now recall that ds(Xt∗F ) = 0 = dt(Xs∗F ) (see e.g. [MW88,
Theorem 1.6(i)]), so ds(Xs∗F −Xt∗F ) = XF and dt(Xs∗F −Xt∗F ) = XF are tangent to Y . By
combining the last two sentences with (2.6), we obtain

(Xs∗F −Xt∗F )|j(h) ∈ (ThH)Ω ∩ Tj(h)(G|Y ) = ThH
for all h ∈ H.

The identity j∗s∗G = j∗t∗G therefore implies that for all h ∈ H and g := j(h),

(j∗s∗{F,G}X)(h) = {s∗F, s∗G}X(g) = d(s∗G)(Xs∗F |g) = d(s∗G)(Xs∗F |g −Xt∗F |g)
= d(t∗G)(Xs∗F |g −Xt∗F |g) = −d(t∗G)(Xt∗F |g) = −{t∗F, t∗G}(g)
= (j∗t∗{F,G}X)(h). �

Theorem 2.24 (Theorem A(iii)). Let ((M,ω),G ⇒ X,μ) be a Hamiltonian system and (S,H)
a clean reduction datum. Suppose that S/H has the structure of a smooth manifold such that
the quotient map S −→ S/H is a smooth submersion. Then μ : M −→ X descends to a Poisson
map M//S G −→ S/H.

Proof. Let N := μ−1(S) and consider the following commutative diagram.

Let f, g be locally defined smooth functions on S/H and F,G local extensions of ρ∗f, ρ∗g as in
Proposition 2.23. We want to show that μ̄∗{f, g} = {μ̄∗f, μ̄∗g} or, equivalently,

π∗μ̄∗{f, g} = π∗{μ̄∗f, μ̄∗g}.
We have

π∗μ̄∗{f, g} = μ̃∗ρ∗{f, g} = μ̃∗j∗{F,G} = i∗μ∗{F,G} = i∗{μ∗F, μ∗G},
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as μ is a Poisson map. As the Poisson structure on N/H is also obtained from Poisson reduction,
it suffices to show the following:

(1) μ∗F and μ∗G vanish on TNω;
(2) μ∗F and μ∗G restrict to π∗μ̄∗f and π∗μ̄∗g on N .

To verify part (1), suppose that v ∈ TNω. We have v = ω−1(dμ∗(ξ)) for ξ ∈ TS◦. As μ is Poisson,
we obtain dμ(v) = σ(ξ) ∈ σ(TS◦). It follows that d(μ∗F )(v) = dF (dμ(v)) = 0. To show part (2),
note that i∗μ∗F = μ̃∗j∗F = μ̃∗ρ∗f = π∗μ̄∗f . One has analogous identities for g and G. �

Remark 2.25. If TS ∩ σ(T ∗X) ⊆ σ(TS◦), then the Poisson structure on S/H is trivial. The
Poisson map μ then amounts to an ‘integrable system’ on M//S G.

2.6 Examples
Let ((M,ω),G ⇒ X,μ) be a Hamiltonian system. We observe the following special cases of
Theorem A.

Example 2.26 (Singletons). If S = {x} is a singleton in X, then the isotropy group at x is a
stabilizer subgroupoid of S in G. We thereby recover Mikami–Weinstein reduction [MW88,
Theorem 3.12], of which the more classical Marsden–Weinstein–Meyer reduction [Mey73, MW74]
is a special case.

Example 2.27 (Poisson transversals). If S ⊆ X is Poisson transversal, then S is transverse to μ
(see [FM17, Lemma 7(1)]). We also have LS = 0 in this case, so that the trivial groupoid over S
is a stabilizer subgroupoid. It follows that M//S G = μ−1(S), and we recover the fact that μ−1(S)
is a symplectic submanifold of M .

Example 2.28 (General symplectic reduction). Let (M,ω) be a symplectic manifold. The pair
groupoid G := M ×M− is then a symplectic groupoid over (M,ω), with source map s(p, q) = p,
target map t(p, q) = q, and multiplication (p, q)(q, r) = (p, r). The symplectic groupoid G then
acts on (M,ω) in a Hamiltonian way with moment map the identity map and action (p, q) · q = p.

A submanifold i : S ↪→M is pre-Poisson if and only if it is pre-symplectic. In this case, one
has M//S G = S/∼, where ∼ is the equivalence relation generated by the leaves of the distri-
bution ker i∗ω. We have therefore recovered the procedure of reduction along a pre-symplectic
submanifold (Remark 2.18).

3. Main construction: complex analytic version

This section is concerned with Theorem B and its proof. We develop a complex analytic version
of Marsden–Ratiu reduction [MR86] in § 3.1, and examine its relation to complex pre-Poisson
submanifolds in § 3.2. This creates the context needed to prove Theorem B. Parts (i)–(v) of this
theorem are proved in § 3.3, whereas parts (vi)–(vii) are proved in § 3.4.

3.1 Complex analytic Marsden–Ratiu reduction
We begin by observing that the notion of Poisson reduction introduced by Marsden–Ratiu [MR86]
adapts to the complex analytic setting.

Let us begin with a brief digression on terminology. A holomorphic Poisson structure on a
complex analytic space (P,OP ) is an enrichment of the structure sheaf OP to a sheaf of Poisson
algebras. In this case, we call (P,OP ) a complex analytic Poisson space. We also often identity a
Poisson structure with the corresponding homomorphism Poisson bivector field, i.e. the bundle
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homomorphism

τ : T ∗P −→ TP, dfp �−→ Xf (p)

for all p ∈ P and f ∈ OP,p, where Xf := {f, ·} is the Hamiltonian vector field associated to
f . We call P symplectic if it is smooth and τ = ω−1 for some holomorphic symplectic form
ω : TP −→ T ∗P .

Let E be a holomorphic vector bundle over a complex analytic space P , and write Ex for
the fiber of E over x ∈ X. Our convention is that a subbundle of E is simply a complex analytic
subspace R of E whose fibers Rx := R ∩ Ex are vector subspaces of Ex for all x ∈ P . Note that
the fibers of R may have different dimensions, so that R is not necessarily a vector bundle.
For a complex analytic subspace Y ⊆ P and a subbundle R of TP |Y , we write OR

P for the
subsheaf of OP defined by

OR
P (U) := {f ∈ OP (U) : df(R) = 0}

for all open subsets U ⊆ P . The germ of a holomorphic function f ∈ OP (U) at a point p ∈ U is
denoted fp ∈ OP,p.

The following result is a complex analytic analog of [MR86, Theorem 2.2].

Theorem 3.1 (Complex analytic Marsden–Ratiu reduction). Let (M, τ) be a complex analytic
Poisson space, N ⊆M a reduced complex analytic subspace, E −→ N a subbundle of TM |N ,
and D := TN ∩ E. Suppose that:

(1) OE
M is closed under the Poisson bracket;

(2) τ(E◦) ⊆ TN + E; and
(3) for all p ∈ N and f ∈ OD

N,p, there exists F ∈ OE
M,p such that F |N = f .

One then has a unique Poisson bracket {· , ·}′ on OD
N satisfying

{f, g}′ = {F,G}|N (3.1)

for all p ∈ N , f, g ∈ OD
N,p, and F,G ∈ OE

M,p related to f, g as in part (3).

Proof. To see that (3.1) does not depend on the choice of F and G, we need to show the following:
if p ∈ N and F,G ∈ OE

M,p are such that F |N = 0, then {F,G}|N = 0. Note thatXF |N takes values
in τ(TN◦ ∩ E◦), whereas condition (2) implies that

TN◦ ∩ E◦ = (TN + E)◦ ⊆ τ(E◦)◦ = τ−1(E).

It follows that τ(TN◦ ∩ E◦) ⊆ E and, hence, {F,G}|N = dG(XF |N ) = 0.
Let f, g ∈ OD

N (U) for some open set U ⊆ N . We then get a well-defined element {f, g}′ ∈
ON (U) defined by the collection of germs {F,G}|N ∈ ON,p for all p ∈ U and F,G ∈ OE

M,p

satisfying F |N = fp and G|N = gp. We also have {f, g}′ ∈ OD
N (U), because

d{f, g}′(D) = d{F,G}(D) ⊆ d{F,G}(E) = 0

by condition (1).
The Leibniz identity follows from the fact that {f, gh}′ = {F,GH}|N if f, g, h ∈ ON,p are

related to F,G,H ∈ OM,p as in condition (3), which holds because d(GH) also vanishes on E.
For the Jacobi identity, note that {f, {g, h}′}′ = {F, {G,H}}|N , because {g, h}′ = {G,H}|N by
definition and d{G,H}(E) = 0 by condition (1). �

Condition (3) is implicit in Marsden–Ratiu reduction [MR86, Theorem 2.2], as it always
holds in the context of smooth manifolds. On the other hand, the same argument works for
non-singular complex analytic spaces.
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Lemma 3.2. Let M be a complex manifold, N ⊆M a complex submanifold, and E −→ N a
holomorphic subbundle of TM |N . Assume that E and D := TN ∩ E are vector bundles. For all
p ∈ N and f ∈ OD

N,p, there exists F ∈ OE
M,p such that F |N = f .

Proof. Note that this is a local statement. We may therefore assume that E = D ⊕R for some
holomorphic subbundle R of TM |N , and then extend R to a holomorphic subbundle S containing
R such that TM |N = TN ⊕ S. Then there exists a tubular neighborhood of N in S that is
biholomorphic to a neighborhood of p in M . We may define F = f ◦ π, where π : S −→ N is the
bundle map. �

The following example of complex analytic Marsden–Ratiu reduction will be important in
the remainder of this section.

Proposition 3.3 (Cf. [MR86, Example D]). Let (M, τ) be a complex analytic Poisson space,
N ⊆M a reduced complex analytic subspace, and E := τ(TN◦).

(i) Conditions (1) and (2) in Theorem 3.1 are satisfied.
(ii) If M and N are smooth and E and D := TN ∩ E are vector bundles, then condition (3) is

also satisfied.

Proof. Note that because E◦ = τ(TN◦)◦ = τ−1(TN), a local holomorphic function F on M
satisfies dF (E) = 0 if and only if XF is tangent to N . Condition (1) therefore follows from
the Jacobi identity of τ , which is equivalent to X{F,G} = [XF , XG] for all holomorphic func-
tions F and G. Condition (2) also holds because τ(E◦) = τ(τ−1(TN)) ⊆ TN . Part (ii) holds by
Lemma 3.2. �

3.2 Pre-Poisson complex submanifolds
As in § 2, a complex submanifold S of a holomorphic Poisson manifold (X,σ) is called pre-Poisson
if σ−1(TS) ∩ TS◦ has constant rank over S.

We now discuss a special case of complex analytic Marsden–Ratiu reduction (Theorem 3.1)
obtained from a Poisson map μ : M −→ X and a pre-Poisson submanifold S ⊆ X. Despite μ−1(S)
possibly being singular, we show that the conditions of Theorem 3.1 are satisfied with respect to
E := τ(TN◦). This will be the basis for our notion of symplectic reduction along a submanifold,
where μ will be the moment map of a Hamiltonian system.

To this end, we first recall some of the results of Cattaneo–Zambon [CZ09] and adapt them to
the complex analytic setting. Let (X,σ) be a holomorphic Poisson manifold. As in the C∞ case
(§ 2.2), any Poisson transversal complex submanifold Y ⊆ X inherits a canonical holomorphic
Poisson structure [FM17, Lemma 3].

Proposition 3.4 (Cf. [CZ09, Theorem 3.3]). Let S ⊆ X be a pre-Poisson complex submanifold
of a holomorphic Poisson manifold (X,σ). For all x ∈ S, there is a Poisson transversal complex
submanifold Y ⊆ X which contains a neighborhood of x in S as a coisotropic submanifold.

Proof. We simply redo the proof of [CZ09, Theorem 3.3] locally. Let Sx be the germ of S at x.
Choose a subbundle R of TX|Sx such that

TX|Sx = (TSx + σ(TS◦
x)) ⊕R,

and let Y be a submanifold germ of X containing Sx with TY |Sx = TSx ⊕R. Note that the
latter is possible because we can choose a tubular neighborhood of S near x. �
Remark 3.5. If X is Stein and S is closed, then there is a Poisson transversal Y containing S
globally. To see this, recall that the positive-degree cohomologies of coherent sheaves on Stein
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manifolds are trivial. Every short exact sequence of vector bundles therefore splits, so that we may
choose a global R in the proof. As the tubular neighborhood theorem holds for Stein manifolds
(see e.g. [For17, Theorem 3.3.3]), we can choose a global Y with TY |S = TS ⊕R.

The previous result is the main ingredient used to obtain condition (3) in complex analytic
Marsden–Ratiu reduction.

Proposition 3.6. Let μ : (M, τ) −→ (X,σ) be a holomorphic Poisson map between holomor-
phic Poisson manifolds. Let S ⊆ X be a pre-Poisson complex submanifold such that N := μ−1(S)
is reduced, let E := τ(TN◦), and let D := TN ∩ E. Conditions (1)–(3) in Theorem 3.1 are
then satisfied. In particular, for all p ∈ N and f ∈ OD

N,p, there exists F ∈ OE
M,p such that

F |N = f .

Proof. Conditions (1) and (2) hold by Proposition 3.3(i), so it suffices to verify condition (3).
We first observe that this third condition is local. Proposition 3.4 therefore allows us to assume
that S ⊆ Y ⊆ X, where Y is Poisson transversal in X and S is coiostropic in Y . By [FM17,
Lemma 7], Y is transverse to μ, P := μ−1(Y ) is a Poisson transversal submanifold of M , and the
restriction map P −→ Y is Poisson.4 As the preimage of a coisotropic subspace under a Poisson
map is coisotropic, N = μ−1(S) is coisotropic in P .

Now let p ∈ N and f ∈ OD
N,p. Extend f to f̃ ∈ OP,p. As P is smooth and TP ∩ τ(TP ◦) = 0,

Lemma 3.2 implies that there exists F ∈ OM,p such that F |P = f̃ |P and dF (τ(TP ◦)) = 0. We
also have that TP |N ∩ E ⊆ TN as N is coisotropic in P , so E = D ⊕ τ(TP ◦)|N . It follows
that

dF (E) = dF (D ⊕ τ(TP ◦)|N ) = dF (D) = df(D) = 0. �

3.3 Complex analytic symplectic reduction along a submanifold
We now state and prove the main result of this section: a complex analytic version of symplectic
reduction along a submanifold.

We begin with a few definitions. A holomorphic Hamiltonian system is a tuple ((M,ω),G ⇒
X,μ), where M is a complex manifold endowed with a holomorphic symplectic form ω, and G ⇒
X is a holomorphic symplectic groupoid acting on M in a Hamiltonian way with moment map
μ : M −→ X; the definition is the same as in § 2, except that ‘smooth’ has become ‘holomorphic’.

In particular, the base X of a holomorphic Hamiltonian system inherits a canonical holo-
morphic Poisson bivector field σ : T ∗X −→ TX. For a pre-Poisson complex submanifold S ⊆ X,
the stabilizer subalgebroid

LS := σ−1(TS) ∩ TS◦

is a holomorphic Lie subalgebroid of T ∗X = Lie(G). By Laurent-Gengoux–Stiénon–Xu’s work on
the integration of holomorphic Lie algebroids [LSX09], the source-connected, ssc Lie subgroupoid
GS ⇒ S of G with Lie algebroid LS is a holomorphic Lie groupoid and the immersion GS −→ G is
holomorphic [LSX09, Theorem 3.17 and Proposition 3.20]. The subgroupoid GS is also isotropic
in G by [CZ09, Proposition 7.2]. More generally, we call any isotropic holomorphic subgroupoid
H ⇒ S of G with Lie algebroid LS a holomorphic stabilizer subgroupoid of S in G.

Let ((M,ω),G ⇒ X,μ) be a holomorphic Hamiltonian system, S ⊆ X a pre-Poisson complex
submanifold, and H ⇒ S a holomorphic stabilizer subgroupoid of S in G. Let N := μ−1(S) ⊆M
be the complex analytic space defined by the ideal generated by all elements μ∗f , where f is in

4 This was originally stated for smooth manifolds in [FM17], but the same proof works in the holomorphic setting.
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the ideal of S ⊆ X. One then has a holomorphic action of H ⇒ S on N . Given any point p ∈ N ,
we have a holomorphic orbit map

ϕp : Hμ(p) −→ N, h �−→ h · p.
This enables us to define

Tp(H · p) := im dϕp

as a vector subspace of TpN .

Proposition 3.7. We have

Tp(H · p) = TpN ∩ TpNω

for all p ∈ N .

Proof. By the definition of N , we have TpN = dμ−1
p (Tμ(p)S). This allows us to repeat the proof

of Theorem 2.10 verbatim in the present context. �
For an H-invariant open subset U ⊆ N , we let ON (U)H be the set of H-invariant elements

of ON (U). The next result gives a Poisson structure on ON (U)H; it is the first step towards the
construction of a Poisson structure on a quotient of N by H.

Theorem 3.8. Let ((M,ω),G ⇒ X,μ) be a holomorphic Hamiltonian system, S ⊆ X a pre-
Poisson complex submanifold such that N := μ−1(S) is reduced, and H ⇒ S a holomorphic
stabilizer subgroupoid of S in G. For every H-invariant open set U ⊆ N , there is a unique
Poisson bracket

{· , ·}′ : ON (U)H ×ON (U)H −→ ON (U)H

with the following property: for all f, g ∈ ON (U)H and p ∈ U , the germ of {f, g}′ at p is
{F,G}|N , where F,G ∈ OM,p are any extensions of the germs of f, g at p such that dF (TNω) =
dG(TNω) = 0.

Proof. Proposition 3.7 implies that ON (U)H ⊆ OD
N (U), where D := TN ∩ TNω. As the moment

map μ : M −→ X is Poisson, Proposition 3.6 shows that the complex analytic version of the
Marsden–Ratiu theorem (Theorem 3.1) holds, producing a Poisson bracket

{· , ·}′ : OD
N (U) ×OD

N (U) −→ OD
N (U).

It suffices to show that ON (U)H is closed under {· , ·}′.
Let f, g ∈ ON (U)H, let p ∈ U , and let h ∈ H be such that t(h) = μ(p). We want to show that

{f, g}(h · p) = {f, g}(p).
In other words, we want to show that for any F,G ∈ OTNω

M,p satisfying F |N = fp, G|N = gp, and
any F̃ , G̃ ∈ OTNω

M,h·p satisfying F̃ |N = fh·p, G̃|N = gh·p, we have

{F,G}(p) = {F̃ , G̃}(h · p). (3.2)

As t is a submersion, we can find a local holomorphic section

ρ : V ⊆ S −→ H
of t passing through h, i.e. V is a neighborhood of t(h) in S, t ◦ ρ = Id, and ρ(t(h)) = h. We then
get a biholomorphism

ψρ : N ∩ μ−1(V ) −→ N, ψρ(q) = ρ(μ(q)) · q,
such that ψρ(p) = h · p.
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To show (3.2), we first claim that

ψ∗
ρi

∗ω = i∗ω, (3.3)

where i : N −→M is the inclusion map. Note that for all q ∈ N ∩ μ−1(V ), (ρ(μ(q)), q, ψρ(q)) is
in the graph Γ of the action of G on M , which is Lagrangian in G ×M ×M− by definition.5

Hence, for all u, v ∈ TqN , we have

(dρ(dμ(u)), u, dψρ(u)) ∈ TΓ,

and the analogous statement is true for v. It follows that

Ω(dρ(dμ(u)), dρ(dμ(v))) + ω(u, v) − ω(dψρ(u), dψρ(v)) = 0.

However, H is isotropic in G, so the first term vanishes. This proves (3.3).
Now note that XF and XG are tangent to N , as one has

ω(XF , TN
ω) = dF (TNω) = 0

and an analogous statement for XG. In particular, we may evaluate dψρ at XF |p. We claim that

dψρ(XF |p) −XF̃ |ψρ(p) ∈ Tψρ(p)N
ω. (3.4)

To see this, let v ∈ Tψρ(p)N and write v = dψρ(u) for u ∈ TpN . Then by (3.3), we have

ω(dψρ(XF |p), v) = ψ∗
ρω(XF |p, u) = ω(XF , u) = dF (u) = df(u).

However, f is H-invariant, so

df(u) = d(ψ∗
ρf)(u) = df(v) = dF̃ (v) = ω(XF̃ |ψρ(p), v).

This proves (3.4).
At the same time, because dG̃(TNω) = 0, (3.4) shows that

{F̃ , G̃}(h · p) = dG̃(XF̃ |h·p) = dG̃(dψρ(XF |p)) = dg(dψρ(XF |p)) = dg(XF |p) = dG(XF |p)
= {F,G}(p).

This proves (3.2) and, hence, ON (U)H is closed under {· , ·}′. �
To discuss the quotient of N by H in the most general context, we make the following

definition.

Definition 3.9. Let H be a holomorphic Lie groupoid acting holomorphically on a complex
analytic space (N,ON ). A complex analytic quotient of N by H is a complex analytic space
(Q,OQ) together with an H-invariant holomorphic map π : N −→ Q such that

π∗ : OQ −→ (π∗ON )H

is a sheaf isomorphism.

Theorem 3.8 then has the following consequence.

Theorem 3.10 (Theorem B(i)–(iv)). Let ((M,ω),G ⇒ X,μ) be a holomorphic Hamiltonian
system, S ⊆ X a pre-Poisson complex submanifold, and H ⇒ S a holomorphic stabilizer sub-
groupoid of S in G. Suppose that N := μ−1(S) is reduced and that there is a complex analytic
quotient of N by H, denoted π : N −→ Q.

(i) For all p ∈ N and f ∈ OQ,π(p), there exists F ∈ OM,p such that π∗f = F |N ∈ ON,p and
dF (TNω) = 0.

5 We are implicitly identifying H as a subset of G for simplicity of notation; this is only true locally.
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(ii) There is a unique holomorphic Poisson structure {· , ·}Q on Q such that

π∗{f, g}Q = {F,G}M |N
for all f, g ∈ OQ,π(p) and F,G ∈ OM,p related to f, g as in part (i).

(iii) Assume that there exists p ∈ N such that dπp is surjective, π−1(π(p)) is an H-orbit, and
π(p) is a smooth point of Q. The Poisson structure in part (ii) is then symplectic on a
neighborhood of π(p).

(iv) Suppose that S intersects μ cleanly and that Q = N/H has a complex-manifold structure
such that π : N −→ Q is a holomorphic submersion. The Poisson structure on Q is then
induced by a holomorphic symplectic form ω̄ satisfying π∗ω̄ = i∗ω, where i : N −→M is
the inclusion map.

Proof. Part (i) follows from Proposition 3.6 and part (ii) follows from Theorem 3.8 using the
isomorphisms π∗ : OQ(U) ∼= ON (π−1(U))H.

To prove part (iii), let x := π(p) and let τ : T ∗
xQ −→ TxQ be the Poisson structure at x. It

suffices to show that τ has an inverse ω̄x : TxQ −→ T ∗
xQ.

As π−1(x) = H · p, Proposition 3.7 shows that ker dπp = TpN ∩ TpNω, so we have a short
exact sequence

0 −→ TpN ∩ TpNω −→ TpN −→ TxQ −→ 0.

It follows that the symplectic form ωx : TxM −→ T ∗
xM descends to a map ω̄x : TxQ −→ T ∗

xQ.
To show that ω̄x is an inverse of τ , let f ∈ OQ,x and F ∈ OM,p be such that π∗f = F |N and
dF (TNω) = 0. By the definition of τ , we have τ(dfx) = dπ(XF |p). Hence, for all v ∈ TpN , we
have

ω̄x(τ(dfx))(dπp(v)) = ω(XF |p, v) = dFp(v) = dfx(dπp(v)).

This shows that ω̄x ◦ τ = Id, so that ω̄x is indeed an inverse of τ .
Part (iv) follows immediately from part (iii). �

Definition 3.11. The complex analytic Poisson space (Q,OQ) in Theorem 3.10 is called the
symplectic reduction of M by G along S with respect to H and π and denoted M//S,H,π G. The
pair (S,H) is called a reduction datum; it is called a clean reduction datum if the conditions of
Theorem 3.10(iv) are satisfied, in which case

M//S,H G := M//S,H,π G = μ−1(S)/H
is a complex symplectic manifold. If (S,H) is clean and H is source-connected, we use the
simplified notation

M//S G := M//S,H G,
and call it the symplectic reduction of M by G along S.

Remark 3.12. We remind the reader that any two choices of source-connected stabilizer
subgroupoid H ⇒ S yield the same reduced space M//S,H G. This justifies our notation M//S G.

Remark 3.13. The reducedness assumption on N is not always satisfied. To see this, consider the
standard representation of SL(2,C) on C

2 and its lift to a Hamiltonian action on T ∗
C

2 = C
4. In

coordinates (z1, z2, w1, w2), the components of the moment map are μ1 = z1w2, μ2 = z2w1, and
μ3 = z1w1 − z2w2 (see e.g. [HSS20, Example 2.6]). Note that f := z1w1 + z2w2 is not in the ideal
generated by μ, but that f2 = μ2

3 + 4μ1μ2 belongs to this ideal.
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The next result shows that the sufficient condition for smoothness discussed in § 2.4 adapts
to the complex analytic setting.

Proposition 3.14 (Theorem B(v)). Let ((M,ω),G ⇒ X,μ) be a holomorphic Hamiltonian
system, S ⊆ X a pre-Poisson complex submanifold, and H ⇒ S a holomorphic stabilizer sub-
groupoid of S in G. If H acts freely on N := μ−1(S), then S is transverse to μ. If the H-action
is also proper, then (S,H) is a clean reduction datum and M//S,H G is a complex symplectic
manifold.

Proof. The proof of Theorem 2.20 adapts to the complex analytic category, showing that S is
transverse to μ. Hence, N is a complex submanifold of M on which H acts freely and properly.
By Godement’s criterion (see e.g. [Ser92, Part II, Chapter III, Theorem 2 on p. 92]), N/H has
a unique complex manifold structure such that the quotient map π : N −→ N/H is a holomor-
phic submersion. This shows that (S,H) is a clean reduction datum. We may therefore apply
Theorem 3.10(iv) to complete the proof. �

3.4 A Poisson map on the reduced space
We now discuss a complex analytic version of Theorem A(iii). To this end, we first discuss the
existence of a Poisson structure on a complex analytic quotient of S by H.

Proposition 3.15 (Theorem B(vi)). Let G ⇒ X be a holomorphic symplectic groupoid, S ⊆ X
a pre-Poisson complex submanifold, and H ⇒ S a holomorphic stabilizer subgroupoid of S in G.
Suppose that there is a complex analytic quotient of S by H, denoted ρ : S −→ R. Then there
is a unique holomorphic Poisson structure on R such that

ρ∗{f, g}R = {F,G}X |S

for all x ∈ S, f, g ∈ OR,ρ(x), and F,G ∈ Oσ(TS◦)
X,x satisfying ρ∗f = F |S , ρ∗g = G|S .

Proof. Proposition 3.6 gives us a Poisson bracket on OD
S , where D := TS ∩ σ(TS◦). To show that

this gives a Poisson bracket on OR = (ρ∗OS)H, it suffices to show that H-invariant functions in
OD
S are closed under the Poisson bracket. This follows from the same reasoning as in the proof

of Proposition 2.23, using Proposition 3.4 in the present case. �

Theorem 3.16 (Theorem B(vii)). Let ((M,ω),G ⇒ X,μ) be a holomorphic Hamiltonian sys-
tem, S ⊆ X a complex pre-Poisson submanifold, and H ⇒ S a holomorphic stabilizer sub-
groupoid of S in G. Suppose that N := μ−1(S) is reduced and that there is a complex analytic
quotient π : N −→M//S,H,π H of N by H. Let us also suppose that there is a complex ana-
lytic quotient ρ : S −→ R of S by H, and that the moment map μ : M −→ X descends to a
holomorphic map

μ̄ : M//S,H,π G −→ R.

Then μ̄ is a Poisson map with respect to the Poisson structures of Theorem 3.10 and
Proposition 3.15.

Proof. This follows from the definitions of the Poisson structures using the same reasoning as in
the proof of Theorem 2.24. �
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4. Symplectic reduction by a Lie group along a submanifold

This section examines the implications of §§ 2 and 3 for classical Hamiltonian G-spaces. In § 4.1,
we derive some of the Lie-theoretic machinery relevant to reducing by a Lie group along a sub-
manifold. Our first example is Marsden–Weinstein–Meyer reduction, which we address in § 4.2.
In § 4.3, we introduce the universal reduced spaces MG,S,H and MG,S and prove Theorem D(i).
We subsequently define and study the class of stable submanifolds S ⊆ g∗ in § 4.4; this is a
particularly convenient class of submanifolds along which to reduce, and it includes all Poisson
transversals and Poisson submanifolds. The proofs of parts (ii) and (iii) in Theorem D are also
given in § 4.4. We then devote § 4.5 to the proof of Theorem D(iv). Theorem F is the subject of
§§ 4.6–4.8, whereas Theorem E(ii) is proved in § 4.9.

Except for those instances in which we explicitly indicate otherwise, all material in this
section can be interpreted in both the category of smooth manifolds and the category of complex
manifolds. We simply use the terms manifolds and maps for smooth manifolds and smooth maps,
or complex manifolds and holomorphic maps. A submanifold will refer to a smooth submanifold
or a complex submanifold, and both are assumed to be embedded but not necessarily closed.
A Lie group will mean a real Lie group or a complex Lie group, and we proceed analogously for Lie
algebras. A symplectic form will mean a symplectic form on smooth manifold or a holomorphic
symplectic form on a complex manifold, etc.

4.1 Main construction
The notion of a Hamiltonian system introduced in §§ 2 and 3 generalizes the standard one for
Lie group actions [MW88, Examples 3.1 and 3.9]. Let us briefly recall the salient details.

Let G be a Lie group with Lie algebra g, adjoint representation Ad : G −→ GL(g), and
coadjoint representation Ad∗ : G −→ GL(g∗). We use the left trivialization

G× g∗
∼=−→ T ∗G, (g, ξ) �−→ ξ ◦ (dLg−1)g

to freely identify T ∗G and G× g∗ throughout our paper. Let Ω := dΘ be the canonical symplectic
form on T ∗G, where Θ is the tautological 1-form. We have

Ω(g,ξ)((u1, ζ1), (u2, ζ2)) = −ζ2(u1) + ζ1(u2) − ξ([u1, u2]) (4.1)

for all (ui, ζi) ∈ g × g∗ = TgG× g∗ = T(g,ξ)(G× g∗) and (g, ξ) ∈ G× g∗ = T ∗G, where TgG is
identified with g by left translations (see e.g. [AM78, Proposition 4.4.1]).

Consider the (G×G)-action on G defined by

(a, b) · g = agb−1

for all (a, b) ∈ G×G and g ∈ G. This action lifts to a Hamiltonian action on T ∗G = G× g∗ given
by

(a, b) · (g, ξ) = (agb−1,Ad∗
bξ)

for all (a, b) ∈ G×G and (g, ξ) ∈ T ∗G, and it admits

μ : T ∗G −→ g∗ × g∗, (g, ξ) �−→ (−Ad∗
gξ, ξ) (4.2)

as a moment map (see e.g. [AM78, Theorem 4.4.3]).
The identification T ∗G = G× g∗ also shows that T ∗G has the structure of a Lie groupoid,

namely the action groupoid for the coadjoint representation. Explicitly, T ∗G ⇒ g∗ is a Lie
groupoid with source and target maps

s(g, ξ) = Ad∗
gξ and t(g, ξ) = ξ, (4.3)
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and multiplication

(g, ξ) · (h, η) = (gh, η) if ξ = Ad∗
hη.

The canonical symplectic form on T ∗G then gives T ∗G ⇒ g∗ the structure of a symplectic
groupoid, called the cotangent groupoid of G. The Poisson bivector field σ on the base g∗ is
the Kirillov–Kostant–Souriau structure given by

σ : T ∗g∗ = g × g∗ −→ g∗ × g∗ = Tg∗, (x, ξ) �−→ (−ad∗
xξ, ξ), (4.4)

where adx : g −→ g is the adjoint action adxy = [x, y] of x ∈ g and ad∗
x : g∗ −→ g∗ is its dual

ad∗
xξ := −ξ ◦ adx.
A Hamiltonian G-space (M,ω) with moment μ : M −→ g∗ is then equivalent to a

Hamiltonian system (Definition 2.1) with underlying symplectic manifold (M,ω), moment map
μ, and symplectic groupoid T ∗G ⇒ g∗; one simply lets T ∗G ⇒ g∗ act on M by

(g, ξ) · p = g · p if ξ = μ(p)

for all (g, ξ) ∈ T ∗G and p ∈M (see [MW88, Example 3.9]). In this context, we have the following
counterpart of Definitions 2.15 and 3.11.

Definition 4.1. Let M be a Hamiltonian G-space with moment map μ : M −→ g∗. A reduction
datum for the action of G on M is a reduction datum for the action of T ∗G ⇒ g∗ on M , i.e. a
pair (S,H) with S ⊆ g∗ a pre-Poisson submanifold and H ⇒ S a stabilizer subgroupoid of S in
T ∗G ⇒ g∗. We say that (S,H) is clean if it is a clean reduction datum for the action of T ∗G ⇒ g∗

on M . In this case, the symplectic reduction of M by G along S with respect to H is defined
to be

M//S,H G := M//S,H T ∗G = μ−1(S)/H.
If H is source-connected, we use the simplified notation

M//S G := M//S,H G

and call it the symplectic reduction of M by G along S.

Remark 4.2. Although G is a group, H can be a non-trivial groupoid; see Theorem 5.10 and the
discussion preceding it. One consequence is that M//S G might not be realizable as a quotient of
μ−1(S) by a Lie group action.

Now recall that T ∗G|S denotes the restriction of the cotangent groupoid to S ⊆ g∗. This
features in the following sufficient condition for M//S,H G to be a symplectic manifold, which we
state for future reference.

Lemma 4.3. Let M be a Hamiltonian G-space with moment map μ : M −→ g∗ and (S,H) a
reduction datum. If G acts freely and properly on M and H is closed in T ∗G|S , then (S,H) is
clean and M//S,H G is a symplectic manifold.

Proof. As the action of G on M is free, so is the action of H on N := μ−1(S). Theorem 2.20 or
Proposition 3.14 then show that S is transverse to μ, and that it suffices to show the action of
H on N to be proper. Note that the action of T ∗G ⇒ g∗ on M is proper; (2.1) reduces to the
map G×M −→M ×M , (g, p) �→ (p, g · p), which is proper by assumption. The action of H on
N is then proper by Proposition 2.21. �

We also record the following description of the stabilizer subalgebroid, which will be useful
for examples.
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Lemma 4.4. Let S ⊆ g∗ be a submanifold and let σ be the Kirillov–Kostant–Souriau Poisson
structure on g∗. The subset LS := σ−1(TS) ∩ TS◦ of Lie(T ∗G) = T ∗g∗ = g × g∗ is given by

LS = {(x, ξ) ∈ g × S : x ∈ (TξS)◦ and ad∗
xξ ∈ TξS}.

Proof. This follows from the expression for σ given by (4.4). �
The following observation will be useful for showing that certain subgroupoids are in fact

stabilizer subgroupoids.

Lemma 4.5. Let H ⇒ S be an embedded Lie subgroupoid of T ∗G ⇒ g∗ over any submanifold
S ⊆ g∗.

(i) We have

H = {(g, ξ) ∈ G× S : g ∈ Hξ}
for some collection of submanifolds Hξ ⊆ G, ξ ∈ S, each containing the identity 1 ∈ G.

(ii) The Lie algebroid of H is the Lie subalgebroid of Lie(T ∗G) = g × g∗ given by

Lie(H) = {(x, ξ) ∈ g × S : x ∈ T1Hξ}.
Proof. Let s, t : T ∗G ⇒ g∗ be the source and target maps (4.3). As ξ = t(g, ξ) ∈ S for all (g, ξ) ∈
H, we have

H = {(g, ξ) ∈ G× S : g ∈ Hξ}
with Hξ := {g ∈ G : (g, ξ) ∈ H}. Note that Hξ × {ξ} is the target fiber of H over ξ, so that Hξ

is necessarily smooth. This completes the proof of part (i).
To verify part (ii), note that the restriction (ker dt)|{1}×g∗ of ker dt to the identity section

{1} × g∗ ⊆ G× g∗ = T ∗G is the trivial vector bundle g × g∗ over g∗. From (4.1), we see that the
canonical isomorphism (ker dt)|{1}×g∗ −→ T ∗g∗ = g × g∗ given by (2.2) is

g × g∗ −→ g × g∗, (x, ξ) �−→ (−x, ξ).
It follows that the Lie subalgebroid of T ∗g∗ induced by H is as claimed. �

4.2 Marsden–Weinstein–Meyer reduction
We now show that Marsden–Weinstein–Meyer reduction can be recovered as symplectic reduction
along a singleton.

Let G be a Lie group acting on a symplectic manifold (M,ω) in a Hamiltonian way with
moment map μ : M −→ g∗. Let H ⊆ G be an immersed Lie subgroup with Lie algebra h ⊆ g

and let ξ ∈ g∗. Let Hξ be the stabilizer subgroup of ξ|h ∈ h∗ in H, and consider the annihilator
h◦ ⊆ g∗ of h.

Lemma 4.6 (Cf. [CZ07, Proposition 5.1 and Example 6.2]). The affine linear subspace
ξ + h◦ ⊆ g∗ is pre-Poisson and

H := Hξ × (ξ + h◦) (4.5)

is a stabilizer subgroupoid of ξ + h◦ in T ∗G ⇒ g∗.

Proof. Lemma 4.4 implies that

Lξ+h◦ = {(x, ξ + η) ∈ g × (ξ + h◦) : x ∈ hξ},
where hξ := Lie(Hξ). By Lemma 4.5(ii), the Lie algebroid of H is Lξ+h◦ . It then only
remains to show that H is isotropic in T ∗G. To this end, let (h, ξ + η) ∈ H, and let
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(ui, ζi) ∈ T(h,ξ+η)H = hξ × h◦, i ∈ {1, 2}. Equation (4.1) implies that

Ω((u1, ζ1), (u2, ζ2)) = −ζ2(u1) + ζ1(u2) − (ξ + η)([u1, u2]),

and we see that each term vanishes. �
In light of this result, we may consider the symplectic reduction

M//ξ+h◦,H G = μ−1(ξ + h◦)/(Hξ × (ξ + h◦)).

By viewing ξ as an element of g∗/h◦ = h∗, we also have the symplectic reduction of M by H at
level ξ:

M//ξ H := μ−1
h (ξ)/Hξ,

where μh : M −→ h∗ is the induced moment map for the action of H on M . We have μ−1
h (ξ) =

μ−1(ξ + h◦), so these two symplectic reductions coincide.

Proposition 4.7. We have M//ξ+h◦,H G = M//ξ H, where H is given by (4.5).

Taking h = g then yields the following corollary.

Corollary 4.8. Let ξ ∈ g∗. Then H := Gξ × {ξ} is a stabilizer subgroupoid of {ξ} in T ∗G ⇒ g∗

and

M//{ξ},H G = μ−1(ξ)/Gξ

is the Marsden–Weinstein–Meyer reduced space at level ξ.

Remark 4.9. Let G ⇒ X be a symplectic groupoid and S ⊆ X a pre-Poisson submanifold. One
consequence of this subsection is that there may not exist any stabilizer subgroupoid H ⇒ S of
S that is closed in G|S . To see this, let h ⊆ g be a Lie subalgebra. Any stabilizer subgroupoid
of h◦ ⊆ g∗ in the cotangent groupoid T ∗G ⇒ g∗ must take the form H × h◦, where H is a Lie
subgroup of G with Lie algebra h. It now just remains to observe that H is closed in G if and
only if H is closed in G.

4.3 The universal reduced spaces
Let G be a Lie group and recall the Hamiltonian (G×G)-action on T ∗G and moment map μ :
T ∗G −→ g∗ × g∗ discussed in § 4.1. We refer to the Hamiltonian action of G ∼= G× {1} ⊆ G×G
on T ∗G as the action by left translations. Similarly, the action of G ∼= {1} ×G on T ∗G is called
the action by right translations.

Let us suppose that S ⊆ g∗ is a pre-Poisson submanifold, that H ⇒ S is a stabilizer sub-
groupoid of S in T ∗G ⇒ g∗, and that (S,H) is a clean reduction datum with respect to the
action of G on T ∗G by right translations. It follows that

MG,S,H := T ∗G//S,H G = (G× S)/H
is a symplectic manifold, which we call the universal reduced space associated to (G,S,H);
Theorem 4.11 will elucidate this choice of nomenclature. Remark 3.12 justifies using the simplified
notation

MG,S := MG,S,H,

where H ⇒ S is any source-connected stabilizer subgroupoid of S in T ∗G. As the action of G
on T ∗G is proper, we observe that (S,H) is clean if H is closed in T ∗G|S (Lemma 4.3). We also
observe that the action of G on T ∗G by left translations descends to a Hamiltonian G-action on
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MG,S,H = (G× S)/H given by

G× MG,S,H −→ MG,S,H, (a, [(g, ξ)]) �−→ a · [(g, ξ)] = [(ag, ξ)] (4.6)

for all a, g ∈ G and ξ ∈ S. The corresponding moment map is induced by the first component of
μ : T ∗G −→ g∗ ⊕ g∗, i.e. it is given by

MG,S,H = (G× S)/H −→ g∗, [(g, ξ)] �−→ −Ad∗
gξ. (4.7)

We may summarize the previous discussion as follows.

Proposition 4.10. Let S ⊆ g∗ be a pre-Poisson submanifold and H ⇒ S a stabilizer sub-
groupoid of S in T ∗G ⇒ g∗.

(i) Suppose that (S,H) is a clean reduction datum for the action of G on T ∗G by right transla-
tions. The universal reduced space MG,S,H is then a Hamiltonian G-space with action (4.6)
and moment map (4.7). It has dimension

dimMG,S,H = dim g + dimS − rkLS .

(ii) The hypothesis of part (i) is satisfied if H is closed in T ∗G|S .

Proof. It only remains to prove the formula for the dimension; this is simply a result of H acting
freely on G× S and the fact that MG,S,H = (G× S)/H. �

The following result is analogous to the universal property of symplectic implosion
[GJS02, § 4].

Theorem 4.11 (Universality; Theorem D(i)). LetG be a Lie group acting on a symplectic man-
ifold M in a Hamiltonian way with moment map μ : M −→ g∗. Let (S,H) be a clean reduction
datum for both the action of G on M and the action of G on T ∗G by right translations. We then
have a canonical symplectomorphism

M//S,H G ∼= (M × M−
G,S,H)//0 G,

where G acts on M × M−
G,S,H diagonally and//0 denotes Marsden–Weinstein–Meyer reduction at

level 0.

Proof. The map

ψ : μ−1(S) −→M × T ∗G, p �−→ (p, 1, μ(p))

descends to a diffeomorphism

μ−1(S)/H −→ (M μ×−ν(G× S)/H)/G,

where ν is the moment map (4.7). It then remains to show that ψ∗(ω,−Ω) = i∗ω, where
i : μ−1(S) −→M is the inclusion map. However, dψ(u) = (u, 0, dμ(u)) for u ∈ Tμ−1(S), so

ψ∗(ω,−Ω)(u, v) = ω(u, v) − Ω((0, dμ(u)), (0, dμ(v))) = ω(u, v)

for all p ∈ μ−1(S) and u, v ∈ Tpμ
−1(S). �

Remark 4.12 (Kähler quotients). The following remark only applies in the smooth category. Let
G be a compact Lie group and (M,ω) a Hamiltonian G-space with moment map μ : M −→ g∗.
Suppose that M has a G-invariant Kähler metric compatible with ω. The symplectic reduction
M//ξ G := μ−1(ξ)/Gξ at level ξ ∈ g∗ is then also Kähler if it is smooth [HKLR87, § 3(C)]. It
is natural to ask whether the same holds for a general symplectic reduction M//S G along a
pre-Poisson submanifold S ⊆ g∗. An immediate corollary of universality (Theorem 4.11) is that
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it suffices to ask this question for the universal reduced space; if MG,S,H has a compatible
G-invariant Kähler structure, then M//S,H G is also Kähler.

One might then expect the Kähler structure on T ∗G ∼= GC to induce a Kähler structure
on MG,S,H. However, the standard methods for showing that M//ξ G is Kähler (e.g. [HKLR87,
§ 3(C)] or [Kir84]) do not generalize to the case of symplectic reduction along a submanifold.
For instance, suppose that S is a Poisson transversal in g∗. We then have MG,S = G× S
(Example 2.27), which is a complex submanifold of GC if and only if S is open in g∗. On
the other hand, there are special cases in which it is possible to define a Kähler structure on
MG,S,H indirectly; symplectic implosion [GJS02, § 6] is a noteworthy example (see § 4.7).

4.4 Symplectic reduction along stable submanifolds
We now study a large class of pre-Poisson submanifolds that encompasses most of the exam-
ples in this paper. The principal advantage of working with these submanifolds is that their
stabilizer subgroupoids can be readily computed as Lie group fibrations (also known as group
schemes).

Definition 4.13. Let (X,σ) be a Poisson manifold. A submanifold S ⊆ X is called stable if it
is pre-Poisson and its stabilizer subalgebroid LS is contained in kerσ.

Lemma 4.14. Poisson submanifolds are stable.

Proof. A submanifold S ⊆ X is Poisson if and only if σ(TS◦) = 0. In this case,

LS = σ−1(TS) ∩ TS◦ = TS◦,

so LS has constant rank. The condition σ(TS◦) = 0 also implies that LS ⊆ kerσ. �

Lemma 4.15. Poisson transversals are stable.

Proof. By Example 2.27, a Poisson transversal S satisfies LS = 0. �

Let G be a Lie group with Lie algebra g. We specialize to the case of X = g∗ with its
Kirillov–Kostant–Souriau Poisson structure σ in (4.4). A pre-Poisson submanifold S ⊆ g∗ is
then stable if and only if (LS)ξ ⊆ gξ for all ξ ∈ S, where (LS)ξ is given by Lemma 4.4 and

gξ := Lie(Gξ) = {x ∈ g : ad∗
xξ = 0}.

Lemma 4.16. A G-invariant submanifold S ⊆ g∗ is Poisson and, hence, stable.

Proof. For all ξ ∈ S and x ∈ T ∗
ξ g∗ = g, we have σξ(x) = −ad∗

xξ ∈ TξS. �

We now show that the stabilizer subgroupoids of stable submanifolds take a particularly
simple form.

Theorem 4.17 (Theorem D(ii) and (iii)). Let S ⊆ g∗ be a stable submanifold. For each ξ ∈ S,
let Hξ ⊆ G be a Lie subgroup with Lie algebra hξ. Consider the set

H := {(g, ξ) ∈ G× S : g ∈ Hξ}.

(i) The subspace

hξ := (TξS)◦ ∩ gξ (4.8)

is a Lie subalgebra of g for all ξ ∈ S, and the stabilizer subalgebroid of S is

LS = {(x, ξ) ∈ g × S : x ∈ hξ}.
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(ii) Suppose that the following two conditions hold:
(C1) H is a submanifold of T ∗G;
(C2) H is isotropic in T ∗G.
Then H is a stabilizer subgroupoid of S in T ∗G ⇒ g∗.

(iii) If (C1) holds and there is an open dense subset U of S such that Hξ is connected for all
ξ ∈ U , then (C2) also holds.

(iv) If H is closed in G× S and each Hξ is connected, then both (C1) and (C2) hold.

Proof. As LS ⊆ kerσ, the anchor map of LS is trivial. It follows that LS is a bundle of Lie
subalgebras. We have

(LS)ξ = (TξS)◦ ∩ σ−1
ξ (TξS) = (TξS)◦ ∩ kerσξ = hξ

because (LS)ξ ⊆ kerσξ. This verifies part (i). Parts (ii) and (iii) follow from Lemma 4.5(ii)
and Remark 2.9(ii). Part (iv) results from the following generalization of the closed subgroup
theorem. �
Theorem 4.18. Let G be a Lie group with Lie algebra g and let S be a manifold. Suppose that
E is a subbundle of the trivial vector bundle g × S −→ S such that the fiber Eξ over each ξ ∈ S
is a Lie subalgebra of g. Let Hξ be the connected Lie subgroup of G with Lie algebra Eξ for each
ξ ∈ S, and set

H := {(g, ξ) ∈ G× S : g ∈ Hξ}.
If H is a closed subset of G× S, then it is a submanifold of G× S.

Proof. As this is a local statement, we may assume that there is a complement F ⊆ g × S to E,
so that g × S = E ⊕ F . Consider the exponential map g −→ G, x �−→ ex, and define

Φ : g × S −→ G× S, (x+ y, ξ) �−→ (exey, ξ) for ξ ∈ S, x ∈ Eξ, and y ∈ Fξ.

Let us also fix ξ0 ∈ S. We claim that there exists a neighborhood U of (0, ξ0) in g × S such that
Φ restricts to a diffeomorphism (or biholomorphism) U −→ Φ(U) and

Φ(U ∩ E) = Φ(U) ∩H.
This will establish that H is a submanifold in a neighborhood of (1, ξ0). The case of a general
point (h0, ξ0) will be shown to follow from this special case.

To prove the above-mentioned claim, let {Un}n∈N be a neighborhood basis for g × S at (0, ξ0).
The differential dΦ(0,ξ0) : g × Tξ0S −→ g × Tξ0S is the identity map, so we may assume that Φ
restricts to a diffeomorphism (or biholomorphism) on each Un. We claim that there exists n large
enough so that Φ(Un ∩ E) = Φ(Un) ∩H.

Suppose that this is not the case. We have Φ(Un ∩ E) ⊆ Φ(Un) ∩H, so there exists

(gn, ξn) ∈ Φ(Un) ∩H \ Φ(Un ∩ E)

for all n. In particular,

(gn, ξn) = (exneyn , ξn)

for some xn ∈ Eξn and yn ∈ Fξn such that (xn + yn, ξn) ∈ Un. As Un is a neighborhood basis at
(0, ξ0), the sequence (xn + yn, ξn) converges to (0, ξ0) as n −→ ∞.

Note that yn �= 0 for all n, because (gn, ξn) /∈ Φ(Un ∩ E). Fix a norm ‖ · ‖ on g and set
cn = ‖yn‖ > 0. Then c−1

n yn lies on the unit sphere of g, so by passing to a subsequence we may
assume that c−1

n yn −→ y0 for some y0 ∈ g with ‖y0‖ = 1. Moreover, (c−1
n yn, ξn) ∈ F for all n, so

(y0, ξ0) ∈ F .
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Let t ∈ R. Let kn be the largest integer such that kn ≤ t/cn. Then |kncn − t| ≤ cn −→ 0 and
so kncn −→ t. We also have eyn = e−xngn ∈ Hξn , so (eyn , ξn) ∈ H and, hence,

(e(kncn)(c−1
n yn), ξn) = (eknyn , ξn) = ((eyn)kn , ξn) ∈ H

for all n. As H is closed in G× S, taking the limit as n −→ ∞ shows that (ety0 , ξ0) ∈ H, i.e. ety0 ∈
Hξ0 . However, t is arbitrary, so we have y0 ∈ Eξ0 . It follows that y0 ∈ Eξ0 ∩ Fξ0 = 0, contradicting
the fact that ‖y0‖ = 1. This proves the claim, implying that H is a submanifold of G× S in a
neighborhood of (1, ξ0).

Now let (h0, ξ0) ∈ H be arbitrary. Let U be a neighborhood of (0, ξ0) in g × S such that
Φ restricts to a diffeomorphism (or biholomorphism) U −→ Φ(U) and Φ(U ∩ E) = Φ(U) ∩H.
As Hξ0 is connected, we can write h0 = ex1 · · · exm for some xi ∈ Eξ0 . By further shrinking S
if necessary, we may assume that there are sections si : S −→ E for i = 1, . . . ,m of the form
si(ξ) = (yi(ξ), ξ), where yi(ξ0) = xi. Then h(ξ) := ey1(ξ) · · · eym(ξ) is a map S −→ G such that
(h(ξ), ξ) ∈ H for all ξ ∈ S and h(ξ0) = h0. Define Ψ : g × S −→ G× S to be the composition of
Φ and the diffeomorphism (or biholomorphism) G× S −→ G× S given by (g, ξ) �−→ (h(ξ)g, ξ),
i.e.

Ψ(x+ y, ξ) = (h(ξ)exey, ξ) for all ξ ∈ S, x ∈ Eξ, and y ∈ Fξ.

Note that Ψ is a diffeomorphism (or biholomorphism) onto its image, Ψ(U ∩ E) = Ψ(U) ∩H,
and Ψ(0, ξ0) = (h0, ξ0). We conclude that H is a submanifold in a neighborhood of (h0, ξ0). �
Remark 4.19. The assumption in Theorem 4.18 that the groupsHξ are connected can be replaced
by the following more general condition: for each ξ0 ∈ S and h0 ∈ Hξ0 , there is a map s (smooth
or holomorphic) from a neighborhood of ξ0 in S to G such that s(ξ0) = h0 and s(ξ) ∈ Hξ for all
ξ. In this case, the proof shows that H is a submanifold of G× S if it is closed.

4.5 Integration of G-invariant submanifolds
Let G be a Lie group with Lie algebra g and let S ⊆ g∗ be a G-invariant submanifold.
Lemma 4.16 tells us that S is a Poisson submanifold of g∗, and we let σS : T ∗S −→ TS denote
the Poisson bivector field that it inherits as such. One may then attempt to find a symplectic
groupoid that integrates (S, σS), i.e. a symplectic groupoid with Lie algebroid (T ∗S, σS : T ∗S −→
TS). In what follows, we relate symplectic reduction along S to the process of integrating
(S, σS).

As S is a Poisson submanifold, its stabilizer subalgebroid is given by LS = TS◦. We also
know Poisson submanifolds to be stable (Lemma 4.14), so that

hξ := TξS
◦

is a Lie subalgebra of g for all ξ ∈ S. Let Hξ ⊆ G be the connected Lie subgroup of G with Lie
algebra hξ and suppose that

H := {(g, ξ) ∈ G× S : g ∈ Hξ} (4.9)

is a submanifold of T ∗G. It follows from Theorem 4.17(iii) that H is a source-connected stabilizer
subgroupoid of S in T ∗G ⇒ g∗. Suppose also that (S,H) is a clean reduction datum for the action
of G on T ∗G by right translations, so that the universal reduced space

MG,S = T ∗G//S,H G = (G× S)/H
described in § 4.3 is a Hamiltonian G-space. Note that if H is closed in G× S, then H is a
submanifold of T ∗G (Theorem 4.17(iv)) and (S,H) is clean (Lemma 4.3).
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Remark 4.20. The stabilizer subgroupoid (4.9) of a G-invariant submanifold S ⊆ g∗ has been
studied as a so-called character Lagrangian. We refer the reader to [Wei82], [GS82b, Eq. (4.5)],
[GS83], and [GS13, § 12.5] for further details.

Theorem 4.21 (Theorem D(iv)). Let S ⊆ g∗ be a G-invariant submanifold. Assume that (4.9)
is a submanifold of T ∗G and that (S,H) is a clean reduction datum for the action of G on
T ∗G by right translations. The symplectic manifold MG,S then has the structure of a symplectic
groupoid integrating (S, σS). The underlying source and target maps are given by

s : MG,S −→ S, [(g, ξ)] �−→ Ad∗
gξ and t : MG,S −→ S, [(g, ξ)] �−→ ξ. (4.10)

Proof. Note that H is a Lie subgroupoid of G× S = (T ∗G)|S . Hence, to give

M := MG,S = (G× S)/H
the structure of a Lie groupoid over S, it suffices to show that H is normal in G× S. This
amounts to checking that (ghg−1,Ad∗

gξ) ∈ H for all g ∈ G and (h, ξ) ∈ H. In other words,
we want to show that

gHξg
−1 ⊆ HAd∗

gξ
for all g ∈ G and ξ ∈ S. (4.11)

Note that G-invariance of S yields Ad∗
g(TξS) = TAd∗

gξ
S, so

Adg((TξS)◦) = (TAd∗
gξ
S)◦.

We conclude that Adghξ = hAd∗
gξ

, and (4.11) now results from connectedness of Hξ. It follows
that M is a Lie groupoid with source and target maps given by (4.10).

Let ΓM ⊆ M × M × M be the graph of multiplication in M. Similarly, let G := T ∗G and let
ΓG be its graph of multiplication. Recall that ΓG is Lagrangian in G × G × G− by assumption.
We have

ΓM = π(ΓG ∩ (G× S)3),

where π : G× S −→ M is the quotient map. On the other hand, let ω̄ and ω be the symplectic
forms on M × M × M− and G × G × G−, respectively. Note that for all u1, u2 ∈ TΓM, we have
ui = dπ(vi) for some vi ∈ TΓG and, hence,

ω̄(u1, u2) = ω(v1, v2) = 0.

It follows that ΓM is Lagrangian in M × M × M−, so that M is a symplectic groupoid.
Note also that H acts trivially on S, as Hξ is contained in the G-stabilizer of ξ for all ξ ∈ S.

Theorem 2.24 or Theorem 3.16 then implies that the source map s : T ∗G −→ g∗ descends to a
Poisson map M −→ S. We conclude that M integrates (S, σS). �
Remark 4.22. The assumption that the groups Hξ are connected can be omitted if (4.11) holds.

Example 4.23. Let G be a compact Lie group with Lie algebra g and choose a G-invariant inner
product 〈· , ·〉 : g ⊗R g −→ R. This induces an inner product on g∗, in which context one has the
Lie–Poisson sphere [Mar14]

S(g∗) := {ξ ∈ g∗ : ‖ξ‖ = 1}.
Note that (TξS(g∗))◦ = Rξ∗ for all ξ ∈ S(g∗), where ξ∗ is the unique element of g satisfying
〈ξ∗, ·〉 = ξ. It follows that the stabilizer subgroupoid (4.9) of S(g∗) is of the form

H = {(etξ∗ , ξ) ∈ G× g∗ : ‖ξ‖ = 1, t ∈ R}.
Note that H is closed in T ∗G|S(g∗) if and only if g = su(2). Indeed, in rank higher than one, almost
all fibers of H are dense lines on tori. This is consistent with the fact that S(g∗) is integrable to
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a symplectic groupoid if and only if g = su(2) (see [Mar14]). If G = SU(2), then S(g∗) = S2 is a
symplectic leaf and

T ∗G//
S(g∗) G = S2 × (S2)−

is its canonical integration. This is a straightforward consequence of Lemma 4.25 in the next
subsection.

4.6 Symplectic reduction along a coadjoint orbit
Let (M,ω) be symplectic manifold and G a Lie group acting on M in a Hamiltonian way
with moment map μ : M −→ g∗. We now describe the symplectic reduction of M by G along a
coadjoint orbit O ⊆ g∗.

Lemma 4.24. The coadjoint orbit O ⊆ g∗ is pre-Poisson and

H := {(g, ξ) ∈ G×O : Ad∗
gξ = ξ} (4.12)

is a stabilizer subgroupoid of O in T ∗G.

Proof. Lemma 4.16 implies that O is a stable pre-Poisson submanifold of g∗. Note that for all
ξ ∈ O we have (TξO)◦ = gξ, so the Lie subalgebra hξ := (TξO)◦ ∩ gξ of g considered in (4.8) is
gξ. By Theorem 4.17(ii), it suffices to check that H is isotropic in T ∗G. To this end, we first
compute the tangent space of H at a general point. Consider the map

ϕ : G×O −→ g∗, (g, ξ) �−→ Ad∗
gξ − ξ,

noting that T(g,ξ)H = ker dϕ(g,ξ). Note also that any vector in T(g,ξ)(G×O) is of the form
(u, ad∗

vξ) for some u, v ∈ g. We then have

dϕ(g,ξ)(u, ad∗
vξ) =

d

dt

∣∣∣∣
t=0

ϕ(getu,Ad∗
etvξ) = Ad∗

g(ad∗
uξ + ad∗

vξ) − ad∗
vξ,

so that

T(g,ξ)H = {(u, ad∗
vξ) : u, v ∈ g and ad∗

uξ = (Ad∗
g−1 − 1)ad∗

vξ}.

Let (ui, ad∗
vi
ξ) for i ∈ {1, 2} be two such vectors. By (4.1), we have

Ω(g,ξ)((u1, ad∗
v1ξ), (u2, ad∗

v2ξ)) = −(ad∗
v2ξ)(u1) + (ad∗

v1ξ)(u2) − ξ([u1, u2]). (4.13)

The first term of (4.13) is

−(ad∗
v2ξ)(u1) = (ad∗

u1
ξ)(v2) = (Ad∗

g−1 − 1)(ad∗
v1ξ)(v2) = ξ([Adgv2, v1] + [v1, v2]),

and a similar computation shows that the second term is

(ad∗
v1ξ)(u2) = ξ([v2,Adgv1] + [v1, v2]).
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The third term of (4.13) is

−ξ([u1, u2]) = (ad∗
u1
ξ)(u2)

= (Ad∗
g−1 − 1)(ad∗

v1ξ)(u2)

= ξ([Adgu2, v1]) + ξ([v1, u2])

= ξ([u2,Adg−1v1]) − ξ([u2, v1])

= (ad∗
u2
ξ)(−Adg−1v1 + v1)

= (Ad∗
g−1 − 1)(ad∗

v2ξ)(−Adg−1v1 + v1)

= −ξ([v1, v2] + [v2,Adgv1] + [v2,Adg−1v1] + [v1, v2])

= −ξ(2[v1, v2] + [v2,Adgv1] + [Adgv2, v1]).

By combining the last three expressions with (4.13), we obtain

Ω(g,ξ)((u1, ad∗
v1ξ), (u2, ad∗

v2ξ)) = 0. �

Note that H is closed in T ∗G|O. Proposition 4.10 therefore implies that

MG,O,H := T ∗G//O,H G

is a Hamiltonian G-space.

Lemma 4.25. There is a canonical symplectomorphism

MG,O,H
∼=−→ O ×O−,

and it is equivariant for the Hamiltonian G-action on MG,O,H and the G-action on the first factor
of O ×O−.

Proof. We have MG,O,H = (G×O)/∼, where (g, ξ) ∼ (gh−1, ξ) for all (g, ξ) ∈ G×O and
h ∈ Gξ. This implies that the map

ψ : G×O −→ O ×O, (g, ξ) �−→ (Ad∗
gξ, ξ),

descends to a diffeomorphism MG,O,H ∼= O ×O−. To show that it is a symplectomorphism, we
need to show that ψ∗(β,−β) = i∗Ω, where β ∈ Ω2

O is the Kirillov–Kostant–Souriau symplectic
form on O, i is the inclusion G×O ↪→ T ∗G = G× g∗, and Ω is the canonical symplectic form
on T ∗G.

Observe that we have a short exact sequence

0 −→ gξ −→ g −→ TξO −→ 0,

where the map g −→ TξO is given by x �−→ ad∗
xξ. Observe also that β is characterized by the

condition

βξ(ad∗
xξ, ad∗

yξ) = −ξ([x, y])
for all x, y ∈ g. We then find that

dψ(g,ξ)(x, ad∗
yξ) = (ad∗

Adg(x+y)Ad∗
gξ, ad∗

yξ),
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so

ψ∗(β,−β)(g,ξ)((x, ad∗
yξ), (u, ad∗

vξ)) = −(Ad∗
gξ)([Adg(x+ y),Adg(u+ v)]) + ξ([y, u])

= −ξ([x+ y, u+ v]) + ξ([y, v])

= −ξ([x, u] + [x, v] + [y, u]).

On the other hand,

Ω(g,ξ)((x, ad∗
yξ), (u, ad∗

vξ)) = −ad∗
vξ(x) + ad∗

yξ(u) − ξ([x, u])

= −ξ([x, u] + [x, v] + [y, u]).

It follows that ψ∗(β,−β) = i∗Ω. �
The symplectic reduction M//O,H G of M by G along O with respect to (4.12) is not

necessarily μ−1(O)/G (see [KKS78]), but the two are closely related.

Proposition 4.26 (Theorem F(i)). Let H be defined by (4.12) and suppose that (O,H) is a
clean reduction datum for the action of G on M . Then there is a canonical symplectomorphism

M//O,H G ∼= μ−1(O)/G×O−.

Proof. By Theorem 4.11, this is a consequence of Lemma 4.25 and the ‘shifting trick’ (M ×O)//0
G ∼= μ−1(O)/G. �
Remark 4.27. As will be explained in forthcoming work of Bălibanu and Mayrand, one can
obtain the usual Hamiltonian reduction μ−1(O)/G directly by taking the quotient by the action
groupoid G×O ⇒ O instead of H.

4.7 Symplectic implosion
The following subsection only applies to the smooth category.

Let K be a compact connected Lie group with Lie algebra k. Let us also fix a maximal torus
T ⊆ K with Lie algebra t ⊆ k. Write Φ ⊆ (it)∗ for the associated set of roots and let α∨ ∈ it
denote the coroot determined by α ∈ Φ. Choose a closed fundamental Weyl chamber t∗+ ⊆ t∗

and let Δ ⊆ Φ be the induced set of simple roots, i.e.

t∗+ = {ξ ∈ t∗ : ξ(α∨) ≥ 0 for all α ∈ Δ}.
The faces of t∗+ are in one-to-one correspondence with the subsets σ of Δ via

σ �−→ Sσ := {ξ ∈ t∗ : ξ(α∨) = 0 for all α ∈ σ and ξ(α∨) > 0 for all α ∈ Δ \ σ}.
If S ⊆ t∗+ is a face, then the K-stabilizers Kξ and Kη coincide for all ξ, η ∈ S; we write KS for
this common stabilizer.

Lemma 4.28. Let S ⊆ t∗+ be a face. Then S is a pre-Poisson submanifold of k∗ and

[KS ,KS ] × S (4.14)

is a stabilizer subgroupoid of S in T ∗K = K × k∗.

Proof. Note that [KS ,KS ] is the connected Lie subgroup of G with Lie algebra [kS , kS ]. This
combines with Lemma 4.5(iii) and reduces us to showing the following: for all ξ ∈ S, the Lie
algebroid fiber

(LS)ξ := {x ∈ k : x ∈ (TξS)◦ and ad∗
xξ ∈ TξS}

is equal to [kξ, kξ].
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Identify k with k∗ via a K-invariant inner product 〈· , ·〉 : k ⊗R k −→ R, and let y ∈ k be the
element corresponding to ξ ∈ S. Then TξS corresponds to the intersection of all root hyperplanes
containing y, i.e. to

Vy :=
⋂
α∈Φ
α(y)=0

kerα.

It therefore suffices to show that

Ly := V ⊥
y ∩ ad−1

y (Vy)

is equal to [ky, ky].
Note that if x ∈ Ly, then

[x, y] ∈ Vy ∩ [k, t] ⊆ t ∩ [k, t] = 0,

so, in fact, Ly = V ⊥
y ∩ ky. On the other hand, consider the complexifications g := kC and h := tC

of k and t, respectively. Then (Vy)C is the intersection of kerα for all roots α : h −→ C such that
α(y) = 0. In light of this, it suffices to show that

(Vy)⊥C ∩ gy = [gy, gy].

Let

Ψ := {α ∈ Φ : α(y) = 0}.
One sees that Ψ is a closed root subsystem of Φ. It therefore determines a semisimple subalgebra
[Dyn52]:

gΨ := hΨ ⊕
⊕
α∈Ψ

gα,

where hΨ is the span of the coroots α∨ for all α ∈ Ψ (see e.g. [VGO90, Chapter 6, § 1]). Note
that

gy = h ⊕
⊕
α∈Ψ

gα,

so [gy, gy] = gΨ. We also have

(Vy)⊥C = hΨ ⊕
⊕
α∈Φ

gα,

so (Vy)⊥C ∩ gy = gΨ = [gy, gy]. Our proof is therefore complete. �
Now let K act on a symplectic manifold (M,ω) in a Hamiltonian way with moment map

μ : M −→ k∗. Recall that the imploded cross-section of M (see [GJS02]) is the quotient
topological space

Mimpl := μ−1(t∗+)/∼,
where p ∼ q if p = k · q for some k ∈ [Kμ(p),Kμ(p)]. This space can also be written as the disjoint
union

Mimpl =
⋃
σ⊆Δ

μ−1(Sσ)/[KSσ ,KSσ ],

where each piece μ−1(Sσ)/[KSσ ,KSσ ] is a symplectic manifold. By Lemma 4.28 and the fact that
the groups [KS ,KS ] in (4.14) are connected, we obtain the following result.
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Proposition 4.29 (Theorem F(ii)). The symplectic reduction of M by K along t∗+ is the
imploded cross-section of M by K, i.e.

M//t∗+
K = Mimpl. �

Remark 4.30. Although the subset t∗+ ⊆ k∗ is not a submanifold, we define the quotient as in
Remark 2.17.

Remark 4.31. Proposition 4.29 shows that the universal reduced space MK,t∗+ is the universal
imploded cross-section (T ∗K)impl (see [GJS02, § 4]). The universal property of (T ∗K)impl (see
[GJS02, Theorem 4.9]) is then a special case of Theorem 4.11.

4.8 Symplectic cutting
The following subsection only applies to the smooth category.

The symplectic cut construction of Lerman [Ler95] and its generalization to torus actions
[LMTW98] can be viewed as symplectic reduction along a polyhedral set, as we now explain.

Let (M,ω) be a symplectic manifold with an effective action of a compact torus T with
moment map μ : M −→ t∗. Following [LMTW98, § 2], let P ⊆ t∗ be a convex rational polyhedral
set of the form

P = {ξ ∈ t∗ : ξ(vi) ≥ bi for all 1 ≤ i ≤ N}
for someN ∈ N, v1, . . . , vN ∈ t in the integral lattice of T , and b = (b1, . . . , bN ) ∈ R

N . The vectors
vi define a Hamiltonian action of (S1)N on M × C

N with moment map ν : M × C
N −→ R

N ,
where the ith component of ν is νi(p, z) = μ(p)(vi) − |zi|2. The symplectic cut of M with respect
to P is the Marsden–Weinstein–Meyer reduction of M × C

N by (S1)N at level b. We denote this
reduced space by MP .

Although MP is singular in general, it is stratified into symplectic manifolds. A more precise
statement is that

MP =
⋃
F

μ−1(F )/TF ,

where the union ranges over the open faces F of P and TF ⊆ T is the torus whose Lie alge-
bra is (TξF )◦ ⊆ t for any ξ ∈ F . Each manifold μ−1(F )/TF is given a symplectic structure ωF
characterized by

π∗FωF = i∗Fω,

where πF : μ−1(F ) −→ μ−1(F )/TF is the quotient map and iF : μ−1(F ) −→M the inclusion
map.

As the Poisson structure on t∗ is trivial, every face F is Poisson and, hence, stable
(Lemma 4.14). Theorem 4.17(ii) then shows that TF × F is a source-connected stabilizer sub-
groupoid of F in T ∗T . The symplectic manifold μ−1(F )/TF is then the symplectic reduction
M//F T of M by T along F . These considerations allow us to deduce the following result.

Proposition 4.32 (Theorem F(iii)). The symplectic reduction of M by T along a polyhedral
set P is the symplectic cut of M with respect to P , i.e.

M//P T = MP . �

4.9 Symplectic reduction along a decomposition class
Let G be a connected complex semisimple linear algebraic group with Lie algebra g, and let
gx denote the g-centralizer of x ∈ g. Write x = xs + xn for the Jordan decomposition of any
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x ∈ g into a semisimple element xs ∈ g and a nilpotent element xn ∈ g. This gives rise to an
equivalence relation ∼ on g, in which x ∼ y if and only if gxs = Adg(gys) and xn = Adgyn for
some g ∈ G. The resulting equivalence classes are called decomposition classes (also known as
Jordan classes) and play an important role in Lie-theoretic geometry [BK79, Bro98a, Bro98b,
Spa82, ImH05, Mor08, Pop08]. Among other things, each decomposition class D ⊆ g is a smooth
[Bro98b, Corollary 3.8.1(i)], locally closed [TY05, Corollary 39.1.7(ii)], G-invariant subvariety of
g. It follows from Lemma 4.16 that D is a stable subvariety of g, allowing us to concretely study
stabilizer subgroupoids of D in the cotangent groupoid T ∗G ⇒ g. On the other hand, suppose
that x ∈ D and consider the [Gxs , Gxs ]-stabilizer [Gxs , Gxs ]xn and [gxs , gxs ]-centralizer [gxs , gxs ]xn

of the nilpotent part xn ∈ [gxs , gxs ]. Let us also consider the identity component [Gxs , Gxs ]◦xn
of

[Gxs , Gxs ]xn for each x ∈ D. The group scheme

H := {(g, x) ∈ G×D : g ∈ [Gxs , Gxs ]
◦
xn
} π−→ D (4.15)

is a subgroupoid of T ∗G ⇒ g if we use the Killing form and left trivialization to identity T ∗G
with G× g.

Remark 4.33. The conjugacy classes of [Gxs , Gxs ]xn in G and [gxs , gxs ]xn in g are easily seen to
be independent of x ∈ D. It follows that any two fibers of (4.15) are isomorphic as algebraic
groups.

Remark 4.34. If x ∈ g is semisimple, then [Gxs , Gxs ]◦xn
= [Gx, Gx]. The stabilizer subgroupoid

(4.15) thereby takes a simpler form if D consists of semisimple elements.

Proposition 4.35. If D ⊆ g is a decomposition class, then π : H −→ D is a stabilizer sub-
groupoid of D in T ∗G ⇒ g. Furthermore, (D,H) is a clean reduction datum for the action of G
on T ∗G by right translations.

Proof. We begin by verifying that H is closed in G×D. To this end, fix any y ∈ D, set Q :
= [Gys , Gys ]◦yn

, and let R be the normalizer of Q in G. We may G-equivariantly identify G/R
with the set of closed subgroups in G conjugate to Q, i.e. via the unique G-equivariant bijection
sending the identity coset [1] ∈ G/R to Q. Associating the subgroup [Gxs , Gxs ]◦xn

to each x ∈ D
then defines a continuous map φ : D −→ G/R. On the other hand, we may choose an open
neighborhood U ⊆ G/R of [1] and a holomorphic section s : U −→ G of G −→ G/R satisfying
s([1]) = 1. Now set V := φ−1(U) ⊆ D and note that

t : V −→ G, x �−→ s(φ(x))

is a holomorphic map satisfying

t(x)Qt(x)−1 = [Gxs , Gxs ]
◦
xn

for all x ∈ V . The map

V ×Q
∼=−→ π−1(V ), (x, q) �→ (t(x)qt(x)−1, x)

then defines a trivialization of π : H −→ D over V . As Q is closed in G, we conclude that H is
closed in G×D.

We now note that

D = G(z(gxs)
min + xn),

where

z(gxs)
min := {y ∈ z(gxs) : dim(gy) ≤ dim(gz) for all z ∈ z(gxs)}
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is the locus of elements in z(gxs) having g-centralizers of minimal dimension [TY05, Corollary
39.1.7]. This description of D implies that

TxD = z(gxs) + [g, x]

for all x ∈ D. Writing V ⊥ ⊆ g for the annihilator of any subspace V ⊆ g under the Killing form,
we conclude that

(TxD)⊥ = z(gxs)
⊥ ∩ [g, x]⊥

= z(gxs)
⊥ ∩ gx

= (z(gxs)
⊥ ∩ gxs) ∩ gxn

= [gxs , gxs ] ∩ gxn

= [gxs , gxs ]xn

for all x ∈ D. This combines with the source-connectedness of H −→ D, the closedness of H in
G×D, and Theorem 4.17 to imply that H is a stabilizer subgroupoid of D in T ∗G ⇒ g∗.

It remains only to prove that (D,H) is a clean reduction datum. However, this is an immediate
consequence of Proposition 4.10(ii). �

The clean reduction datum (D,H) in Proposition 4.35 determines a universal reduced space
MG,D,H = MG,D. An examination of (4.15) reveals that

MG,D = (G×D)/H =
⊔
x∈D

G/[Gxs , Gxs ]
◦
xn
,

where G acts on the third space via left multiplication on each factor. Given any x ∈ D, this
observation and the proof of Proposition 4.35 allow us to describe the tangent space of ([1], x) ∈
MG,D as

T([1],x)MG,D = T[1](G/[Gxs , Gxs ]
◦
xn

) ⊕ TxD = g/[gxs , gxs ]xn ⊕ [gxs , gxs ]
⊥
xn
.

One immediate consequence is that

dimMG,D = 2 dimD = 2 dimG− 2 dim([Gxs , Gxs ]xn) (4.16)

for all x ∈ D. Another consequence is that the symplectic form ω on MG,D is characterized
by being G-invariant and defined as follows on T(x,[1])MG,D = g/[gxs , gxs ]xn ⊕ [gxs , gxs ]⊥xn

for all
x ∈ D:

ω([1],x)(([u1], ζ1), ([u2], ζ2)) = −〈u1, ζ2〉 + 〈u2, ζ1〉 − 〈x, [u1, u2]〉
for all [u1], [u2] ∈ g/[gxs , gxs ]xn and ζ1, ζ2 ∈ [gxs , gxs ]⊥xn

, where 〈· , ·〉 denotes the Killing form on
g; this formula is a consequence of (4.1) and Theorem 3.10(iv). We also know that MG,D has
the structure of a holomorphic symplectic groupoid integrating D, as follows from Theorem 4.21
and Proposition 4.35.

Example 4.36 (Theorem E(ii)). We now discuss a curious application of this discussion. Consider
the subsets

girr := g \ greg, gs := {x ∈ g : x is semisimple} and gsubreg := {x ∈ g : dim gx = �+ 2}
of irregular, semisimple, and subregular elements in g, respectively. The intersection

g◦irr := gs ∩ gsubreg

is an open dense subset of girr equal to the disjoint union of finitely many decomposition classes
[Pop08, Remark 3.7(a)]. Each of these decomposition classes consists of semisimple elements and
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has codimension three in g (see [Pop08, Lemma 3.6]). These considerations and Proposition 4.35
imply that g◦irr ⊆ g is a smooth, G-invariant, stable subvariety of g admitting

H := {(g, x) ∈ G× g◦irr : g ∈ [Gx, Gx]} π−→ g◦irr
as a source-connected stabilizer subgroupoid. It follows that

MG,g◦irr =
⊔

x∈g◦irr

G/[Gx, Gx],

where G acts on the right-hand side by left multiplication on each factor. Each of the subgroups
[Gx, Gx] appearing above is three-dimensional and has Lie algebra [gx, gx] ∼= sl2. This combines
with (4.16) to yield

dimMG,g◦irr = 2 dimG− 6.

The symplectic form and symplectic groupoid structure on MG,g◦irr are described analogously to
those on MG,D in the previous paragraph.

5. Main construction: algebraic version

We now develop, prove, and explore the consequences of Theorem C, a counterpart of Theorems
A and B in complex algebraic geometry. This undertaking begins with some algebro-geometric
preliminaries in § 5.1. Theorem C is proved in § 5.2 and followed by examples in § 5.3 and § 5.4.
The last of these sections uses Theorem C to derive the Ginzburg–Kazhdan construction of
Moore–Tachikawa varieties.

5.1 Algebro-geometric preliminaries
In the interest of clarity, we now briefly outline the algebro-geometric counterparts of some
definitions in § 3. We work exclusively with algebraic varieties over C.

5.1.1 Quotients. Suppose that an algebraic groupoid H ⇒ S acts algebraically on a vari-
ety N . An H-invariant variety morphism π : N −→ Q then determines a sheaf (π∗ON )H on Q,
i.e. (π∗ON )H(U) is the algebra of H-invariant elements of ON (π−1(U)) for each open subset
U ⊆ Q. Observe that pulling back along π defines a sheaf morphism

OQ −→ (π∗ON )H. (5.1)

Definition 5.1. Suppose that an algebraic groupoid H ⇒ S acts algebraically on an algebraic
varietyN . We define an algebraic quotient ofN by H to be an H-invariant morphism π : N −→ Q
for which (5.1) is an isomorphism.

Example 5.2. If N is an affine variety and the algebra C[N ]H of H-invariant regular functions is
finitely generated, then the morphism N −→ Spec C[N ]H is an algebraic quotient.

5.1.2 Stabilizer subgroupoids. We shall use the term symplectic variety in reference to a
smooth algebraic variety endowed with an algebraic symplectic form. The term Poisson variety
shall be used for a potentially singular algebraic variety X whose structure sheaf OX is a sheaf
of Poisson algebras. Now suppose that X is a smooth Poisson variety. The Poisson bracket can
then be encoded by a Poisson bivector field σ : T ∗X −→ TX. A smooth locally-closed subvariety
S ⊆ X shall be called pre-Poisson if σ−1(TS) ∩ TS◦ has constant rank over S.

Now let G ⇒ X be an algebraic groupoid for which G and X are smooth varieties. If G comes
equipped with an algebraic symplectic form Ω such that the graph of multiplication is Lagrangian
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in G × G × G−, then G ⇒ X shall be called an algebraic symplectic groupoid. Each pre-Poisson
subvariety S ⊆ X then determines a Lie subalgebroid

LS := σ−1(TS) ∩ TS◦

of T ∗X ∼= Lie(G), to be called the stabilizer subalgebroid of S. We define a stabilizer subgroupoid
of S in G to be any smooth algebraic groupoid H ⇒ S integrating LS , together with an algebraic
Lie groupoid homomorphism j : H −→ G such that j∗Ω = 0.

5.1.3 Algebraic Hamiltonian systems. Definition 2.1 has an obvious algebro-geometric ana-
log, i.e. a notion of an algebraic Hamiltonian action of an algebraic symplectic groupoid on a
symplectic variety. In turn, this gives rise to the definition of an algebraic Hamiltonian system.

5.2 Complex algebraic symplectic reduction along a subvariety
Given any algebraic variety (Z,OZ), let Oan

Z denote the structure sheaf that realizes Z as a
complex analytic space. For a point z ∈ Z, we may identify the stalk OZ,z with a subalgebra of
Oan
Z,z.

Theorem 5.3 (Theorem C). Let ((M,ω),G ⇒ X,μ) be an algebraic Hamiltonian system and
S ⊆ X a pre-Poisson subvariety for which N := μ−1(S) is reduced. Suppose that π : N −→ Q is
an algebraic quotient of N by a stabilizer subgroupoid H ⇒ S of S.

(i) For all p ∈ N and f ∈ OQ,π(p), there exists F ∈ Oan
M,p such that π∗f = F |N ∈ Oan

N,p and
dF (TNω) = 0.

(ii) There is a unique algebraic Poisson structure {· , ·}Q on Q such that

π∗{f, g}Q = {F,G}|N
for all f, g ∈ OQ,π(p) and F,G ∈ Oan

M,p related to f, g as in part (i).
(iii) Assume that there exists p ∈ N such that dπp is surjective, π−1(π(p)) is an H-orbit, and

π(p) is a smooth point of Q. The Poisson structure in part (ii) is then non-degenerate on a
Zariski-open subset of the smooth locus of Q containing π(p).

Proof. To prove part (i), let D := TN ∩ TNω. By Proposition 3.7, we have Dq = Tq(H · q) for
all q ∈ N . It follows that

π∗f ∈ ON,p ⊆ Oan
N,p

and d(π∗f)(D) = 0, so we can find such an F by Proposition 3.6.
To prove part (ii), let U ⊆ Q be Zariski-open. Theorem 3.8 provides a Poisson bracket {· , ·}′

on Oan
N (π−1(U))H. It suffices to show that the subalgebra ON (π−1(U))H ∼= OQ(U) of algebraic

functions is closed under this bracket.
Let f, g ∈ OQ(U), let p ∈ π−1(U), and let F,G ∈ Oan

M,p be related to the germs fπ(p), gπ(p) ∈
OQ,π(p) as in part (i). By definition, the germ of {π∗f, π∗g}′ at p is {F,G}|N ∈ Oan

N,p. It therefore
suffices to show that {F,G}|N is algebraic, i.e. that it lies in the image of the map ON,p −→ Oan

N,p.
Suppose that X is affine for the moment. As TS + σ(TS◦) has constant rank, one may choose

an algebraic subbundle R ⊆ TX|S such that

TX|S = (TS + σ(TS◦)) ⊕R.

Remark 3.5 and the proof of Proposition 3.4 imply that there is a complex analytic Poisson
transversal Y ⊆ X such that

TS ⊕R = TY |S .
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By [FM17, Lemma 7], Y and μ are transverse and P := μ−1(Y ) is a complex symplectic
submanifold of M . It follows that

E := dμ−1(TS ⊕R) = TP |N (5.2)

is an algebraic subbundle of TM |N satisfying

TM |N = E ⊕ Eω. (5.3)

As E is locally trivial, we may extend the projection E ⊕ Eω −→ E to an algebraic section θ of
End(TM |W ) for some affine-open neighborhood W of p.

Noting that F |N = π∗f and G|N = π∗g are algebraic, we may choose F̃ , G̃ ∈ OM,p satisfying
F̃ |N = F |N and G̃|N = G|N . We claim that

{F,G}|N = ω(θ(XF̃ ), θ(XG̃))|N (5.4)

as germs in Oan
N,p. As the right-hand side is in ON,p, this would prove part (ii) in the case of an

affine X.
To verify (5.4), note that N is coisotropic in P . We therefore have TNω ∩ E ⊆ TN , which

in turn forces TNω = D ⊕ Eω to hold. It follows that

ω(θ(XF̃ ), TNω) = ω(θ(XF̃ ), D) = ω(XF̃ , D) = dF̃ (D) = d(π∗f)(D) = 0,

i.e. θ(XF̃ ) is tangent to N . As dF (TNω) = 0, we get that θ(XF̃ ) −XF is also tangent to N . On
the other hand, the inclusion TN ⊆ E tells us that

ω(θ(XF̃ ) −XF , TN) = ω(XF̃ −XF , TN) = d(F̃ − F )(TN) = 0.

We conclude that θ(XF̃ ) −XF takes values in TN ∩ TNω = D and, hence,

dG̃(θ(XF̃ ) −XF )|N = d(π∗g)(θ(XF̃ ) −XF )|N = 0.

One then deduces that

{F,G}|N = ω(XF , XG)|N = −dG(XF )|N = −dG̃(XF )|N = −dG̃(θ(XF̃ ))|N = ω(θ(XF̃ ), XG̃)|N
= ω(θ(XF̃ ), θ(XG̃))|N .

This proves part (ii) if X is affine. For the general case, one simply chooses an affine-open
neighborhood V of μ(p) in X and repeats the argument with S and X replaced by S ∩ V and
V , respectively.

The proof of part (iii) is entirely analogous to that of Theorem 3.10(iii). �
Definition 5.4. The Poisson variety Q in Theorem 5.3 is called the symplectic reduction of M
by G along S with respect to H and π. In this case, we denote Q by M//S,H,π G.

Remark 5.5. Although the Poisson structure on Q is algebraic, it may not always be possible to
write π∗{f, g}Q = {F,G}|N for algebraic functions F,G satisfying part (i). To be more explicit,
let ((M,ω),G ⇒ X,μ), (S,H), and π : N −→ Q be as in Theorem 5.3. Part (i) tells us that for
all p ∈ N and f ∈ OQ,π(p), there exists an analytic germ F ∈ Oan

M,p such that π∗f = F |N and
dF (TNω) = 0. It is natural to ask whether F can be taken to be algebraic. This would certainly
afford a more direct proof of the algebraicity of the Poisson bracket in part (ii) (cf. Remark 5.5).
Although this approach works if N is coisotropic, it fails in the general case. Indeed, finding
F such that dF (TNω) = 0 is essentially solving a first-order partial differential equation; its
solutions have no reason to be algebraic. To see this, consider the following example.

Take M = C
4 with coordinates (x, y, u, v) and symplectic form ω = dx ∧ dy + du ∧ dv.

Consider the pair groupoid G := M ×M− acting on M with moment map the identity M −→M
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(cf. Example 2.28). Then ((M,ω),G ⇒ M, Id) is an algebraic Hamiltonian system. We claim that
the subvariety

S := {(x, y, u, v) ∈ C
4 : x2 = u �= 0, y = 0}

is pre-Poisson.
Observe that TS is spanned by ∂x + 2x∂u and ∂v. We then find that TS◦ is spanned by

du− 2x dx and dy, and ω(TS) is spanned by dx+ 2x dv and du. It follows that the stabilizer
subalgebroid LS := ω(TS) ∩ TS◦ of S is trivial, so that S is pre-Poisson. The trivial groupoid
H over S is then a stabilizer subgroupoid of S in G, and the identity map S −→ S is an algebraic
quotient of S by H. We are therefore in the context of Theorem 5.3.

On the other hand, we claim that there exist p ∈ S and f ∈ OS,p such that there is no
algebraic germ F ∈ OM,p with F |S = f and dF (TSω) = 0. To this end, let f : S −→ C be given
by f(x, y, u, v) = x. Note that TSω is spanned by 2x∂y − ∂v and ∂x. It follows that a germ
F ∈ OM,p for p ∈ S satisfies dF (TSω) = 0 if and only if

2x
∂F

∂y
− ∂F

∂v
= 0 and

∂F

∂x
= 0

on S. Solving this partial differential equation with the constraint F |S = f , e.g. by the method
of characteristics, we find that

F =
√
u+ g

for any g ∈ I2
S , where IS is the analytic ideal of S and the square root is defined by a branch of

the logarithm such that
√
x2 = x near p. Note that u �= 0 on S, so F is well-defined as a germ

at p. However, there is no g ∈ I2
S such that

√
u+ g is algebraic.

5.3 Poisson and hyperkähler slices
Suppose that G is a connected complex semisimple linear algebraic group with Lie algebra g.
Use the Killing form to freely identify g and g∗ as G-modules. The Lie algebra g thereby inherits
a Poisson variety structure from g∗. At the same time, recall that τ = (e, h, f) ∈ g3 is called an
sl2-triple if the identities

[e, f ] = h, [h, e] = 2e, and [h, f ] = −2f

hold in g. One then has an associated Slodowy slice

Sτ := e+ gf ⊆ g,

which is known to be a Poisson transversal in g (see [GG02, Section 3.1]).
Fix an sl2-triple τ ∈ g3 and suppose that μ : M −→ g is a Hamiltonian G-variety, i.e. an

algebraic Hamiltonian system ((M,ω),G ⇒ X,μ) with (G ⇒ X) = (T ∗G ⇒ g). The previous
paragraph and Example 2.27 tell us that

Mτ := μ−1(Sτ )
is a symplectic subvariety of M , and that the trivial groupoid is a stabilizer subgroupoid of Sτ .
It follows that Mτ is the symplectic reduction of M by T ∗G ⇒ g∗ with respect to Sτ and the
trivial stabilizer subgroupoid H ⇒ Sτ .

The symplectic variety M//Sτ
G = Mτ has been studied in each of the following contexts.

(i) One obtains Mτ as a special case of the Poisson slice construction in [CR20].
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(ii) If M is hyperkähler and satisfies a mild condition, then Mτ is hyperkähler [Bie97,
Theorem 1] and called a hyperkähler slice [Bie17]. The study of hyperkähler slices orig-
inates in Bielawski’s works [Bie97, Bie17] and occurs in the subsequent papers [CR19,
CP21].

(iii) Consider the symplectic manifold T ∗G equipped with the action of G by right translations.
One then finds that (T ∗G)τ = MG,Sτ = G× Sτ . This symplectic subvariety of T ∗G is some-
times called a Nahm pole, and it receives considerable attention in [Bie97, MT12, Bie17,
CR19]. It enjoys a universal property, i.e. Mτ

∼= (M × (G× Sτ )//0 G under certain hypothe-
ses (see [Bie17, Theorem 1(ii)] and [CP21, Proposition 4.2]). This can now be viewed as a
special case of Theorem 4.11.

5.4 The Moore–Tachikawa TQFT
Retain the Lie-theoretic objects and conventions established in the first paragraph of § 5.3.
Consider the locus of regular elements

greg := {x ∈ g : dim(gx) = �} ⊆ g,

where � is the rank of g and gx ⊆ g denotes the g-centralizer of x ∈ g. Let us also fix a principal
sl2-triple, i.e. an sl2-triple τ = (e, h, f) ∈ g3 for which e, h, f ∈ greg. The Slodowy slice

S := Sτ
is a fundamental domain for the action of G on greg (see [Kos63, Theorem 8]), and it is a section
of the adjoint quotient

χ : g −→ Spec(C[g]G) =: c

[Kos63, Theorem 7]. This gives context for a conjecture of Moore–Tachikawa [MT12] and its
appearances in the literature [Cal15, Ara19, BFN19, Bie21].

Moore and Tachikawa [MT12] have conjectured the existence of certain topological quantum
field theories (TQFTs) valued in HS, the category of affine symplectic varieties with Hamiltonian
actions. This category has complex semisimple linear algebraic groups as its objects. A morphism
H1 −→ H2 is an equivalence class of an affine symplectic (H1 ×H2 × C

×)-variety6 for which the
symplectic form has C

×-weight −2 and the action of H1 ×H2 is Hamiltonian; two such varieties
are declared to be equivalent if they are (H1 ×H2 × C

×)-equivariantly symplectomorphic. In this
context, one defines morphism composition as follows:

X2 ◦X1 := (X1 ×X2)//H2 ∈ HomHS(H1, H3)

for all X1 ∈ HomHS(H1, H2) and X2 ∈ HomHS(H2, H3), where (X1 ×X2)//H2 is the affine geo-
metric invariant theory (GIT) quotient by H2 of the zero-level set of the H2-moment map on
X1 ×X2. The identity object in HomHS(H,H) is then T ∗H, equipped with its usual Hamiltonian
(H ×H)-action and its fiberwise dilation action of C

×.
It turns out that HS is a symmetric monoidal category with duality; the symmetric monoidal

structure is with respect to the usual products of linear algebraic groups and the usual products
of affine symplectic varieties. The dual of H ∈ Ob(HS) is defined to be H itself, whereas the
corresponding evaluation and coevaluation morphism are

T ∗H ∈ HomHS(H ×H, {e}) and T ∗H ∈ HomHS({e}, H ×H),

6 In this one case, ‘symplectic variety’ refers to a potentially singular Poisson variety that is symplectic on an open
dense subset of its smooth locus. Symplectic varieties are otherwise understood to be smooth and everywhere
symplectic in our paper.
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respectively. On the other hand, one knows that two-dimensional cobordisms form a symmetric
monoidal category BO2 with duality. These considerations lead to the following definition of
Moore–Tachikawa [MT12].

Definition 5.6. A two-dimensional HS-valued TQFT is a symmetric monoidal functor η :
BO2 −→ HS that respects duality.

Given a positive integer n, let

Cn ∈ HomBO2(S
1 � · · · � S1︸ ︷︷ ︸
n times

, ∅)

denote basic two-dimensional cobordism with n incoming circles. The Moore–Tachikawa
conjecture [MT12] is then formulated as follows.

Conjecture 5.7. If G is a connected complex simple linear algebraic group, then there exists a
two-dimensional HS-valued TQFT ηG : BO2 −→ HS satisfying ηG(S1) = G and ηG(C1) = G× S.

Remark 5.8. The condition ηG(C1) = G× S is imposed for physical reasons, as is explained in
[MT12, Section 3.3].

Let G be a connected complex simple linear algebraic group and ηG : BO2 −→ HS a TQFT
satisfying Conjecture 5.7. The Hamiltonian Gn-varieties

ηG(Cn), n ≥ 1

are sometimes called Moore–Tachikawa varieties. Examples include ηG(C1) = G× S and
ηG(C2) = T ∗G, the second assertion being a straightforward consequence of Definition 5.6 and
Conjecture 5.7. One also knows that the third Moore–Tachikawa variety ηG(C3) determines ηG
(see [MT12, Section 3.2]). Proving Conjecture 5.7 thereby amounts to finding a suitable candidate
for ηG(C3).

Remark 5.9. The conjecture is known to be true forG = SL(2,C) andG = SL(3,C) (see [MT12]).
One has ηSL(2,C)(C3) = C

2 ⊗ C
2 ⊗ C

2, whereas ηSL(3,C)(C3) is the closure of the minimal nilpotent
orbit in the exceptional Lie algebra E6.

Ginzburg and Kazhdan [GK] construct candidates for the Moore–Tachikawa varieties as
follows. Recall our discussion in § 5.3(iii) of the symplectic subvariety

N := G× S ⊆ G× g = T ∗G

and adjoint quotient morphism χ : g −→ c. One then defines the universal centralizer of G to be
the closed subvariety

J := {(g, x) ∈ N : g ∈ Gx} ⊆ N ,

where Gx ⊆ G denotes the G-stabilizer of x ∈ g. We have the morphism

N −→ c, (g, x) �−→ χ(x)

and its restriction

J −→ c, (g, x) �−→ χ(x)

to J . The latter is an abelian group scheme over c, and it acts on N via the map

J ×c N −→ N , ((g, x), (h, x)) �−→ (hg−1, x), x ∈ S, g ∈ Gx, h ∈ G.
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The kernel

Jn := ker(J ×c · · · ×c J︸ ︷︷ ︸
n times

−→ J )

of multiplication is then a group scheme over c acting on

Nn := N ×c · · · ×c N︸ ︷︷ ︸
n times

⊆ N n.

Ginzburg–Kazhdan [GK] prove that N ×c · · · ×c N is coisotropic in N n, and that the corre-
sponding null-foliation is formed by the Jn-orbits. They also show the geometric quotient

Z◦
n := Nn/Jn

to be a smooth algebraic variety, so that Z◦
n is necessarily symplectic. The left translation action

of Gn on T ∗Gn then descends to a Hamiltonian Gn-action on Z◦
n.

Ginzburg and Kazhdan subsequently define Zn to be the affinization of Z◦
n, i.e. theGn-scheme

Zn := (Z◦
n)

aff = Spec
(
C[Nn]Jn

)
.

If C[Nn]Jn is finitely generated for all n ≥ 1, then the Zn are Moore–Tachikawa varieties that
verify Conjecture 5.7 [GK].

Fix an integer n ≥ 1 and let

ΔnS ⊆ gn

denote the diagonally embedded copy of S in gn. We may identify c with S via the restricted
adjoint quotient

χ|S : S ∼=−→ c,

and S with ΔnS in the obvious way. The three varieties c, S, and ΔnS are thereby treated
interchangeably in what follows. One immediate consequence is our ability to view Jn as a
group scheme over ΔnS. At the same time, our identification T ∗G = G× g induces a further
identification T ∗Gn = (G× g)n. The set-theoretic inclusion Jn ⊆ (G× g)n then renders Jn −→
ΔnS a subgroupoid of T ∗Gn ⇒ gn.

Theorem 5.10 (Theorem E(i)). The following statements hold for all integers n ≥ 1.

(i) The diagonal ΔnS ⊆ gn is stable7 and admits Jn as a stabilizer subgroupoid in T ∗Gn ⇒ gn.
(ii) We have

Z◦
n = T ∗Gn//(ΔnS,Jn,πn) G

n,

where πn : Nn −→ Z◦
n is the geometric quotient map and Gn acts on T ∗Gn by right

translations.
(iii) Assume that C[Nn]Jn is finitely generated. We have

Zn = T ∗Gn//(ΔnS,Jn,π̄n) G
n,

where π̄n : Nn −→ Zn is the affine GIT quotient map,Gn acts on T ∗Gn by right translations.

Proof. Our arguments make extensive use of the fact that S is a transverse slice to the adjoint
action [GG02, Section 3.1]. This amounts to the statement that

g = gf ⊕ [g, x] for all x ∈ S, (5.5)

where we have identified TxS with gf and Tx(G · x) with [g, x].

7 The algebro-geometric definition of ‘stable’ is identical to the manifold-theoretic one in § 4.4.
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Lemma 4.4 implies that

(LΔnS)x = {(y1, . . . , yn) ∈ gn : y1 + · · · + yn ∈ g⊥f and [x, y1] = · · · = [x, yn] ∈ gf},
for all x = (x, . . . , x) ∈ ΔnS, where g⊥f is the annihilator of gf under the Killing form. On the
other hand (5.5) tells us that gf ∩ [g, x] = 0 for all x ∈ S. One consequence is as follows: if [x, yi] ∈
gf , then [x, yi] = 0, i.e. yi ∈ gx. Equation (5.5) also implies that g⊥f ∩ gx = (gf + [g, x])⊥ = 0.
These considerations and the observation that

Jn = {((g1, x), . . . , (gn, x)) : x ∈ S, g1, . . . , gn ∈ Gx, and g1 · · · gn = 1} (5.6)

give

(LΔnS)x = {(y1, . . . , yn) ∈ (gx)n : y1 + · · · + yn = 0} = Lie((Jn)x) (5.7)

for all x ∈ S, where (Jn)x is the fiber of Jn over x ∈ ΔnS. We also know that dim gx = dim gy
for all x, y ∈ S, as S ⊆ greg. It follows that dim(LΔnS)x is independent of x ∈ S, i.e. ΔnS is
pre-Poisson. We also see that (LΔnS)x ⊆ (gx)n for all x ∈ S, so that ΔnS is stable.

In light of (5.7) and Theorem 4.17(i)–(iii), showing (Jn)x to be connected for all x in an
open dense subset of S will force Jn to be a stabilizer subgroupoid of ΔnS. To this end, (5.6)
tells us that (Jn)x ∼= (Gx)n−1 for all x ∈ S. We also know Gx to be a maximal torus if x ∈ S
is semisimple. It follows that (Jn)x is indeed connected for all x in an open dense subset of x,
completing the proof of part (i).

To establish the remaining parts, consider (4.2). This implies that the moment map for the
action of Gn on T ∗Gn by right translations is

μ : (G× g)n −→ gn, ((g1, x1), . . . , (gn, xn)) �−→ (x1, . . . , xn).

A further observation is that

μ−1(ΔnS) = N ×S · · · ×S N = N ×c · · · ×c N = Nn.

Parts (ii) and (iii) then follow immediately from the definitions of Z◦
n and Zn, respectively. �

Remark 5.11. If G is of adjoint type, then the G-stabilizers of regular elements are connected. It
follows that Jn is a source-connected stabilizer subgroupoid of ΔnS in T ∗Gn ⇒ gn. We thereby
obtain the simplified expressions

Z◦
n = MGn,ΔnS and Zn = (MGn,ΔnS)aff ,

where (MGn,ΔnS)aff is the affinization of MGn,ΔnS .

6. Shifted symplectic interpretation

We now interpret the notion of symplectic reduction along a submanifold in the context of
shifted symplectic geometry [PTVV13]. More precisely, we view our construction as a derived
intersection of two Lagrangians in a 1-shifted symplectic stack and obtain a 0-shifted symplec-
tic structure from [PTVV13, Theorem 2.9]. There are similar statements in the literature for
Marsden–Weinstein–Meyer reduction [Cal20, § 2.1.2] and quasi-Hamiltonian reduction [Saf16].
We refer the reader to [PTVV13, Get14, Cal20, PS20] for the relevant background on shifted
symplectic geometry.

Given an algebraic symplectic groupoid G ⇒ X, recall that the quotient stack [X/G] inherits
a 1-shifted symplectic structure (see e.g. [Cal20, § 1.2.3], [Get14], and [Saf21, Proposition 3.31]).
Recall also that a Hamiltonian action of G ⇒ X on a smooth symplectic variety (M,ω) with
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moment map μ : M −→ X gives rise to a Lagrangian structure on the map [μ] : [M/G] −→ [X/G]
(see [Cal20, Example 1.31]).

Consider a Lie subgroupoid H ⇒ S of G ⇒ X with morphism f : H −→ G. An isotropic struc-
ture on [f ] : [S/H] −→ [X/G] is a closed 2-form β on S such that f∗Ω = s∗β − t∗β, where Ω is the
symplectic form on G (see [PTVV13, Definition 2.7] or [Cal20, § 1.3.2]). The isotropic structure
β is called Lagrangian if the induced morphism Tf −→ L[S/H] is a quasi-isomorphism [PTVV13,
Definition 2.8], where T and L denote the tangent and cotangent complexes, respectively, and

Tf := f∗T[X/G][−1] ⊕ T[S/H]

is the relative tangent complex with the differential given by the map T[S/H] → f∗T[X/G].

Proposition 6.1 (Theorem G(i)). Let H ⇒ S be a Lie subgroupoid of an algebraic symplectic
groupoid G ⇒ X. The zero 2-form on S is a Lagrangian structure on [S/H] −→ [X/G] if and
only if H is the stabilizer subgroupoid of a pre-Poisson submanifold.

Proof. Note that β = 0 is an isotropic structure if and only if H is isotropic in G. We may
therefore assume that H is isotropic, and aim to show that the trivial isotropic structure on [f ] :
[S/H] −→ [X/G] is Lagrangian if and only if the Lie algebroid L of H, viewed as a subalgebroid
of T ∗X = Lie(G), is equal to σ−1(TS) ∩ TS◦, where σ : T ∗X −→ TX is the Poisson structure.

Recall that the tangent complex of the quotient stack of a groupoid is the two-term complex
given by the anchor map in degrees −1 and 0 (see e.g. [Cal20, § 1.2.3]). It follows that the map
of complexes Tf −→ L[S/H] is given by

where the maps are defined as follows:

– α is the sum of the inclusion L −→ T ∗X|S and the anchor map σL : L −→ TS;
– β is the sum of σ and the inclusion TS −→ TX|S ;
– γ is the sum of the restriction map T ∗X|S −→ T ∗S and the map TS −→ T ∗S given by the

isotropic structure (which is zero in this case);
– δ is the restriction map;
– ε is the dual of the anchor map σL of L.

As H is isotropic in G, we have L ⊆ TS◦ and this diagram commutes.
Passing to the map on cohomologies, we obtain

The trivial isotropic structure is Lagrangian if and only if ϕ and ψ are isomorphisms. Note that

kerϕ = (σ−1(TS) ∩ TS◦)/L. (6.1)

Hence, if the isotropic structure is Lagrangian, then L = σ−1(TS) ∩ TS. Conversely, suppose
that L = σ−1(TS) ∩ TS◦. We then have kerϕ = 0 by (6.1). By identifying AnnT ∗S(σ(L)) with
σ(L)◦/TS◦, the image of ϕ is σ−1(TS)/TS◦. However,

σ(L)◦ = (TS ∩ σ(TS◦))◦ = TS◦ + σ−1(TS),
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so σ(L)◦/TS◦ = σ−1(TS)/TS◦ and, hence, ϕ is surjective. On the other hand, note that

L∗/σ∗L(T ∗S) = TX|S/(σ(T ∗X|S) + L◦).

It follows that ψ is an isomorphism if and only if

σ(T ∗X|S) + L◦ = σ(T ∗X|S) + TS.

The latter equality holds because L◦ = (σ−1(TS) ∩ TS◦)◦ = σ(TS◦) + TS. �

By combining Proposition 6.1 and [PTVV13, Theorem 2.9], we obtain the following result.

Theorem 6.2 (Theorem G(ii)). Let ((M,ω),G ⇒ X,μ) be an algebraic Hamiltonian system,
S ⊆ X a pre-Poisson subvariety, and H ⇒ S a stabilizer subgroupoid of S in G. Then the derived
fiber product

[M//S G] := [M/G] ×h
[X/G] [S/H]

has a canonical 0-shifted symplectic structure.

Example 6.3. If G ⇒ X in Theorem 6.2 is a cotangent groupoid T ∗G ⇒ g∗ and S = {0}, we
recover the derived version of Marsden–Weinstein–Meyer reduction at level zero [Cal20, § 2.1.2].

Notation

OX Structure sheaf of X.
OE
X Subsheaf of all f ∈ OX satisfying df(E) = 0.

Fx Stalk of a sheaf F at a point x.
fx Class of f ∈ F in the stalk Fx.
Man Complex analytic space associated to a complex algebraic variety M .
M− Manifold M endowed with the negated symplectic form.
Ex Fiber of a vector bundle E over a point x.
E|S Pullback of a vector bundle E −→ X to a submanifold S ⊆ X.
V ◦ Annihilator of a vector space V in W ∗, where W is some ambient vector space

containing V as a subspace.
E◦ Annihilator of a vector bundle E −→ S in F ∗|S , where F −→ X is some ambient

vector bundle, S ⊆ X is a submanifold, and E is a subbundle of F |S .
Eω Annihilator of a subbundle E −→ N of TM |N with respect to ω, where (M,ω)

is some ambient symplectic manifold and N ⊆M is a submanifold.
G ⇒ X Lie groupoid.
s Source s : G −→ X.
t Target t : G −→ X.
G|S Restriction s−1(S) ∩ t−1(S) of G to a submanifold S ⊆ X.
Gx Fiber t−1(x) over x ∈ X.
G · p Orbit of a point p in a space equipped with an action of a Lie groupoid G ⇒ X.
Lie(G) Lie algebroid of a Lie groupoid G ⇒ X.
[X/G] Quotient stack of a Lie groupoid G ⇒ X.
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T[X/G] Tangent complex of a quotient stack [X/G].
L[X/G] Cotangent complex of a quotient stack [X/G].
Tf Relative tangent complex of a morphism of stacks f .
×h Derived fiber product.
(X,σ) Poisson manifold X with Poisson bivector field σ : T ∗X −→ TX.
Xf Hamiltonian vector field of a function f .
LS The subset σ−1(TS) ∩ TS◦ ⊆ T ∗X for (X,σ) a Poisson manifold and S ⊆ X

a submanifold.
GS ⇒ S Unique source-connected, ssc stabilizer subgroupoid of a pre-Poisson sub-

manifold S ⊆ X in a symplectic groupoid G ⇒ X.
M//ξ G Marsden–Weinstein–Meyer reduction of M by G at level ξ.
M//S,H G Symplectic reduction of M by G along S with respect to H.
M//S G Symplectic reduction of M by G along S with respect to any source-

connected H.
MG,S,H Symplectic reduction of M by T ∗G along S with respect to H.
MG,S symplectic reduction of M by T ∗G along S with respect to any source-

connected H
(S,H) Reduction datum of a pre-Poisson submanifold S and a stabilizer sub-

groupoid H ⇒ S.
M//S,H,π G Symplectic reduction of M by G along S with respect to H and π.
Ad Adjoint representation of a Lie group.
Ad∗ Coadjoint representation of a Lie group.
ad Adjoint representation of a Lie algebra.
ad∗ Coadjoint representation of a Lie algebra.
Gx Stabilizer of a point x in a space equipped with an action of a Lie group G.
gx Centralizer of a point x ∈ g, where g is a Lie algebra.
gξ Centralizer of a point ξ ∈ g∗, where g is a Lie algebra.
greg Set of regular elements in a complex semisimple Lie algebra g.
girr Complement of greg in g.
gs Set of semisimple elements in g.
gsubreg Set of subregular elements in g.
g◦irr The intersection gs ∩ gsubreg.
c The affine space Spec(C[g]G), where G is a connected complex semisimple

linear algebraic group with Lie algebra g.
χ : g −→ c Adjoint quotient of a complex semisimple Lie algebra g.
N Nahm pole G× S, where G is a connected complex semisimple linear

algebraic group with Lie algebra g and S ⊆ g is a principal Slodowy slice.
Nn n-fold fibered product N ×S · · · ×S N .
J Universal centralizer J −→ S, where S is a principal Slodowy slice.
Jn Kernel of multiplication J ×S · · · ×S J −→ J in the n-fold fibered product

of J .
Z◦
n Geometric quotient of Nn of by Jn.

Zn Affinization Spec(C[Nn]Jn) of Z◦
n.
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